
© 2021 Andrew Yoo

A FAIL-SLOW TOLERANT RAFT IMPLEMENTATION

BY

ANDREW YOO

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Advisers:

Assistant Professor Tianyin Xu
Assistant Professor Shuai Mu, Stony Brook University

ABSTRACT

Fail-slow tolerance has been a long desired trait for computer systems. A fail-slow fault

causes a hardware or software component to experience performance degradation without

stopping or terminating.

We inject fail-slow faults into existing distributed database systems. We observe that they

cannot tolerate fail-slow faults in even a minority of followers. To determine the root cause

of this intolerance, we perform a comprehensive analysis on each database and categorize

them into patterns. Every pattern is heavily connected to the implementation rather than

the algorithm design.

We extend our own programming library, DepFast, that facilitates programmers to write

fail-slow tolerant code, to account for these patterns. DepFast leverages coroutines and

events to provide interfaces that minimizes slowness propagation. Using insights from our

root cause analysis, DepFast also provides warnings to the user at runtime that inform the

programmers of the patterns if they exist in the implementation. We build a fail-slow tolerant

Raft implementation on top of DepFast and integrate it into a database (DepFastDB).

DepFastDB can tolerate the same fail-slow faults injected into other databases. Furthermore,

we inject the patterns into DepFastDB and show that our runtime analysis can detect these

patterns with near-perfect accuracy in our trials.

ii

”To my parents, for their love and support.”

iii

ACKNOWLEDGMENTS

Foremost, I want to thank Assistant Professor Tianyin Xu for being a “rock-star” advisor

like his own advisor. When I initially started attending the University of Illinois at Urbana-

Champaign, I always heard Tianyin discussing systems topics. Hearing his energy and

excitement about the topic inspired me to pursue projects with the same commitment. One

day, Tianyin requested that I work on a new project with him, which is the project that led

to my thesis. I accepted immediately without question because I knew that I was going to

work under an advisor that is dedicated to his work. Working with Tianyin has taught me

lessons that I will treasure in my life. The most important lesson that Tianyin taught me was

about aiming to become a winner and taking initiative. One of my biggest flaws going into

UIUC was that I always seeked minimum effort to achieve a goal. Instead, Tianyin taught

me that I should aim for my best effort and not settle for the bare minimum. One example

that he provided was his disappointment with people who are boastful about submitting a

paper that was rejected. While submission is a difficult task on its own, true winners will

place the extra work to make sure the paper is accepted. I tried to incorporate this lesson

into this thesis. The large amount of effort and sacrifices made to complete this thesis is

thanks to Tianyin. Going forward after graduation, I hope to approach every project with

the same mindset.

I want to thank my co-advisor, Assistant Professor Shuai Mu, for helping me work through

the details of my thesis. First, Shuai taught me the value of setting ambitious goals. Without

his vision for how distributed systems should be implemented, this exciting project would

have never started. After all, becoming a winner at a small goal is not impressive. Second,

Shuai is the most helpful advisor in terms of technical assistance that I have had the chance

to work with. Shuai would sacrifice time out of his night to video chat with me to help me

debug the code or discuss ideas for the project. His benevolence helped me greatly in this

project. I will carry these traits into my own life.

I want to thank Professor Klara Nahrstedt for collaborating with me on a research project

that is different from my thesis. Exploring ABR algorithms and multimedia systems helped

me broaden my knowledge of systems and networking.

I want to thank the Siebel Scholars program for accepting me into their long history

of accomplished and distinguished students. During the tough last year, Siebel Scholars

allowed me to focus entirely on my work. I felt both humbled and motivated to be part of

this program, and I aim to continue building on its legacy.

iv

Finally, I want to thank students that have collaborated and discussed technical topics

with me, including Eric Lee, Kuan-yen Chou, Jason Liu, Hung Tran, Ritesh Sinha, Yuanli

Wang, and every student in Tianyin’s lab. The experience has taught me that disagreements

and conflicts are common in achieving goals and a profound understanding of topics, but

dealing with them requires patience and maturity. I hope to share these experiences with

them again in the future.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Contributions . 3

CHAPTER 2 MEASUREMENT . 5
2.1 Target Systems and Configurations . 5
2.2 Fail-Slow Faults . 5
2.3 Workloads . 6
2.4 Results and Findings . 6
2.5 Discussion . 7

CHAPTER 3 ROOT CAUSES . 9
3.1 Repeated Background Tasks Problem . 9
3.2 Backlog Problem . 18
3.3 Transient Performance Problem . 25

CHAPTER 4 THE DEPFAST FRAMEWORK . 32
4.1 Interface . 32
4.2 More on Events . 34
4.3 Runtime . 34
4.4 DepFastDB . 38

CHAPTER 5 EVALUATION . 39
5.1 Fail-Slow Fault Tolerance . 39
5.2 Runtime Verification . 40

CHAPTER 6 RELATED WORK . 53
6.1 Replicated State Machine Systems . 53
6.2 Fail-Slow Faults . 54

CHAPTER 7 CONCLUSION . 56

REFERENCES . 57

vi

CHAPTER 1: INTRODUCTION

1.1 MOTIVATION

Replicated state machine or RSM systems have become a critical part of modern infras-

tructures by laying a foundation for distributed databases [1, 2, 3, 4] and service man-

agement [5, 6, 7]. 1 An RSM system deploys distributed nodes that replicate data in a

linearizable and fault-tolerant manner. Most of the fault-tolerance guarantees are provided

by the design of underlying protocols [8, 9, 10].

Many RSM systems are based on Raft [9] that replicates a log or a series of commands on

a majority of servers. Raft enforces a strong leader that sends log entries to other nodes or

“followers”. When a leader receives a client request, it will append an entry to its log and

send an AppendEntries RPC to the followers in parallel. The leader will commit the log

entry when it knows that a majority of the servers has replicated the entry. As a result, the

protocol guarantees correctness as long as a majority of the servers are healthy.

These replicated state machine systems can effectively tolerate fail-stop faults in a minority

of servers but fall victim to fail-slow faults. In a fail-slow fault, a software or hardware

component experiences performance degradation without stopping or terminating [11, 12].

In RSM systems, a fail-slow fault in even a follower can propagate to the entire system.

Every major hardware component, such as memory, SSD, and NICs, is susceptible to such

faults [12]. For instance, a firmware bug on the NIC can decrease the network performance to

half [12]. While it is not a failure in the hardware itself, contention over hardware resources

can also lead to a fail-slow fault. Contention with another memory-intensive process can

cause a 40x degradation on a task [11]. Furthermore, software components can experience

these faults through bugs and misconfigurations [13, 14, 15]. These faults such as contention

over a shared resource such as a lock can cause delays in heartbeat messages and restart

tasks on another node [15]. Misconfigurations in virtual-memory mapping can lead to about

50% performance degradation [11]. RSM systems implemented with Raft are not immune

to such failures.

In our own experience, modern implementations contradict an important motivation be-

1This chapter reuses material from the following accepted paper: A. Yoo, Y. Wang, R. Sinha, S. Mu, and
T. Xu, “Fail-slow fault tolerance needs programming support,” in Proceedings of the 18th Workshop on Hot
Topics in Operating Systems (HotOS-XVIII), Virtual Event, May 2021.

Authors are Andrew Yoo (author of this thesis), Yuanli Wang, Ritesh Sinha, Shuai Mu, and Tianyin Xu.
According to the Authors’ Rights page for the publisher (ACM), I as the author have rights to reuse the paper.
The Authors’ Rights can be found here: https://authors.acm.org/author-resources/author-rights.
The DOI is yet to come as it was not published yet.

1

hind Raft [9] to create a consensus protocol that is easy to implement. On one hand, we

do not expect Raft implementations to tolerate certain fail-slow faults by design such as a

faulty leader. On the other hand, a minority of faulty nodes should not affect the system.

In contrast, our measurement of real-world RSM implementations, which all use Raft or

a similar protocol, exposes their inability to consistently tolerate fail-slow faults in even a

single follower. In our experience, we quickly discovered that the underlying problems stem

from the implementation instead of the design. To worsen the problem, these modern im-

plementations are often ridden with spaghetti code and fragments scattered across different

threads and callbacks despite the goals of Raft [9].

Our goal is to write a fail-slow tolerant Raft implementation by leveraging our form of

programming support in the Dependably Fast Library (DepFast). DepFast is motivated

by our observations of currently convoluted implementations of RSM systems. Therefore,

DepFast facilitates developers to write distributed systems code that can tolerate fail-slow

faults through expressive interfaces. DepFast focuses on faithfully tolerating fail-slow faults

that the protocol should, such as a fail-slow follower. To achieve this, DepFast allows devel-

opers to control fail-slow points such that they can prevent slowness propagation. Built on

this principle, DepFast provides an interface that does not wait on each event individually

but on a group of events for a majority. However, this iteration of DepFast alone cannot

demonstrate that it can account for the implementation problems found in the real-world

RSM implementations.

To resolve these shortcomings, we must first understand the root causes in modern imple-

mentations that are leading to the lack of fail-slow tolerance. We perform a comprehensive

analysis on three widely used databases with similar implementations that includes dissecting

the symptoms and source code. We categorize each root cause into the following patterns.

First, the leader will spawn repeated background tasks (network events that do not spawn

from a client request) when there is a fail-slow follower. In TiDB, the leader will resend

the same AppendEntries message to the slow follower more than twice upon receiving a

response from the follower. Second, a fail-slow follower can lead to excessive backlogs on the

leader. The leader in RethinkDB has an unbounded buffer that grows due to slow response

from the follower. Third, transient performance problems become more apparent in the

tail. In MongoDB, transient performance on the healthy follower will cause the system to

experience a fail-slow fault on a majority of nodes for a brief period.

We extend DepFast by abstracting the patterns that we observed into our interfaces,

analyzing the system at runtime, and sending warnings to the developers. First, we monitor

the transitive dependency of each request to ensure that the number of background tasks does

not excessively grow. Second, we incorporate the Finalize interface into our current library,

2

where the programmers must process dangling requests or free them to prevent backlog

problems. Finally, we provide an expressive interface to track the extent to which the current

system is susceptible to transient performance. These interfaces notify the programmers if

they are falling into the same pitfalls as modern implementations.

We leverage the extended version of DepFast to implement DepFastRaft, a fail-slow tol-

erant Raft implementation, and integrate it into a distributed database, DepFastDB. We

demonstrate that DepFastDB can effectively tolerate fail-slow faults that we found to de-

grade performance on other systems. DepFastDB only experiences performance degradation

up to 5% range for more than 90% of measurements. Furthermore, we show that our run-

time analysis can reliably detect the patterns in other databases by injecting them into

DepFastRaft. Our runtime analysis has near-perfect accuracy across every pattern.

1.2 CONTRIBUTIONS

The contributions in the paper are as follows:

1. We inject fail-slow faults on three widely used RSM-based databases and analyze their

performance. While the algorithm and design should tolerate fail-slow faults in a

minority of nodes, implementation of the databases causes the databases to falter. We

demonstrate that even a fail-slow follower can significantly affect performance.

2. We perform a comprehensive root-cause analysis on all three databases to discover what

is causing the slowness to propagate. We characterize the root causes into patterns,

provide lines of code, and analyze their impact on the systems. The three root causes in

TiDB, RethinkDB, and MongoDB respectively are background tasks that are triggered

repeatedly by message responses, backlog issues from sending requests to a fail-slow

follower, and transient performance.

3. We briefly detail the main components of the Dependably Fast Library (DepFast) that

facilitates implementation of fail-slow tolerant systems. We then extend DepFast to

abstract the patterns into our interfaces, analyze the system at runtime, and send

warnings to the programmers. Using DepFast, we build our fail-slow tolerant Raft

implementation, DepFastRaft.

4. We integrate DepFastRaft into a replicated key-value database, DepFastDB. Our eval-

uation is two-fold. First, we demonstrate that DepFastDB can tolerate fail-slow faults

on a minority of followers. Second, we simulate the root-cause patterns by creating

3

flawed variants of DepFastRaft and show that DepFast can reliably detect the imple-

mentation flaws.

4

CHAPTER 2: MEASUREMENT

2.1 TARGET SYSTEMS AND CONFIGURATIONS

Systems As motivation for our work, we evaluate the fail-slow fault tolerance of three

mature RSM-based distributed systems (TiDB [16], RethinkDB [17], and MongoDB[18]). 1

RethinkDB and MongoDB both utilize a single Raft consensus group, which has a leader and

multiple followers. Meanwhile, TiDB leverages the MultiRaft architecture, which separates

data into ranges that have their own consensus group. As a result, each node could be a

leader and a follower of different consensus groups. However, these ranges still maintain the

principles of Raft consensus, such as availability and prevention of data loss with a minority

of failures. Therefore, the systems should handle up to to a certain number of fail-slow faults

seamlessly in principle. Specifically, a single fail-slow follower should not hinder performance.

Configuration We configure the databases to enforce strong consistency if it is not the

default configuration. We also disabled chained replication [19] because it causes slowness

propagation from a fail-slow fault in a follower by design [20]. In our preliminary testing,

we found that chained replication worsens the performance degradation from a fail-slow

follower. Our focus is on the implementation level instead of the design level.

Deployment We deploy the databases on the Azure cloud. Each Standard D4s v3 virtual

machine instance has 4 CPUs, 16GB RAM, and a 64GB SSD for data.

2.2 FAIL-SLOW FAULTS

Fail-Slow Faults We build a framework to inject fail-slow faults on different major system

components into the widely used databases. We selected these fail-slow faults based on prior

work in the area [12, 14]. Table 2.1 displays the faults that we have injected.

1This chapter reuses material from the following accepted paper: A. Yoo, Y. Wang, R. Sinha, S. Mu, and
T. Xu, “Fail-slow fault tolerance needs programming support,” in Proceedings of the 18th Workshop on Hot
Topics in Operating Systems (HotOS-XVIII), Virtual Event, May 2021.

Authors are Andrew Yoo (author of this thesis), Yuanli Wang, Ritesh Sinha, Shuai Mu, and Tianyin Xu.
According to the Authors’ Rights page for the publisher (ACM), I as the author have rights to reuse the paper.
The Authors’ Rights can be found here: https://authors.acm.org/author-resources/author-rights.
The DOI is yet to come as it was not published yet.

5

Fail-slow type Fault injection

CPU (slow) Use cgroup to limit each RSM process to
utilize only 5% CPU

CPU (contention) Run a contending program (assigned with
16× higher CPU share than the process)

Disk (slow) Use cgroup to limit disk I/O bandwidth
available for the RSM process

Disk (contention) Run a contending program that writes
heavily on the shared disk

Memory (contention) Use cgroup to set the maximum amount
of user memory for the RSM process.

Network (slow) Add a delay of 400 milliseconds to the
network interface using tc

Table 2.1: Fail-slow faults used for measuring fail-slow tolerance of existing RSM databases
(MongoDB, TiDB, and RethinkDB) and DepFastDB.

Fault Injection We set up a three-node deployment in which every node is a VM instance.

Then, we inject a fail-slow fault on a single follower. Since MongoDB and RethinkDB have

dedicated leader and follower nodes, we select one of the two follower nodes to throttle.

However, TiDB leverages a Multi-Raft architecture that allows each node to host a leader

and follower (§2.1). We modify the configuration of TiDB such that every node hosts only

leaders or only followers.

2.3 WORKLOADS

For our workload, we leverage Yahoo! Cloud Serving Benchmark (YCSB) [21]. We ini-

tially start with two healthy followers on three-node deployments on the three widely-used

databases. Afterwards, we inject fail-slow faults from Table 2.1 into a follower. The work-

load is comprised of 100% writes as a write will need to be replicated on a majority of nodes.

Depending on the database, we run 256-1200 concurrent clients, which causes the leader

to experience up to 75% utilization. We measure the performance on throughput, average

latency, and P99 tail latency.

2.4 RESULTS AND FINDINGS

Figure 2.1 presents the performance of the the three databases after injecting a fail-slow

fault on a follower node. Each database have different absolute performance. Therefore, we

6

No Slow Slow CPU CPU Contention Memory Contention Slow Disk Disk Contention Slow Network

MongoDB TiDB RethinkDB0.00

0.25

0.50

0.75

1.00

1.25

Th
ro

ug
hp

ut
 (n

or
m

.)

C
ra

sh
C

ra
sh

(a) Throughput

MongoDB TiDB RethinkDB0.0

0.5

1.0

1.5

2.0

2.5

La
te

nc
y

(n
or

m
.)

C
ra

sh
C

ra
sh

(b) Average Latency

MongoDB TiDB RethinkDB0.0

1.0

2.0

3.0

4.0

5.0

La
te

nc
y

(n
or

m
.)

C
ra

sh
C

ra
sh

(c) P99 Latency

Figure 2.1: Performance of three RSM databases with a fail-slow follower (different type) in
three-node setups.

normalized the performance numbers based on the performance of the experiment with no

fail-slow followers.

In every type of injected fail-slow fault, there is nontrivial performance degradation in all

metrics. The results demonstrate that a single fail-slow follower can decrease throughput by

17-41%, average latency by 21-50%, and P99 tail latency by 1.6-3.46x. Consequently, none

of the databases are fail-slow tolerant even when we throttle a single follower.

2.5 DISCUSSION

In our process of analyzing slowness propagation, we discovered the challenges of de-

bugging the root causes in the databases. Finding the root causes in the implementations

pertaining to their performance in §2.4 consumed a total of two person-years. The method

involved a binary search by minimizing smaller and smaller fragments of code using times-

tamping. In a vacuum, a binary search should be a simple and straightforward process. In

reality, the process is complicated by spaghetti code where fragments are scattered across

the implementation. Pinpointing the critical point of the code in the implementation and

understanding how components interact is complex.

In our collaboration with developers of two of the databases, even they have admitted

to lacking knowldedge of how the slowness propagates. Even with the same method of

timestamping, they can rarely find the root cause. In fact, the developers do not fully

understand every part of the system and cannot describe the whole system end to end.

Problem with Programmers We can assume several reasons to explain the difficulty of

debugging the root causes of the slowness propagation. First, asynchronous programming

with callbacks has been lauded as the primary way of developing distributed systems over

7

the synchronous alternative [22]. In popular asynchronous event-driven libraries such as li

bev and libuv, programmers utilize a message loop that processes messages and executes

callbacks. Second, it is intuitive to program many distributed algorithms such that the

system takes an action upon receiving a message as many such papers describe them in that

fashion.

Combining this pattern with asynchronous programming can result in spaghetti code. For

instance, a Paxos system progresses through 3 phases that have a minimum of 3 callbacks.

If they function in a 5-replica system, the total number of callbacks extends to 15. Disk

logging can double the callbacks. Monitoring these callbacks becomes even more cumbersome

to debug as demonstrated in our own experience.

Logic vs Utility Our observation implies that it is important to differentiate logic, such

as the Raft logic, from the utility, such as disk operations, in a clear abstraction. First,

recognizing the origin of the problem between logic and utility can save valuable time in

debugging the propagation. Since a root cause from utility is easier to fix, knowing that

the root cause is not related to logic can be helpful. Second, this abstraction can increase

transparency between the two parts. Without knowledge from the logic end, the utility

must execute tasks without specific optimizations for fail-slow faults. When the Raft logic

broadcasts AppendEntries messages to all replicas, the utility part will send the message to

every replica without any questions or conditions. As we have discovered, this pattern has

caused backlog problems where the buffer in RethinkDB continued to increase. If the logic

can communicate with the utility, the utility aspect could adjust by dropping messages for

a slower connection.

Our Solution The experience motivates us to explore a solution that places fail-slow

faults as the highest priority in the fault-tolerance implementation on distributed systems.

We aim to separate the fail-slow components from other parts of the code to minimize

slowness propagation stemming from a fail-slow fault. We achieve this goal by designing a

programming framework that monitors and handles fail-slow faults.

8

CHAPTER 3: ROOT CAUSES

We observed the following root cause patterns. 1 First, fail-slow faults can propagate

through repeated background tasks (events that are not generated directly by a client re-

quest). For instance, the leader in TiDB sends the same AppendEntries message more than

twice to a fail-slow follower that is triggered by a response to an earlier message. Second, a

fail-slow follower can result in excessive backlogs inside the leader, which can increase pro-

cessing overhead and consume resources. In RethinkDB, an unbounded buffer on the leader

can grow as a result of a fail-slow follower. Third, fail-slow faults can enlarge the effects

of transient performance issues. In a three-node deployment, a fail-slow follower will cause

transient performance of the other follower to propagate. We confirmed the aforementioned

issues with the developers.

3.1 REPEATED BACKGROUND TASKS PROBLEM

3.1.1 Overall Description

Some systems spawn an arbitrary number of background tasks resulting in increased net-

work and disk activity when there is a fail-slow follower. We define background tasks to

be any messages that do not originate from a client request. TiDB has an example of this

behavior as MsgAppend, which we will call AppendEntries messages to adhere to Raft ter-

minology, may be transmitted due to responses from heartbeat or previous AppendEntrie

s messages to the follower. When the leader in TiDB receives such responses, it will check

certain conditions to determine whether to retransmit a previous AppendEntries message.

These conditions are more likely to be satisfied when we add slowness to a follower. Under

a fail-slow fault, the leader will not only send the same AppendEntries message twice but

also retransmit up to 30 times.

We describe three key fields of progress objects maintained in the leader for each follower

that become problematic with a slow follower. First, the progress object has sliding windows

called Inflights for each follower to track the number of currently outbound messages.

1This chapter reuses material from the following accepted paper: A. Yoo, Y. Wang, R. Sinha, S. Mu, and
T. Xu, “Fail-slow fault tolerance needs programming support,” in Proceedings of the 18th Workshop on Hot
Topics in Operating Systems (HotOS-XVIII), Virtual Event, May 2021.

Authors are Andrew Yoo (author of this thesis), Yuanli Wang, Ritesh Sinha, Shuai Mu, and Tianyin Xu.
According to the Authors’ Rights page for the publisher (ACM), I as the author have rights to reuse the paper.
The Authors’ Rights can be found here: https://authors.acm.org/author-resources/author-rights.
The DOI is yet to come as it was not published yet.

9

When the leader sends a request to the follower, it will append the index to a sliding

window for that follower in order. Upon response from the follower, the leader frees all the

requests that are no longer outbound. Second, the progress object also contains a matched

variable that updates based on the response for an AppendEntries message. If the index in

that response is outdated, the update on this variable will not succeed. Third, there is also

a next index variable that represents the index that is transmitted to the follower. The

leader updates this variable primarily when it either transmits an AppendEntries message

or receives an AppendEntries response.

Each field has an effect on the leader’s decision to retransmit a previous AppendEntrie

s message. The leader checks Inflights and matched when deciding whether to transmit

another AppendEntries message after it receives a response from the follower (background

task). First, when the leader receives a response to a previous AppendEntries message, it

will check whether the progress object is paused. The paused condition can differ based on

the state of the progress object. While the leader will pause the progress object when it

transmits the next AppendEntries message if the object is in the Probe state, the leader

will check whether the Inflights sliding window is full when it is in the Replicate state.

Therefore, Inflights has a direct effect on the transmission of new messages. Second, the

leader will check the matched variable against its own progress when it receives a heartbeat

response. If the matched is less than the leader’s progress, then the leader will send an A

ppendEntries message. While these fields cause the transmission of an AppendEntries

message, a lack of updates in next index will ensure that the transmission corresponds to

a retransmission of a previous message.

The chance that the progress object is paused is higher when there is a fail-slow follower.

In the Replicate state, Inflights is more likely to be full. Because the follower is slow, the

time between adding and removing will be delayed. As a result, more messages will remain

in the sliding window as new client requests push messages. Once the progress object reaches

the Probe state, the likelihood of reaching the paused status is not significantly higher with a

fail-slow follower. However, the leader will move the progress objects to this state more often

with a fail-slow follower. The transition from the Replicate to the Probe state can occur

when the leader receives a MsgUnreachable. The number of times this occurs is significantly

higher with a fail-slow follower.

Furthermore, the fail-slow follower will delay the updates for the matched and the next

index variables. When the progress object is paused, the leader will skip sending requests

to that follower. Because the leader will skip transmission of these messages, the next in

dex variable updates slowly. Moreover, responses received on those connections will have

outdated indices that do not correspond to the latest client requests. Therefore, these

10

Message
Loop

Raft Logic

21 43 65

Slow Follower

EntryCache

Disk
Slow Follower's Sliding Window

Client

Healthy Follower

1

23

4

5

Leader

Valid Matched?

Figure 3.1: Slowness Propagation in TiDB

variables will not update and will cause subsequent retries on that connection.

We admit that there is some knowledge of the root cause that is missing. When the leader

transmits a message to the follower after transitioning from the Probe state to the Replic

ate state, it will update the next index to a higher value. In some cases, the next inde

x will decrease back to a smaller value, and the leader will retransmit an earlier AppendEnt

ries message. We are investigating the reason behind this decrease further to see whether

there is another issue apart from the repeated background tasks.

Summary: TiDB can spawn an arbitrary amount of disk and network activity

when there is a slow follower by sending the same AppendEntries message to that

follower more than twice. TiDB maintains a progress object with three fields that

become problematic when there is a fail-slow follower. These fields (Inflights sliding

window, matched, and next index) act differently with a fail-slow fault and cause the

leader to resend the same AppendEntries more than twice to the slow follower.

Figure 3.2: Summary of §3.1.1

3.1.2 Symptoms

To illustrate the symptoms of the root cause, we slow down a single follower with CPU

contention in a 3-node configuration. We choose 256 concurrent client threads as this allowed

the problem to be more visible than 512 threads used to saturate the server. We run 5-minute

trials with and without a fail-slow follower to compare the results. From the TiDB internal

metrics, we discover that a cache to bypass disk operations can experience 500-2000 cache

misses, many of which stem from retries to the fail-slow follower. The cache misses can also

11

block other requests from the client and the healthy follower, further affecting the system’s

performance.

Before diving into our results, we will first describe the storage engine of TiDB, Raftstore,

which performs replication. TiDB divides this store into multiple regions for Multi-Raft.

Each region is mapped to a single thread, but a thread may account for multiple regions.

Since every disk I/O operation is synchronous, the leader will maintain a cache to store

recent entries. Before sending an AppendEntries message to the follower, the leader will

attempt to read from the EntryCache. Inside the entries function, a miss in the entry

cache will trigger a disk operation, a range scan.

We present the slowness propagation of resending messages in Figure 3.1. The arrows

represent the order of execution while the numbers represent how the slowness propagates.

This image demonstrates a scenario in which a retransmission of an AppendEntries message

occurs either by having a full sliding window or a matched variable below the leader’s index.

For the sake of simplicity, we do not include the case in which the progress object is in the

Probe state. The first point of propagation occurs because the Raft logic will call entrie

s and could wait for an expensive and synchronous disk operation to finish. Since retries of

previous AppendEntries messages involve older entries, the probability of a range scan is

much higher. The propagation continues because the leader reads messages in a loop from

the client and the followers. When one of these messages is related to the Raft logic, the

leader will execute the logic synchronously, which will be slow when the EntryCache misses.

This iteration will delay all the other important messages in the loop such as another client

request or a response from a healthy follower.

During our experiments, we observe the effects of a fail-slow follower on the latency of h

andle msgs, which is the message loop. The P99.9 and P99.99 tail latency of handle ms

gs is 51.7% and 324% higher respectively. Most of the latency of handle msgs also stems

from the performance of fetch entries to. Approximately 78.19% of the latency for han

dle msgs is the latency of fetch entries to in one of our trials. However, not all of the

latency stems from the conditions that we reported earlier. In fact, cache misses from Ap

pendResponses comprised 2.62% of the latency of handle msgs while HeartbeatRespons

es contributed 6.85%. Although we honestly report these small contributions, we describe

the potential of this root cause pattern to cause even more harm to the system in a later

section.

12

Summary: An AppendEntries message to the follower might trigger an EntryCache

miss. A retransmission of the request involves an older entry that might not be in

the cache currently and can lead to an EntryCache miss and disk operations. Since

messages are processed in a loop, the miss can affect the processing of other requests

in the loop.

Figure 3.3: Summary of §3.1.2

3.1.3 Source Code Analysis

We present the code on the leader for sending an AppendEntries message to the follower

and processing a response from the follower. We eliminate several branches and replace parts

of the code that do not pertain to our problem with ellipsis. Furthermore, we utilize debug

messages to show the effects of a slow follower on these code snippets.

Code Snippets In the first code snippet, we present a simplified code snippet of the

sending logic in the figure below (Figure 3.4).

The code will call maybe send append, which sends an AppendEntries message to the

follower under conditions.

if pr.is_paused() {

return false;

}

if (...) {

return false;

} else {

m.entries = self.log.entries(pr.next_idx);

match (term, ents) {

(Ok(term), Ok(mut ents)) => {

if self.state == Replicate {

pr.optimistic_update(index);

pr.ins.add(m.entries.last.index);

}

}

...

Figure 3.4: Simplified code of sending AppendEntries

13

}

}

self.send(m);

Figure 3.4 (cont.)

First, the leader will check whether the progress object of the follower is paused. As

described earlier, this may occur when the sliding window is full or the state has transitioned

to the Probe state due to a report that the connection is unreachable. If the conditions are

satisfied, the leader will skip sending that message to the follower. The implications of this

discontinuation is that AppendEntries responses received from the follower will be even

further behind and will not update the matched variable significantly. Furthermore, the

code will not update the next idx causing future background AppendEntries messages to

be retries.

The second code snippet displays the logic for the Raft leader when it receives an Appen

dEntries response.

match m.get_msg_type() {

...

MessageType::MsgAppendResponse => {

old_paused = pr.is_paused(); // result of is_paused() depends on state

if pr.maybe_update(m.index) {

// frees messages in sliding window up to index

pr.free_to(m.get_index());

}

if old_paused {

maybe_send_append(m.from, pr);

}

}

...

}

Figure 3.5: Simplified code of handling AppendEntries response

For an AppendEntries response, the leader will check whether the progress is paused and

save the result in a separate variable. Due to the slow updates of matched, the leader has

a high probability of resending a previous AppendEntries message. It is also important to

note that this check occurs before the leader frees messages from the sliding window. If the

AppendEntries response has a higher index than the current matched variable, then the

14

leader will first free space in the sliding window. Doing this prevents maybe send append

from skipping the retransmission of a previous AppendEntries message.

Similarly, we display the code for the leader when it receives a response to a heartbeat

message.

match m.get_msg_type() {

...

MessageType::MsgHeartbeatResponse => {

// ins here represents the sliding window

if pr.ins.full() {

pr.ins.free_first_one();

}

if pr.matched < self.log.last_index {

maybe_send_append(m.from, pr);

}

}

...

}

Figure 3.6: Simplified code of handling a heartbeat response

A response to a hearbeat message will result in a check of whether the matched variable

has reached the current index of the Raft log on the leader. If it has not, then a previous A

ppendEntries message will be retransmitted to the follower. Again, the sliding window is

updated so that the retransmission inside maybe send append can succeed.

Analysis First, we show that the sliding window is full more often with a fail-slow follower,

which increases the chances of returning true in is paused. We print messages when the

index is added to and removed from the sliding window. Afterwards, we compute the

difference in the timestamps for the same index. For experiments with no fail-slow faults,

we use the connection to any follower with the largest difference. On the other hand, we use

the connection with the smallest latency for the CPU contention experiments. Even with this

unfair comparison, the experiments without a slow follower resulted in an average latency

of 59 milliseconds while adding CPU contention led to an average latency of 5.481 seconds.

This disparity demonstrates that requests are removed more slowly from the window, causing

the paused condition to succeed more times.

We also confirm that the paused condition is indeed more likely to satisfy. There are

two checks for whether the progress object is paused or not, both of which contribute to

resending the same AppendEntries message. The first check is in Figure 3.4 where the

15

leader will skip sending an AppendEntries message. The second is in Figure 3.5 where the

leader will store the result in old paused. The experiments without a slow follower did not

satisfy the paused condition a single time in any trial. Meanwhile, the experiment with a

fail-slow fault satisfied the condition 888,203 and 1,560 times respectively.

The condition in Figure 3.6 succeeds similar numbers of times with and without slowness.

This condition succeeds 3,564 times with slowness compared to 3,461 times without slowness.

The difference between the number of times the condition is satisfied might seem trivial.

However, there is a qualitative difference between the messages sent from this condition

with slowness and those without slowness. Sending the AppendEntries message with the

same index twice occurs often in TiDB even without slowness. The unusual phenomenon

is that a fail-slow follower causes the leader to resend the same message more than twice.

For instance, we count the number of times the same message is being sent after it has been

sent twice. The number is 2,448 times with a slow follower compared to 0 without one. The

second condition is responsible for an average of 1,212 additional retries out of the 2,448.

As a result, the heartbeat responses when there is slowness causes the system to stray away

from the default behavior, which only sends the same message at most twice.

Summary: The duration between when a specific request is added to the sliding

window and removed is significantly longer when there is a slow follower. As a result,

the is paused condition will be satisfied more often leading to more retries. The

second condition between the matched variable of the follower and the leader’s progress

was satisfied similar numbers of times. However, this condition corresponded to the

first retry without a fail-slow fault while the condition led to additional retries with a

fault.

Figure 3.7: Summary of §3.1.3

3.1.4 Impact Analysis

The latency of handle msgs discussed in §3.1.2 is actually a small percentage of the end-

to-end latency of TiDB. While the P99 and P99.9 end-to-end tail latencies in TiDB are

in the order of 100 milliseconds, the tail latencies of handle msgs are only in the order

of 10 milliseconds. The primary reason is that other parts of the leader contribute to the

tail more. For instance, the P99.9 tail latency of a part inside handle raft ready can be

approximately 106 milliseconds Considering that the pattern had little effect on handle ms

gs, the overall impact is minimal.

16

Despite the impact on TiDB, the root cause can hypothetically have a drastic effect on

other RSM systems. Since disk performance can affect the performance of handle msgs, a

disk-intensive database may experience significant disk contention from synchronous writes.

In our experiments outside the scope of this paper, we have observed that disk contention

on the leader can be detrimental in every metric.

Moreover, TiDB mitigates this problem by dividing the log entries into multiple regions.

EntryCache misses in one region might not hinder the performance of the database in regard

to other regions. When handle msgs for one region is slowed down by EntryCache misses,

other threads can continue to process requests for other regions. Dedicating a single thread

mapped to every region would exacerbate the problem because it would block the progress

of requests in more regions.

Finally, a disk with slower performance such as an HDD can further increase the impact

of the root cause. For our experiments, we used an SSD that could have lessened the

influence. To simulate the potential impact of slower disk performance, we added two print

statements inside the second branch of fetch entries to, which increased the latency

of entries. Afterwards, we observed the P99.9 latency of handle msgs increased to 225

milliseconds. For every latency measurement of handle msgs above the P99 latency, we

deducted the latency of fetch entries to. The P99.9 latency of handle msgs decreased

to 52 milliseconds, showing that the root cause can potentially add 100 milliseconds to the

tail.

While the end-to-end latency of TiDB is not heavily affected by this root cause, there is

a significant theoretical impact. Background RPC’s can spawn additional network and disk

operations, which are nontrivial problems.

Summary: While the latency of handle msgs mentioned in the symptoms is a

small percentage of the end-to-end latency, the potential impact of a similar bug on

another system is nontrivial. For instance, heavy disk activity could be impacted by

disk contention and having a single thread for every region would worsen the effect on

end-to-end performance.

Figure 3.8: Summary of §3.1.4

17

21 43 65
Slow Follower

Queue for Slow Follower

Client

Leader

Dispatcher 21 43

21 43 ...

...

...

Producer

Avail.
Changed?

< Max
Workers?

Yes - Pop

YesPush

Worker: Send and Wait

Push

Push

1

3

2

No

No

Figure 3.9: Slowness Propagation in RethinkDB

3.2 BACKLOG PROBLEM

3.2.1 Overall Description

Backlog problems are another pattern that causes a fail-slow fault to propagate. In Re-

thinkDB, there is an unbounded buffer that results in higher memory utilization on the

leader when there is a fail-slow follower. The size of the buffer can degrade performance

towards the end of our experiments and even cause the leader to crash by running out of

memory. The buffer grows because the fail-slow follower cannot respond with messages

quickly enough for the leader to free the elements.

We show what happens when the leader dispatches a client request to a slow follower in

Figure 3.9. At the initialization of the system, the leader defines multiple unbounded buffers

for each replica. The dispatcher will first push a callback into buffers without any checks

on the buffers’ sizes when it receives a request. Each callback sends a request to the replica

and waits for the response. To limit the number of coroutines, RethinkDB enforces several

conditions before spawning new coroutines to execute the callbacks. In the context of the

background queue, this means that it has either changed from non-empty to empty or vice

versa. The second condition, which runs upon satisfying the first condition, checks whether

the current number of worker coroutines is less than the maximum number of coroutines. If

either condition fails, the producer will not pop from the queue.

18

0 100 200 300 400
Time

0

20

40

60

80

100
M

em
or

y
U

til
iz

at
io

n
No Slowness

(a) Memory Utilization

0 100 200 300 400
Time

0

10k

20k

30k

40k

Q
ue

ue
 S

iz
e

CPU Contention

(b) Queue Size

Figure 3.10: Memory Utilization and Queue Size in RethinkDB

These conditions become an issue when there is a slow follower because the slowness can

propagate to the leader. In Figure 3.9, we mark the propagation of slowness in red arrows

from the follower to the leader along with the order in which it occurs. The current worker

coroutines that execute the callback will wait for the response from the follower. The fail-

slow fault in the follower delays the message and prolongs the callback. The leader cannot

spawn new coroutines to accelerate popping from the queue due to the failed conditions.

Meanwhile, the leader does not check the size of the background write queue before pushing

new requests from the client. This means that as the worker coroutines are not popping from

the queue, new requests are repeatedly pushed to it. Consequently, the size of the unbounded

queue continues to grow and eventually causes the leader to slow down and even crash due

to out-of-memory issues.

Summary: RethinkDB contains background write queues for each server that store

callbacks dependent on the performance of the followers. If there are a maximum

number of coroutines that pop from the queue and execute the callbacks, then the

leader will stop spawning them. A fail-slow follower will cause all these coroutines to

wait, block the leader from creating coroutines, and increase the size of the queues.

Figure 3.11: Summary of §3.2.1

19

3.2.2 Symptoms

To highlight the symptoms of the root cause, we inject CPU contention in a follower

and observe the effects on the queue size and memory. We add minimal log messages that

confirm that our root cause occurs. We use the same number of clients as in Chapter 2 that

saturates the leader and a 3-node configuration. Our experiment duration is 450 seconds

that are enough to cause the leader to reach maximum memory utilization without crashing

for most trials. Even with this rigid configuration, we could not completely control the leader

from crashing. In one trial that we omit, the leader crashed immediately after 385 seconds.

Changing the duration to 385 seconds would not be enough to underscore the impact of high

memory utilization.

We present the changes in memory utilization and background write queue size over time

in Figures 3.10a and 3.10b. We extract the maximum queue size of each follower in the trials

and compute the median value across all the trials. We then plot the memory utilization

corresponding to that trial by calling top every 0.1 seconds. Since Linux commands require

sufficient memory to execute, errors will occur towards the end of trials. Therefore, we mark

the end of these trials with a dashed line to demonstrate that the memory utilization cannot

be captured.

The trends of the background queue size and memory clearly change once we inject CPU

contention into a single follower. When there is no slow follower, the background write queue

experiences little to no change. With a slow follower, the background write queue increases

at a nearly linear rate. In fact, the maximum size of the background write queue was at

least 25,532 with slowness while it only exceeded 100 for a single trial without slowness. The

memory utilization shows a similar trend to the queue sizes.

Summary: We ran experiments to highlight the symptoms of the root cause. In

the experiments without any slowness, the queue size and memory utilization do not

change significantly. After slowing down a follower, we found that both of these

metrics increase at a similar rate. In addition, the memory utilization at the end of

the experiment is nontrivial as it approached 100%.

Figure 3.12: Summary of §3.2.2

20

3.2.3 Source Code Analysis

We analyze the code and print debugging message to further verify that the code is

correctly associated with the root cause. First, we present code snippets from RethinkDB

that include the conditions leading to the backlog problem. We simplify the code snippets

to show the essential parts of the pattern. Then, we present the results from the debugging

message that confirm the pattern and its causes. We recorded these numbers from the same

trials as those analyzed in §3.2.2.

Code Snippets We provide the first code snippet inside passive producer.hpp, which

is where the first condition for popping from the unbounded queue is located.

void set_available(bool isEmpty) {

if (isEmpty != empty) {

empty = isEmpty;

coro_pool->on_source_availability_changed();

}

}

Figure 3.13: Simplified code of Condition 1

The argument to set available is originally bool a, but it takes !queue.empty as

input when it is called in the context of a background write queue. Therefore, we change

the argument to bool isEmpty to place the code into a context relevant to our discussion.

Whenever an element is pushed into the queue or popped from the queue, the leader will

call set available. Then, the leader will check whether the current state of the queue

represented by isEmpty is different from the previous state represented by empty.

The behavior of the code in Figure 3.13 differs when we add a fail-slow fault. Without

a fail-slow fault, set available should call on source availability changed afterwards

in most cases. When the leader first receives a request and pushes to the queue, the queue

should transition from empty to non-empty. The transition back to the empty state is

normally quick enough that the next call to set available calls on source availability

changed. However, a fail-slow follower will slow the callbacks down, causing less elements

to be popped from the queue before the leader pushes more requests. This will cause future

calls to set available to fail more often than succeed unlike the case without a fail-slow

fault.

The second code snippet displays on source availability changed inside coro pool.

hpp, where the leader will pop from each background write queue and send the request to

21

the follower.

void on_source_availability_changed() {

while (active_workers < max_workers) {

++active_workers;

// run_worker will execute the callback

// and pop inside a loop

spawn_coro(std::bind(run_worker, this, queue->pop(), lock));

}

}

Figure 3.14: Simplified code of Condition 2

This step follows Figure 3.13 if condition 1 is satisfied. The code spawns worker corou-

tines that perform the task of popping and sending the request. Before the leader spawns

these coroutines, it must check whether the current number of active workers is below the

maximum workers. These workers will break once there are no objects left in the queue and

decrease the active workers.

The behavior of this code snippet also alters when we add a slow follower. When we

have only healthy followers, the callbacks will run at normal speeds. The coroutines are

more likely to finish before new elements are pushed into the queue. Once we add slowness

to a follower, each callback is delayed by the follower as it waits for the response. Since

callbacks are pushed faster than they are popped, the worker coroutines will rarely finish

running. Meanwhile, the leader will continue to spawn new coroutines to process incoming

client requests until the maximum is reached. Afterwards, the while loop will fail in calls to

on source availability changed.

Analysis We first record the overhead of each callback in the background write queue as

this deters the other conditions from satisfying. In one experiment with CPU contention, we

compare the overhead of all the callbacks for queues relating to the slow follower compared

to the healthy follower. The average latency was 5.305 seconds for the slow follower while it

was only 39.20 milliseconds for the healthy follower. As a result, the worker coroutines will

not exit for an extended period of time and cause the conditions to fail.

We print out a debug message to verify that reasoning for condition 1 shown in Figure 3.13

if (1) the condition is not satisfied and (2) that check is for the background write queue. At

the initialization phase, the leader will store ID’s for each server that they connected with.

We had each coro object store the server ID. The message will print a message with the

server ID upon a failure. Without fail-slow faults, the leader printed the message less than

22

Throughput Avg Lat. P99 Lat.0.00

0.25

0.50

0.75

1.00

1.25

1.50

N
or

m
. P

er
fo

rm
an

ce
No Slowness CPU Contention

(a) Performance Degradation

0 100 200 300 400
Time

0

200

400

600

800

1000

#
 o

f O
pe

ra
tio

ns

No Slowness CPU Contention

(b) # of Operations over Time

Figure 3.15: End-to-end Performance of RethinkDB

200 times for every follower. The experiments without a slow follower printed the message

360,298 times, all of which had the server ID of the slow follower.

We printed a different message for condition 2 that also included the server ID. The

condition failed an average of 16 times for the CPU contention experiments while it failed

an average of 6 times for the no slowness experiments. The disparity in the number of prints

for the message is significant but smaller than condition 1. This is reasonable considering

the order of slowness propagation. When the follower becomes slow, the leader will first

spawn the maximum worker coroutines. Afterwards, the leader will push to the queue and

call the first condition. The existing workers will not finish popping from the queue, causing

the queue to remain non-empty. Since the first condition fails first, the second condition will

rarely execute.

Summary: We presented the lines of code that represents the root cause of the

increased memory utilization. We recorded the number of times the conditions in the

code failed and saw an increase after slowing down a follower. For instance, the first

condition failed less than 200 times across every trial without a slow follower but failed

more than 300,000 times with a slow follower.

Figure 3.16: Summary of §3.2.3

3.2.4 Impact Analysis

We evaluate the impact of the buffer size and memory utilization on the end-to-end per-

formance of RethinkDB. We plot the overall performance degradation in Figure 3.15a after

23

Batch
Finalizer

Condition
Variable Reporter

Replication
Waiter List

Slow Follower

Replication
CoordinatorClient

Leader

1 2

3

45

3

Healthy Follower

Figure 3.17: Flow of MongoDB Implementation

slowing down a follower. The throughput and average latency show degradation of greater

than 20% while the P99 latency increases by approximately 17%. Therefore, every metric

demonstrates significant performance degradation from a fail-slow follower.

Furthermore, we plot the changes in the number of operations over time in Figure 3.15b.

We configure YCSB to print performance reports every 5 seconds. For most of the ex-

periment, the performance disparity between the two experiments is minimal. In fact, the

experiment with a fail-slow fault performs slightly better. Both experiments demonstrate a

slight decrease in operations after the initial phase. After stabilizing, the difference is less

than a few hundred operations for most reports.

However, after about 300 seconds into the experiment, there is a noticeable decline in

performance for the CPU contention experiments. At the beginning of the experiment, the

memory utilization has not reached critical levels as shown in Figure 3.10a. Therefore, the

performance does not suffer from the increased memory utilization. However, the decrease in

the number of operations occurs once the memory utilization exceeds 90%. For some reports

in this period, the number of operations falls below 200, which is approximately a 75%

degradation from the ∼800 operations that were common in other parts of the experiment

and the experiments with healthy followers.

Summary: The end-to-end performance of RethinkDB suffers from the increased

memory utilization. We show that every metric shows performance degradation after

Figure 3.18: Summary of §3.2.4

24

adding CPU contention on a follower. In addition, most of the performance degrada-

tion occurs at the end of the experiment when the memory utilization is at extreme

levels.

Figure 3.18 (cont.)

3.3 TRANSIENT PERFORMANCE PROBLEM

3.3.1 Overall Description

A fail-slow fault may render the system more susceptible to transient performance that can

occur in various components of a distributed system. Spikes of several hundred milliseconds

or even seconds are common in network or disk operations even in healthy followers. If

we assume a 3-node configuration with the Raft protocol, a spike in one healthy follower

will not impact performance as the other follower can satisfy the quorum. With a fail-slow

follower, a spike in the healthy follower will result in a short period where both followers

are slow. This problem is especially prevalent in MongoDB, which had multiple examples of

this behavior.

Before diving into one of the issues, it is important to outline the procedure in which

MongoDB performs replication since it has key differences from a traditional Raft protocol.

The follower initially sends a find and getMore message to the leader after which the leader

will send a batch for the follower to write. After these initial messages, the follower will no

longer request for batches because the leader will proactively send batches to the follower.

The follower processes the batch of log entries and sends a replSetUpdatePosition message

to the leader.

There are two major instances in which the replSetUpdatePosition message is trans-

mitted to the the leader. First, the follower will update the state of entries to applied and

send the message, which we will abbreviate to RSUP-applied. Second, the follower will

make the entries durable and send a replSetUpdatePosition message that we will call RS

UP-durable. Because we enforce durable log entries and majority write concern in a 3-node

configuration, the leader will wait until it receives an RSUP-durable message from a follower.

In Figure 3.17, we elucidate the key parts of the implementation of MongoDB pertaining

to this particular pattern. We have a healthy follower and a slow follower in a 3-node

configuration. When the client sends the request to the leader, the leader will wait for R

SUP-durable messages by inserting a waiter into a replication waiter list. The leader will

25

No Slowness CPU Contention Replacement

Avg Lat. P99 Lat. P99.9 Lat.0.00

0.25

0.50

0.75

1.00

1.25

1.50

N
or

m
. P

er
fo

rm
an

ce

(a) Performance of Request Execution on
Leader

Avg Lat. P99 Lat. P99.9 Lat.0.00

0.25

0.50

0.75

1.00

1.25

1.50

N
or

m
. P

er
fo

rm
an

ce

(b) Performance of waitForJournalFlush

Figure 3.19: Performance of MongoDB’s Parts

Table 3.1: Effects of Journal Flush

Experiment Number of Messages Impact (ms)
No Slowness 523.8 -344.1

CPU Contention 87.42 63.42

unblock the waiter and send a response to the client when it has received an RSUP-durable

message from a threshold of followers determined by the write concern. In a separate part

of the implementation, the leader will send batches of client requests to the followers. The

followers will call waitForJournalFlush in the batch finalizer after processing the batch of

messages from the leader. They will then send an RSUP-durable message to the leader.

In this particular scenario, the call to waitForJournalFlush experiences a spike in latency

and delays the RSUP-durable message the leader. We display the slowness propagation from

waitForJournalFlush in red in Figure 3.17. First, both followers are slow in sending the RS

UP-durable message at the same instance. The slowness of both followers will propagate to

the leader because the waiters in the list depends on a message from either follower. Since

the waiters are slow, the leader cannot fully execute the client query and the end-to-end

latency of a client request will be affected.

Summary: MongoDB suffers from transient performance in the call to method

Figure 3.20: Summary of §3.3.1

26

waitForJournalFlush, which is imperative for sending a message to the leader that

will unblock it. If we assume a quorum size of 3, a fail-slow follower will cause spikes in

this method from the healthy follower that will propagate to the leader’s performance.

At this brief instance, both followers are experiencing a fail-slow fault.

Figure 3.20 (cont.)

3.3.2 Symptoms

To highlight the symptoms of waitForJournalFlush by running experiments on Mon-

goDB using YCSB for 5 minutes. Like previous experiments, we compare experiments of the

system without a slow follower in a 3-node configuration with experiments of it with a slow

follower. Our workload size is 100 because it increased visibility of the problem compared

to 320 clients used for saturation. We first explain the tail latency of waitForJournalFlus

h and then explore its effects on the leader in both configurations.

In Figure 3.19, we display the P99 and P99.9 tail latency on the leader to replicate the

client request and of the call to waitForJournalFlush. Figure 3.19a presents the entire

execution time on the leader, which includes waiting for replication to finish on a majority

of the followers. This duration is significantly longer when we add CPU contention to a

follower. The P99 tail latency increases by 21.288% while the P99.9 tail latency increases

by 22.613%. We present the same numbers for waitForJournalFlush. In every metric, the

latency of waitForJournalFlush is slightly more detrimental with two healthy followers

than with a follower experiencing CPU contention.

Although the tail latency of waitForJournalFlush is higher without a fail-slow fault, we

demonstrate that this latency is more likely to propagate to the followers with a fail-slow

fault. We first recorded the number of times that waitForJournalFlush exceeded 100

milliseconds. We also printed the durable timestamp after the follower finishes running wai

tForJournalFlush and updates the timestamps. We then defined the interval for each wai

tForJournalFlush to be within the current durable timestamp and the durable timestamp

after the previous waitForJournalFlush call. Afterwards, we measured the latency of

executing the client request on the leader for each message in the interval. The difference

between the latency of executing the client request and that of waitForJournalFlush is

represented as “Impact” in Table 3.1. In addition, we also present the number of client

requests for this interval.

When there is a fail-slow fault, the latency of waitForJournalFlush propagates to the

27

latency of executing a request on the leader. In the experiments without slowness, the latency

of executing a client request is several hundred milliseconds lower than the latency of wai

tForJournalFlush. Meanwhile, the CPU contention experiments show that the execution

time of a client request is larger than the latency of waitForJournalFlush. In most cases

where waitForJournalFlush is slow in this configuration, the latency on the leader will be

at least the latency of waitForJournalFlush.

This pattern can also affect the throughput as during this period of slowness in waitFo

rJournalFlush, the leader can only process a limited number of requests with a fail-slow

fault. In the experiments without a slow follower, the number of messages in this interval

were significantly larger than 100. In the time that one follower is experiencing transient

performance from waitForJournalFlush, the other follower can send multiple RSUP-durab

le messages to process new client requests. On the other hand, the experiments with a slow

follower did not have a single RSUP-durable message that had an interval greater than 100

requests. Each RSUP-durable message can unblock up to a maximum of 100 client requests

since the experiment has 100 clients. During this short period, neither follower will send RS

UP-durable messages to the leader. This will cause the leader to send the responses to the

client at a slower pace, severely limiting the number of client requests.

For each follower, 50.5% of the intervals for the RSUP-durable messages sent from a slow

waitForJournalFlush led to a latency greater than 100 milliseconds on the client. At

first glance, half of the cases seems to be problematic as both followers are healthy and can

contribute a slow waitForJournalFlush that propagates to more requests.

However, most of the cases of propagation occurred when slowness was detected in w

aitForJournalFlush for both followers simultaneously. In fact, more than 85% of the

cases in which the latency of waitForJournalFlush led to a high execution time on the

leader were due to simultaneous slowness. In this scenario, the transient performance of

both followers will propagate to the leader. This is also consistent with the results in Table

3.1 that showed the minimal effects of a slow waitForJournalFlush when there are two

healthy followers. It is important to note that waitForJournalFlush is not the only cause

of transient performance we have observed in MongoDB. Other transient performance issues

could have coincided with slowness of waitForJournalFlush to account for the other 15%

of the cases.

On the other hand, every case in which the latency of waitForJournalFlush was above

100 milliseconds coincided with a latency on the leader above 100 milliseconds. As a result,

most of the latency values increased slightly between the waitForJournalFlush call and

the execution time on the leader. This phenomenon is also reflected in Table 3.1.

We also demonstrate the impact of waitForJournalFlush on the tail latency of executing

28

a client request. First, we collected the execution time of a client request on the leader that

corresponded with a waitForJournalFlush above 100 milliseconds for each trial. Then,

we randomly sampled from this pool of latency numbers and replaced the corresponding

latency values in the experiments with a slow followers. We used the same trial number to

perform the replacement. The purpose is to simulate what would have been the latency if

the latency of waitForJournalFlush had the same effect on the leader as the experiments

without slowness. After replacing the latency values, we recomputed the P99 and P99.9 tail

latency. Our results in Figure 3.19a show that the P99 and P99.9 latency both improve

significantly. In fact, the results of this simulation outperform the P99 and P99.9 latency

without any slowness on the system. It is clear that the P99 and P99.9 tail latency are

greatly influenced by the latency of waitForJournalFlush.

Summary: We show the effects of waitForJournalFlush with and without a

slow follower on the leader’s complete execution of the request. When there was a

waitForJournalFlush that incurred more than 100 milliseconds, the latency of the

leader’s execution of the request was also above 100 milliseconds. After replacing

every request corresponding to high latency of waitForJournalFlush, we noticed a

signicant improvement in performance, demonstrating the effects of this problem.

Figure 3.21: Summary of §3.3.2

3.3.3 Source Code Analysis

We present the code for MongoDB from the follower and leader to demonstrate how the

slowness can propagate from the follower to the leader. Like the other patterns, our code

snippets are simplified to only show essential parts of the pattern. The first code snippet

represents what occurs when the leader receives an RSUP message from the follower. The

second code snippet displays the loop that will call waitForJournalFlush and report the RS

UP-durable message to the leader. We do not perform any analysis with debugging messages

here as most of the analysis is already in §3.3.2.

The following code snippet inside replication coordinator impl.cpp is a method on

the leader that will iterate through the waiters in the replication waiter list and wake them

if they are ready.

29

void _wakeReadyWaiters(WithLock lk, OpTime opTime) {

for (auto waiter: replicationWaiterList) {

if (_doneWaitingForReplication(opTime, writeConcern){

waiter->emplace_value();

replicationWaiterList.erase(waiter);

}

}

}

Figure 3.22: Simplified code of Leader

The code is part of the logic for processing an RSUP message that the leader receives from

the follower. Each RSUP message will include the highest timestamps of log entries that

reached the applied and durable states. The method doneWaitingForReplication must

verify the the durable timestamp from the RSUP message instead of the applied timestamp

as a precondition to returning true and unblocking the watier.

The second code snippet inside oplog applier impl.cpp represents the part that the

follower calls waitForJournalFlush and triggers other parts of the code to send the RSUP-

durable message.

void ApplyBatchFinalizer::_run() {

while(true) {

waitForOplogApplier();

JournalFlusher->waitForJournalFlush();

// precondition for sending RSUP-durable

_recordDurable(opTimeAndWallTime);

}

}

Figure 3.23: Simplified code of Follower

First, the follower will wait for batches from the leader and apply the log entries. Af-

terwards, the follower might send a RSUP message to the leader, but the message will not

pass the condition inside doneWaitingForReplication. The follower needs to call rec

ordDurable to first update the timestamps for log entries that have reached the durable

state. Then, the follower will send the RSUP-durable message to the leader to unblock the

waiters. When there is a slow follower, the slowness propagates from the healthy follower to

the leader through the latency of the RSUP-durable message.

30

Summary: Before sending a response to the client, the leader will wait until the data

has been replicated to a single follower in a quorum of 3 replicas. The call to doneW

aitingForReplication will succeed only if the timestamp of the durable log entries

has been updated by a follower. Since the follower will only update that timestamp

after waitForJournalFlush, this call is on the critical path for processing a client

request.

Figure 3.24: Summary of §3.3.3

Leader Client0

20

40

60

La
te

nc
y

(m
s)

No Slowness

(a) P99 Latency

Leader Client0

100

200

300

400

La
te

nc
y

(m
s)

CPU Contention

(b) P99.9 Latency

Figure 3.25: Comparison between Latency on Leader and Client

3.3.4 Impact Analysis

We display the original values of latency that we normalized for Figure 3.19a and compare

the values with the end-to-end latency of a client request. In both the P99 and P99.9

latency, most of the end-to-end latency is consumed by the latency of executing the query

on the leader. We have already dissected the potential of waitForJournalFlush to affect

the execution of requests. Therefore, most of the latency can propagate to the end-to-end

tail latency when there is a slow follower.

31

CHAPTER 4: THE DEPFAST FRAMEWORK

We manifest our goals of resolving the aforementioned issues in the Dependably Fast

Library(DepFast). 1 We summarize the components of DepFast as follows:

1. DepFast leverages a coroutine interface for synchronous code and to re-unite shredded

code. DepFast achieves this by abstracting waiting points as events.

2. DepFast has an abstraction between utility as primarily basic event types and logic as

advanced event types.

3. DepFast contains fail-slow tolerant events as part of the interface, which facilitates in

preventing slowness propagation.

4.1 INTERFACE

The interface provided by DepFast is two-fold: (a) coroutine interface for new tasks and

(b) event-based abstraction for waiting points.

Coroutines and events The coroutine interface aims to provide programmers an easy

way to send and process requests. An event is a waiting point in which the programmer can

code similarly to callbacks in an asynchronous model such as in an RPC. We present the

following code example to demonstrate the use of the coroutine interface alongside the RPC

component of DepFast:

Coroutine::Create([] () {

for (auto rpc_proxy : servers) {

auto entries = ...;

// the next line bears possible slowness

auto rpc_event = rpc_proxy.AppendEntries(entries);

rpc_event.Wait(); // possible slowness

Figure 4.1: Fail-slow Intolerant Code

1This chapter reuses material from the following accepted paper: A. Yoo, Y. Wang, R. Sinha, S. Mu, and
T. Xu, “Fail-slow fault tolerance needs programming support,” in Proceedings of the 18th Workshop on Hot
Topics in Operating Systems (HotOS-XVIII), Virtual Event, May 2021.

Authors are Andrew Yoo (author of this thesis), Yuanli Wang, Ritesh Sinha, Shuai Mu, and Tianyin Xu.
According to the Authors’ Rights page for the publisher (ACM), I as the author have rights to reuse the paper.
The Authors’ Rights can be found here: https://authors.acm.org/author-resources/author-rights.
The DOI is yet to come as it was not published yet.

32

if (rpc_event.timeout()) {

... // failure process

} else {

... // process response

}

}

})

Figure 4.1 (cont.)

However, the above code does not meet our goals of providing an interface to combat

fail-slow fault propagation. In one iteration of the loop, the RPC could be waiting for a

response on a slow connection while the subsequent iterations cannot be run. Therefore, the

slowness of one connection will propagate to the entire loop.

Quorum Events We present a new advanced event type QuorumEvent that helps devel-

opers meet all of our objectives. A QuorumEvent will wait for a customizable “quorum”

in a collection of individual events. One popular use of this in the context of RSM-based

prootocols is to wait for a majority. If we use a QuorumEvent, the coroutine is fail-slow

tolerant when a minority of nodes are slowed down. Our own database DepFastDB exploits

this event type to hinder slowness propagation from any slow node. To resolve the problem

in the previous code, we present the following code that utilizes our QuorumEvent:

Coroutine::Create([] () {

auto quorum_event = QuorumEvent();

for (auto rpc_proxy : servers) {

auto entries = ...;

auto rpc_event = rpc_proxy.AppendEntries(entries);

quorum_event.add(rpc_event);

// no longer wait for any single event

}

// wait for a majority

quorum_event.Wait(FLAG_MAJORITY);

})

Figure 4.2: Code with QuorumEvent

In the code above, a slow connection does not impede the loop as the RPC’s are sent in

parallel and the QuorumEvent is unblocked when a majority of RPCs are received. Conse-

quently, a single slow connection should not increase the latency of the waiting event if we

33

assume independent and stable connections. The parts of the code with a QuorumEvent are

labeled as fail-slow tolerant code. The idea behind our work is to advise programmers to

write the logic with the QuorumEvent instead of waiting on basic RPC events.

4.2 MORE ON EVENTS

We categorize our events into two types: basic events and compound events. Basic events

are primarily used for disk I/O and network operations. Simple waiting conditions such as

waiting for a variable to be set is another basic event. Compound events combine multiple

basic events.

QuorumEvent that we presented earlier is an example of a compound event. We also

present the AndEvent and OrEvent types. The AndEvent is unblocked when every basic

event inside of it is unblocked. The OrEvent is unblocked when a single basic event is

unblocked.

We can also combine these events to represent more complex waiting conditions. Many

algorithms requires not only waiting for a “majority-ok” but also waiting for a different con-

dition such as “minority-plus-one-reject”. As many programming models cannot represent

this event in a simple yet precise manner, they replace it with a different condition such as

“majority-reject”. However, other conditions like “fast quorum” conditions are even more

complex to represent [23, 24, 25].

4.3 RUNTIME

A runtime instance in DepFast is comprised of four major parts: coroutines, events, sched-

uler, and I/O helper threads. Coroutines are our unit of user tasks while events represent

the waiting points. A scheduler in every runtime instance is responsible for pausing and

resuming coroutines. I/O helper threads are background tasks that execute synchronous

I/O such as flushing all disk writes to disk using fsync.

4.3.1 Runtime Verification

With the support of our events, runtime verification and tracing become simplified to allow

debugging for slowness propagation. We can discover implementation bugs and account

for protocol design optimizations between fail-slow fault tolerance and other principles of

distributed systems such as load balancing in chained replication [20].

34

1/1

2/3

2/3

2/3

1/1

2/3

2/3

1/1
2/3
2/3

2/3

1/1

2/3 2/32/3

1/1

2/3

1/1

2/3
2/3

1/1

2/3

2/3

1/1

1/1

2/3

1/1 2/3

2/3
2/3

2/3

2/3
2/3

1/1

2/3
1/1
1/1

1/1
2/3

1/1
1/1

1/1
2/3

2/3

2/3
2/3

2/3

2/3
2/3

1/1
1/1

2/3

2/3

2/3

2/3

2/3

2/3

2/3
2/3

s4*

s6

s5
c1

s7*

s9

s8

c2

c3

s1*

s3

s2

Figure 4.3: The slowness propagation graph. The labels on the edge represent the quorum
of the event. “2/3” refers to the case where 2 responses are needed out of 3 RPCs; “1/1”
refers to waiting on a single RPC.

Cooperation between multiple DepFast runtime instances facilitates runtime verification.

Using events, DepFast connects coroutines on different server in a wait-for relationship. For

instance, the caller will have a wait-for relationship on the callee for an RpcEvent. The

following figure highlights an example of runtime analysis in DepFast.

We present a slowness propagation graph (SPG) that DepFast creates at runtime. We can

utilize this graph to analyze the propagation from a fail-slow fault. In the example, we have

a distributed database, DepFastDB, that has three shards each with their own quorum ({s
1–s3}, {s4–s6}, and {s7–s9}). Each node in the graph represents a client (c1 – c3) and a

server (s1 – s9). Each directed edge represents a wait-for relationship. A red colored edge

represents a basic event that is not resilient to fail-slow fault while a green colored edge

is a QuorumEvent that is resilient to a fail-slow fault. In each quorum, the SPG provides

us confidence that there is not an event that is waiting on a single node. However, the

clients are solely dependent on the leader, which demonstrates that the current system is

not resilient to a fail-slow leader.

We also extend our runtime analysis to accommodate problems that we found in other

databases.

35

Repeated Background Tasks Problem DepFast also provides information about the

transitive dependency of each request at runtime to prevent the repeated background tasks

problem. The transitive dependency of a request represents the dependency of the root of

the request on the current recipient of the request. For instance, a client sends a request to

the leader of a Raft-based distributed key value store and the leader broadcasts an AppendE

ntries message to the followers. By the transitive property, the client is also dependent on

an AppendEntries acknowledgment from a majority of followers.

DepFast maintains a dependency ID that represents the transitive dependency of the

request. The dependency ID is a pair with a string and an integer. DepFast requires that

only the client should modify this dependency ID and every RPC request must contain a

dependency ID. However, we make a single exception for heartbeat messages as they are

common in distributed databases but do not originate from the client. Therefore, any server

may modify the string to “hb” to represent a heartbeat message. Any other message should

have a “dep” as the string and the actual ID as the integer in the pair.

If the dependency ID is not set or it is not a heartbeat message, then we know that the

RPC request is a background task. Therefore, verification of background tasks can be done

by checking the dependency ID of the request. When a configurable threshold of background

tasks is reached or messages do not contain a valid dependency ID, the system will send out

a warning to the programmer in the log messages. As a result, the repeated background

tasks problem like the one in TiDB can be easily avoided with DepFast.

Backlog Problem DepFast also provides another interface for QuorumEvents that pre-

vents backlog issues called Finalize. Each coroutine will maintain a list of QuorumEvents

that have called Wait. For each Wait call, the programmer must also call a corresponding F

inalize call with a timeout value and a flag. If the programmer does not call Finalize for

every such QuorumEvent before the coroutine finishes, then DepFast will send a warning to

the programmer that proper handling of dangling requests is necessary.

The Finalize interface attempts to process outbound requests for that QuorumEvent

after a configurable number of calls. It will wait on a simple event type, IntEvent, that

will only be satisfied once the leader has received a response from every follower. If the I

ntEvent times out, then the handler specified by the flag will be executed. The flag that

we support is FLAG FREE that will remove all the dangling requests from the buffer. We

achieve this by pushing an IP address to a queue from which another thread will read and

free the dangling requests for that queue. In this way, the Raft logic is not hindered by the

overhead of freeing multiple dangling requests. This is only one example of a strategy that

a programmer could implement to fix the problem.

36

The Finalize interface and our fix do not provide any mechanism for the follower to

catch up with the leader. The runtime verification portion of DepFast is designed to facilitate

programmers in avoiding the patterns that we observed in widely used databases. Therefore,

the programmer can implement their own strategy to synchronize the slow follower.

Transient Performance Problem Our QuorumEvent interface can optionally track the

history and latencies of previous QuorumEvents to warn developers of the transient perfor-

mance problem. To track the history, the developers can call recordHistory after the event

is created and updateHistory when event is triggered. The history is a store with the keys

as every unique QuorumEvent based on the recipients of the RPC’s and the values as number

of times each recipient triggered the QuorumEvent. For instance, the leader could send an A

ppendEntries message to itself (s1) and two followers (s2 and s3). The key in this instance

will be ({s1, s2, s3}). If the response comes from s1 and s2 first, then we will increment

the counter for those recipients. We also have another store that maintains the latency of

each RPC for previous QuorumEvents.

The transient performance problem propagates when a majority-wait event is triggered

by a subset of the nodes an overwhelming number of times. In our example, we can expect

s1 to almost always be responsible for triggering the QuorumEvent as it is the message

from the leader to itself. Furthermore, the other two nodes (s2 and s3) should be close

to equally likely to also contribute to triggering the event if we assume both nodes to be

healthy. However, if s2 is slow for instance, then most if not all of identical QuorumEven

ts will be triggered by only s1 and s3. As a result, transient problems in either of these

connection will propagate to the leader.

The history and the latency stores can provide information about susceptibility of the

database to the transient performance problem. We can traverse through the history to

verify that every node was active in triggering the QuorumEvent. We define an inactive node

to be a node that has not contributed to triggering a QuorumEvent for a sustained period

of time. If the difference between the total number of nodes and the required number of

responses is equal to the number of inactive nodes, then the current system is susceptible

to transient performance. This means that every QuorumEvent is triggered by the same

nodes for that period. When this is the case, we send warnings to the user that also contain

the median latency, P99 tail latency, and P99.9 tail latency of the active connections. The

developers can compare the P99 or P99.9 tail latency with the latency of client requests

to analyze the severity of the problem. The disparity between the average and tail latency

values might not be significant enough to address in some cases.

37

4.4 DEPFASTDB

We implement our own fail-slow tolerant Raft implementation using DepFast. The major

components of the Raft protocol [9], leader election and data replication, involve sending

requests to the other nodes and waiting for a majority of responses. Incorporating our Q

uorumEvent into these components is straightforward. Using DepFast, a masters student

with basic distributed system knowledge implemented the Raft protocol in C++ within two

weeks.

Our study of other databases helped us identify key patterns and write fail-slow tolerant

code. For instance, an earlier version of DepFastRaft had the same backlog problem as

RethinkDB before we analyzed other databases. We have an unbounded buffer that grows

uncontrollably as removing elements from the buffer depends on the receipt of messages

from a fail-slow follower. Since memory utilization on our database is high, the database

did not remain at critical memory utilization to affect performance. We did not search

for a prevention mechanism for this problem until we analyzed RethinkDB. The insights

motivated us to avoid the same mistakes in other implementations. Through our runtime

verification, we can ensure that our implementation is fail-slow tolerant

We implement our own RSM-based distributed key-value database on top of DepFastRaft

to demonstrate our effectiveness in tolerating fail-slow faults. Our disk, network, and event

processing is all provided by DepFast.

38

CHAPTER 5: EVALUATION

5.1 FAIL-SLOW FAULT TOLERANCE

5.1.1 Experimental Setup

We evaluate the performance of DepFastDB using the same fail-slow fault injection modes

in Table 2.1 that we utilize for widely used databases (Section 2.4). 1 We ran experiments

on an earlier version of DepFastDB that did not have the complete runtime verification.

We test the database on a YCSB-like workload that writes to 100K keys. We evaluate the

performance under a high load that can lead to about 75% CPU utilization on the leader.

In addition to the three-node setup that we used for other databases, we also measure

the performance of our database under a five-node setup (one leader and four followers).

We inject a fail-slow fault in one follower in the three-node setup and simultaneous fail-slow

faults in two followers in the five-node setup. As a result, only a minority of the followers is

affected by our injections.

For a fair comparison, we use the same virtual machine setup as the widely used databases.

We deploy the databases on the Azure cloud. Each virtual machine instance has 4 CPUs,

16GB RAM, and a 64GB SSD for data.

5.1.2 Results

Figure 5.1 presents the performance results under fail-slow faults on DepFastDB. In every

metric, DepFastDB does not suffer any significant performance degradation from the injec-

tion unlike other RSM database implementations (Chapter 2). In fact, there were only 3

metrics out of 36 that showed performance degradation greater than 5%. The disparity be-

tween the performance of DepFastDB and the widely-used databases demonstrates that our

database is more fail-slow fault tolerant. Furthermore, a 5-node configurration has minimal

changes to the results.

1This chapter reuses material from the following accepted paper: A. Yoo, Y. Wang, R. Sinha, S. Mu, and
T. Xu, “Fail-slow fault tolerance needs programming support,” in Proceedings of the 18th Workshop on Hot
Topics in Operating Systems (HotOS-XVIII), Virtual Event, May 2021.

Authors are Andrew Yoo (author of this thesis), Yuanli Wang, Ritesh Sinha, Shuai Mu, and Tianyin Xu.
According to the Authors’ Rights page for the publisher (ACM), I as the author have rights to reuse the paper.
The Authors’ Rights can be found here: https://authors.acm.org/author-resources/author-rights.
The DOI is yet to come as it was not published yet.

39

No Slow Slow CPU CPU Contention Memory Contention Slow Disk Disk Contention Slow Network

3 Nodes 5 Nodes0

2000

4000

6000

8000

Th
ro

ug
hp

ut
 (o

ps
/s

)

(a) Throughput

3 Nodes 5 Nodes0

100

200

300

400

500

La
te

nc
y

(m
s)

(b) Average Latency

3 Nodes 5 Nodes0

100

200

300

400

500

La
te

nc
y

(m
s)

(c) P99 Latency

Figure 5.1: Performance of DepFastDB with a minority of fail-slow followers (different types).

5.1.3 Analysis

One of the main reasons to our tolerance to fail-slow faults is due to the DepFast frame-

work. Instead of blocking on each RPC from the leader to the follower, the QuorumEvent

interface allows us to transmit RPC’s in parallel and wait for a majority. Therefore, we can

be confident that slowness propagation does not occur in the broadcast of messages related

to the Raft protocol.

This is not the only advantage of DepFastDB in comparison to other databases. Our

runtime verification and analysis allows us to see a complete perspective on the system and

identify slowness points easily. Using this information, we know that slowness of the followers

should not propagate to the leader.

By using the runtime verification in our current version, we can be confident that there

were no background tasks nor any significant transient performance in this early version.

This version of DepFastDB is primarily missing the three runtime verification components

based on the other databases. We did not add nor remove any background tasks and

significant sources of transient performance from this version to our current version. The

minimal number of warnings from our current version most likely means that background

tasks and significant transient performance were not prevalent in the early version.

However, this early version is missing both the Finalize interface and our policy of

freeing dangling requests. There is a chance that the results would have improved if we had

integrated these into the early version.

5.2 RUNTIME VERIFICATION

We evaluate the effectiveness of DepFastRaft to detect the patterns discussed in Chap-

ter 3 using DepFast. We inject the patterns by slightly modifying our implementation to

40

resemble these patterns in the databases that we evaluated on in §2.4. We create three

variants of DepFastRaft and integrate them into DepFastDB. For each variant, we demon-

strate the performance degradation of the pattern injection. We then analyze how well our

implementation can identify the pattern and send a warning to the user.

Due to the limited functionality of DepFastRaft, we had to simulate the patterns discussed

in Chapter 3 into our own to assess the effectiveness of the runtime verification. We do not

have TiDB’s mechanism for resending previous AppendEntries message upon receipt of an

AppendEntries or heartbeat message inherently in DepFastDB. Furthermore, the transient

performance problem is not as drastic in DepFastDB compared to MongoDB. Consequently,

we created new fail-slow intolerant versions of DepFastRaft to resemble the patterns in TiDB

and MongoDB. We call the variant with background tasks BG-Raft and the variant with

greater transient performance TP-Raft for the sake of simplicity.

Simulating the behavior of RethinkDB did not require much modification to DepFastRaft

because our implementation already has an unbounded buffer. Therefore, to simulate the

backlog problem, we simply comment out every call to Finalize to ensure that dangling

requests remain. In the experiment, the backlog problem became an issue in our system

without Finalize. We refer to this variant as NF-Raft to denote that there are “no Final

ize” calls.

After implementing the variants, we integrate our runtime verification to assess its ef-

fectiveness. Particularly, we present the number of warning messages that are printed in

each scenario. We also test DepFastRaft on this runtime verification interface to expose any

potential false positives.

5.2.1 Experimental Setup

To evaluate the performance degradation of the injections, we run similar experiments

to those performed in Chapter 3. We run CPU contention experiments using a YCSB-like

performance benchmark that updates 100K keys. We choose 450 concurrent clients, which

can drive the leader to about 75% CPU utilization Finally, our configuration has 3 nodes

with one leader and two followers, and we will inject CPU contention to a single follower.

Backlog Problem We have to make modifications to our experimental setup to better

visualize the performance degradation from the backlog problem. As observed in RethinkDB,

the performance degradation from this problem is only visible when the database reaches

critical memory utilization. It would be difficult to observe the impact of memory utilization

when it is low.

41

Throughput Avg Lat. P99 Lat.0.00

0.25

0.50

0.75

1.00

1.25

N
or

m
. P

er
fo

rm
an

ce

DepFastRaft BG-Raft TP-Raft

(a) Performance Degradation of BG-Raft
and TP-Raft

0 10 20 30 40 50 60
Time

0

2k

4k

6k

8k

#
 o

f O
pe

ra
tio

ns

No Slowness CPU Contention

(b) Performance Degradation of NF-Raft

Figure 5.2: Performance of Fail-Slow Intolerant Variants

Table 5.1: Number of Warning Messages

Experiment DepFastRaft BG-Raft TP-Raft NF-Raft
No Slowness 0 0 0 21,155

CPU Contention 108 143 105 21,288

This becomes complicated in DepFastRaft because memory utilization is significantly

higher than RethinkDB. In fact, DepFastRaft only experiences critical memory utilization

for a small amount of time, approximately 5 seconds, under saturation. Choosing a correct

duration that highlights this issue without crashing is a nearly impossible task. If the

experiment runs a few seconds after the system reaches critical memory utilization, the

system would crash. Meawhile, finishing the experiments earlier would not push the system

to high enough memory utilization. Since every trial has a different throughput, the memory

utilization across every trial is unpredictable.

We run experiments until a significant number of trials have reached critical memory

utilization. We execute a top command at the end of the experiment duration and utilize the

trial if the command fails. This is the same phenomenon that we experienced on RethinkDB

towards the end of the experiment. For each of the trials, we plot the change in operations

over time similar to Figure 3.15b.

5.2.2 Overall Results

We evaluate the performance degradation caused by each pattern that is injected into our

database in Figure 5.2. The numbers in Figure 5.2a represent the normalized performance

across the same metrics as those in §2.4 and §5.1.2.

42

We present the overall performance degradation after slowness injection on DepFastRaft in

Figure 5.2a compared to BG-Raft and TP-Raft. The numbers represent the relative increase

and decrease in every metric after slowing down a follower with CPU contention.

When there is no pattern, adding CPU contention does not affect the performance in our

database. Across every metric, the largest performance degradation was 2.85% in the P99

tail latency.

BG-Raft and TP-Raft add more performance degradation in the P99 tail latency. BG-

Raft’s P99 tail latency increases by 6.42% after injecting CPU contention while TP-Raft’s

P99 tail latency increases by 7.78%. This is reasonable considering that MongoDB’s transient

performance problem also heavily affected the tail and our simulation of TiDB’s background

tasks problem spawned background tasks in intervals of several milliseconds.

In Figure 5.2b, we compare the two scenarios of the system with and without a fail-slow

fault after commenting out every call to Finalize. We demonstrate the experiment that

yielded the median of the maximum queue size, which is the same criterion for experiments

in §3.2. For most of the experiment, both scenarios experience indistinguishable levels of

throughput. When the memory utilization becomes critical as noted by the failed top

command, the performance degradation becomes clear. The number of operations in the

last statistics report before averaging the value over time was 769. This number on average

across every trial is 12,141 across every experiment with CPU contention compared to 33,562

without slowness.

In Table 5.1, we display the number of warning messages in each variant both with and

without slowness. For every variant with slowness, an ample number of warning messages are

printed to inform the user of the pattern. Therefore, our runtime verification can successfully

warn users when there exists slowness.

The only other interesting scenarios to discuss are the experiments of DepFastRaft with

CPU contention and the experiments of NF-Raft without slowness. Our warning for transient

performance problem is to warn the system that their system is susceptible to the pattern.

CPU contention will cause the history inside our QuorumEvent to be dominated by a single

follower regardless of the implementation of Raft. To assess whether to fix the transient

problem or not, the user can look at the metrics that are printed in each warning. NF-

Raft prints warnings based on whether the user is dealing with backlog rather than on the

existence of backlog. The fact that the user is not calling Finalize is independent of whether

there is a fail-slow fault in the system or not. As a result, both numbers are expected in

DepFast.

43

Summary: Our results demonstrate that the patterns have a significant impact

on the performance of our database. We also show that our runtime verification can

accurately detect every pattern.

Figure 5.3: Summary of §5.2.2

5.2.3 Repeated Background Tasks Problem

Patterns To create additional background tasks, BG-Raft has a loop in the leader that

will spawn background tasks based on messages received from heartbeat messages. The

leader will attempt to send heartbeat messages to each follower every 5 milliseconds in the

loop. When the follower receives the heartbeat message, it will respond with its current log

index to the leader. For every heartbeat response, the leader will update a data structure

call matched that represents the current progress of each follower. In every iteration of

the loop, the leader will check the progress of the followers and resend the AppendEntries

message if the matched variable is 10,000 entries behind the leader.

Our simulation replicates the pattern that TiDB exhibits: the leader is transmitting RPC’s

that does not stem from a client request. Like TiDB, BG-Raft will send the same AppendE

ntries message more than once based on a progress object. While TiDB resends an Appe

ndEntries message in the event of receiving a message, BG-Raft transmits these messages

based on the progress object alone. Despite the difference, we successfully achieve our goal

of implementing a database that generates an excessive number of background tasks.

BG-Raft spawns more background RPC’s when a follower experiences slowness compared

to the scenario without slowness. In the trials, there were only 20 retries in the experiments

without slowness while this number increased to 5,599 with slowness. Therefore, our simu-

lation correctly simulates the behavior of spawning more background tasks in response to a

fail-slow follower. These extra background RPC’s also noticeably increased the end-to-end

P99 latency in Figure 5.2a.

Summary: To simulate the behavior of TiDB, we implement the pattern of resending

AppendEntries messages after receiving heartbeat responses on top of our database.

We discovered that after injecting CPU contention, our database also retransmitted

Figure 5.4: Summary of Pattern Injection for BG-Raft

44

the same AppendEntries message multiple times. In addition, we demonstrate that

the retransmission can increase P99 tail latency by 6.42 percent after we inject a

fail-slow fault.

Figure 5.4 (cont.)

Results Our runtime verification can successfully detect the problems of BG-Raft and

send warnings to the programmer. Every 5 seconds, the runtime verification interface de-

termines whether to send a warning message if it has detected a message with an invalid

or nonexistent dependency ID. In the trials with CPU contention, BG-Raft prints a total

of 143 warning messages, 35 of which correspond to the background task problems. The

other 108 messages stem from the runtime verification for transient performance since there

is an inactive follower. Because our experiment duration is 180 minutes, we expect there to

be approximately 35 or 36 checks for background tasks. Therefore, the interface is nearly

perfect in detecting the pattern in BG-Raft.

The runtime verification for background tasks also does not result in false positives. In

DepFastRaft, the warning message was not printed a single time as there are not many back-

ground tasks. In addition, BG-Raft does not print a message if the number of background

tasks is small. In the no slowness experiments, the runtime verification message did not

print a single time.

Summary: We print a warning message after checking periodically whether the

number of background tasks has exceeded a threshold. The number of messages is

expected based on the experiment duration.

Figure 5.5: Summary of Results for BG-Raft

Analysis DepFast can detect the background events created by the heartbeat messages

because it tracks the transitive dependency of every message. With the pattern injection for

BG-Raft, we have two additional types of messages from the original DepFastDB. The first

message is the heartbeat message that does not need a transitive dependency. The second

message is an older AppendEntries message triggered by the leader in response to the ma

tched variable. This message is a background task that is not related directly to a client

request and is not a heartbeat message.

45

0 60 120 180 240
Time

0

20

40

60

80

100

M
em

or
y

U
til

iz
at

io
n

NF-Raft

(a) Memory Utilization

0 60 120 180 240
Time

0

1M

2M

3M

4M

5M

6M

7M

Q
ue

ue
 S

iz
e

DepFastRaft

(b) Queue Size

Figure 5.6: Memory Utilization and Queue Size with DepFastRaft

The second message, a retry of a previous AppendEntries message, never reaches the

client that can set the dependency ID. Therefore, the leader will send the AppendEntrie

s message to the follower with an invalid dependency ID. Our implementation detects this

and maintains a counter for the number of background tasks. Once the number of retries

reaches a threshold, the warning message is printed.

Summary: We exploit our tracking of dependency ID to detect whether a message

originated from a client or not. Since the retransmission of older AppendEntries

messages are started by the leader, DepFast can detect this and send warnings to the

programmers.

Figure 5.7: Summary of Analysis for BG-Raft

5.2.4 Backlog Problem

Patterns NF-Raft simulates the backlog problems as the dangling requests in the un-

bounded buffer will remain. Whenever the leader sends a request to a follower, it will store

the request into a vector corresponding to that follower. We will remove the object from

the buffer and deallocate the dangling request when the leader receives a response from the

follower server. In the case that the other server is slow, Finalize will help us deal with

the dangling requests. Without Finalize, new client requests increase the size of the buffer

as dangling requests are slowly being freed.

In Figure 5.6b, we present the size of the unbounded buffer with and without the Final

ize interface. We remove the requirement that the memory has to reach critical utilization

46

for the experiments that we analyze for this section. We want to demonstrate that the

symptoms of this problem occurs in every trial instead of selective ones. Again, we choose

the median value of the maximum buffer sizes across every trial.

There is a clear discrepancy between the buffer sizes in DepFastRaft and NF-Raft. In

DepFastRaft, the buffer size will grow to approximately 400,000 elements and drop imme-

diately. The reason is that the Finalize calls will free all the dangling requests and reduce

the size to 0. However, the buffer in NF-Raft will uncontrollably grow in a nearly linear

fashion as we had previously observed in RethinkDB.

We also demonstrate the effects of the buffer on the memory utilization for the same trials

in Figure 5.6a. The memory utilization will grow linearly even without the backlog issue

because our database also stores data in memory. However, the unbounded buffer without

the Finalize interface will increase the memory utilization significantly more. While the

memory utilization only grows to 80.1% in DepFastRaft, removing the interface in NF-Raft

will increase the utilization to 92.7%. As we described earlier, the critical memory utilization

causes the throughput to plummet towards the end of the experiment.

Summary: We simulated the backlog problem by not calling Finalize at the

end of every coroutine with QuorumEvents. We demonstrate that NF-Raft leads to a

sharp increase in queue size like in RethinkDB. Furthermore, the memory utilization

is considerably higher in NF-Raft compared to DepFastRaft.

Figure 5.8: Summary of Pattern Injection for NF-Raft

Results Our runtime verification can reliably detect that the Finalize interface is not

called. As stated earlier, we will check every coroutine after it has finished running a task

whether it has finalized any QuorumEvents that it waited on. Printing a warning in every task

for a coroutine can significantly affect the performance of the server. Therefore, we output

the message if the coroutine has not finalized every QuorumEvent in a 5-second period.

We warn the programmers often when they do not effectively handle the backlog problem.

A message that the programmer should properly deal with backlog problems was printed

an average of 21,155 times in NF-Raft without slowness and an average of 21,150 times

with slowness. It is also important to note the higher number of warnings for transient

performance (138 messages on average) was due to having to run longer trials to stress

memory and injecting the fault several seconds into the experiment.

Compared to other variants, we print messages more often because we print a warning

47

message for each coroutine periodically. For other patterns, there exists one entity that

determines whether to send the warning or not. Furthermore, since the message printing is

independent of the existence of slowness, we believe that the 5 additional messages without

a fault is trivial.

One worry that we want to dispel is the overhead of Finalize. Waiting for requests from

a slow follower and freeing requests from a large buffer in a loop can both have significant

overhead. However, the Finalize interface incurs almost no overhead. Compared to NF-

Raft, DepFastRaft does not degrade performance by more than 5% in any metric.

Summary: Our runtime verification can reliably detect that no Finalize is called

in NF-Raft. Furthermore, we also explain that Finalize incurs minimal overhead

although freeing requests and waiting for a slow follower can potentially be time con-

suming.

Figure 5.9: Summary of Results for NF-Raft

Analysis We can deal with dangling requests because our event-based framework distin-

guishes logic from the utility and enables communication between them. Our Raft logic is

implemented through QuorumEvents that requires Finalize to deal with dangling requests.

If the Finalize interface times out, then the QuorumEvents will notify the utility that the

logic is experiencing slowness. As a result, the utility can adjust by freeing all these dangling

requests such that the slowness does not propagate to the buffer. In this manner, we can

mitigate the impact of the backlog problem.

Our framework can send warnings since we incorporate QuorumEvents into their own

coroutine and recognize when the warning should be printed. In every coroutine, we maintain

a data structure of every QuorumEvent that called Wait. Since every coroutine needs to

finalize such events, we check this data structure at the end of the coroutine. If there was a

coroutine that did not call Finalize in the last period of 5 seconds, then the coroutine code

will print a warning. In DepFastRaft, we ensure that every coroutine calls Finalize, which

avoids this warning from being printed. On the other hand, NF-Raft will print this warning

often as every client request will proceed through the Raft logic without calling Finalize.

It is important to highlight that the Finalize interface have more disadvantages than

advantages depending on the policy. For instance, we take extra caution when freeing the

requests from the buffer. Freeing memory from a large buffer can be time consuming and can

potentially block the critical path if implemented incorrectly. Therefore, we use a background

48

thread to minimize the overhead. In addition, waiting in every Finalize can have its own

downsides. Defining a policy that minimizes the overhead is essential to reap the benefits of

Finalize.

Summary: We can detect the lack of Finalize calls because we connect every

coroutine with the QuorumEvents that it waited on. Furthermore, defining the correct

policy for Finalize is a nontrivial task that requires attention to detail.

Figure 5.10: Summary of Analysis for NF-Raft

5.2.5 Transient Performance Problem

Patterns We explain how we replicate the transient performance problem of MongoDB

into our own database. DepFastRaft like most databases experiences inconsistent perfor-

mance in network and disk operations. However, the transient performance problems are

not as severe as MongoDB. As a result, we add artificial latency to each follower to simulate

transient performance. We randomly generate a number whenever the follower processes an

AppendEntries message and add 25 milliseconds if the number is divisible by 1,000. This

adds artificial latency while mirroring the randomness of transient performance.

Adding artificial latency in TP-Raft had a significant impact on the leader’s performance

when there is a slow follower. We computed the latency of every AppendEntries message

from the time that it was transmitted to the time of the callback. Without any slow fol-

lower, the round-trip P99 latency of an AppendEntries message was approximately 162

milliseconds. However, the latency is not visible on the latency of waiting on a QuorumEven

t that depends on these messages. The P99 latency of waiting on QuorumEvent was just 73

seconds.

When we add CPU contention to a follower, the round-trip P99 latency of AppendEnt

ries to the healthy follower is reflected in the P99 latency of waiting on a QuorumEvent.

The P99 tail latency values of the AppendEntries request and waiting on a QuorumEven

t are both 86 milliseconds. Although the P99 latency of each individual request is lower

with a fail-slow fault, they have a more noticeable effect on the leader. The slowness of each

message propagates to the leader as we observed in MongoDB.

Furthermore, the end-to-end P99 tail latency of every client request also suffers as a result

of the artificial transient latency. The end-to-end P99 tail latency increased by 7.78% from

2.85%. This demonstrates the possible impact of the same pattern on our own system.

49

Table 5.2: Content of Warning Messages for Transient Performance

Variant Median Latency(ms) P99 Latency (ms) P99.9 Latency (ms)
DepFastRaft 14.8 36.2 46.2

TP-Raft 18.7 84.0 95.5

Summary: We simulated the transient performance problem by adding artificial

latency at random on the follower. We demonstrate that similarly to MongoDB, the

transient performance does not propagate significantly to the leader without a fail-slow

fault. However, when we add slowness to a follower, the artificial latency propagates

to the leader.

Figure 5.11: Summary of Pattern Injection for TP-Raft

Results In every trial with CPU contention on a follower, we send multiple warnings

that there is a possible transient performance problem. We use a 3-node configuration that

enforces the leader to wait until the data is replicated on a majority of nodes. As a result,

we should always print out a warning when exactly one follower is slow. When there is one

fail-slow follower, transient performance of the other follower will propagate naturally to the

leader. As we explained previously, both followers are experiencing slow performance for

this short period.

In every variant except NF-Raft, the number of messages range from 105 to 108 for a

3-minute experiment duration. Meanwhile, NF-Raft printed the message 138 times due to

the longer duration as we pointed out. We expect these numbers because three messages are

printed whenever susceptibility to transient performance is detected. The first message states

that the current system is susceptible to transient performance. The subsequent messages

print the median and tail latencies of every active node from the moment that the Quoru

mEvent to when we notify the QuorumEvent. Therefore, we will output the first message

followed by the latency values of the leader and healthy follower.

Although we print the warnings in every case with follower slowness, we output different

information for TP-Raft that informs programmers of the severity. We show the metrics

that the warning messages display for DepFastRaft and TP-Raft in Table 5.2. The extent to

which transient performance occurs in DepFastRaft is small compared to TP-Raft. Since the

end-to-end P99 latency only suffers by 2.85% in DepFastRaft, the programmers can choose

to ignore this warning message. However, the tail latency in TP-Raft can have a more drastic

50

effect on the end-to-end latency. A problem such as the one in MongoDB where the tail

latency of waitForJournalFlush can exceed a second would be highlighted by our warning

message.

Summary: In every trial, our system successfully detects that it is susceptible to

transient performance when there is a slow follower. Furthermore, the information

printed when there was artificial latency informed us of a more severe transient per-

formance problem.

Figure 5.12: Summary of Results for TP-Raft

Analysis We are able to detect the system’s current susceptibility to transient perfor-

mance on the follower because we exploit the QuorumEvent’s maintenance of the history and

latencies of prior events. All of our QuorumEvents from the AppendEntries phase of the

Raft leader involves the leader node and the two follower nodes. Therefore, there will be an

entry inside the history with this specific QuorumEvent as a key and a record of which nodes

triggered the event as the value.

Periodically after a certain number of QuorumEvents have been created, we traverse

through the history to verify that the current system is not affected by transient perfor-

mance. When we have two healthy followers, the history is divided between the leader and

two followers such that one follower does not trigger the event significantly more than the

other. The number of inactive nodes is 0, which is less than the requirement of one inactive

node to print out the warning.

After we add CPU contention to one of the followers, the healthy node will help trigger the

QuorumEvent while the slow node does not contribute. If the verification does not detect the

dominance of the healthy node the first time, the next iterations will identify the problem.

As a result, the single inactive node is sufficient to trigger the warning. The warning is not

a false alarm because for the previous messages, the client requests are susceptible to a fail-

slow fault in a follower. Since there is only one healthy follower, fluctuations in this follower

will propagate to the leader as it was shown previously in our system and MongoDB.

Furthermore, the warning message itself is valuable because it demonstrates the impact

of the transient performance on the end-to-end performance. In our experiments, we can

analyze that the effects of the QuorumEvents is significant by comparing the P99 tail latency

from the warnings with the end-to-end performance. Without the artificial latency, the P99

tail latency was approximately 21 milliseconds higher than the median latency. Since the end-

51

to-end P99 latency was not affected, the developers can choose to ignore the message. While

the information is printed even with the small transient performance, the number of warning

messages is so minimal that the impact on performance is negligible. However, the P99 tail

latency increased significantly as we added the artificial latency signaling the importance of

the transient performance problem to the developers. In this scenario, the developers can

make changes on other layers of the database to deal with transient performance.

Summary: The maintenance of history and latency work together to provide the

information to the developers both that the problem is happening and the severity

of the transient performance. Our periodic verification detects the inactive node and

prints a warning. Meanwhile, the latency values are then utilized to evaluate the

severity of the problem.

Figure 5.13: Summary of Analysis for TP-Raft

52

CHAPTER 6: RELATED WORK

6.1 REPLICATED STATE MACHINE SYSTEMS

The scope of our work is on RSM or replicated state machine [26] systems. 1 A replicated

state provides fault-tolerant services to clients while providing an abstraction of a single

entity. Normally, the client sends operations to the leader that then replicates it unto

a majority of servers. A replicated state machine then guarantees through a consensus

protocol [8, 9, 23, 24] that each server agrees on the same sequence of commands and every

command is eventually committed.

Recent work in RSM systems most often describes that their system maintains fault-

tolerance properties by design. Some papers explains their system’s fault tolerance through

previously proven protocols [2, 4, 27]. Other papers create their own protocol to fit the

setting and prove that their system is fault-tolerant [25, 28]. While we have no doubt that

the protocols themselves provide fault tolerance, our experience showed that implementations

of such protocols can often be more problematic. In fact, none of the aforementioned work

demonstrates that the implementations behave correctly in a fail-slow fault scenario. Our

work aims to present an RSM system that not only follows these protocols but also verifies

that the implementation itself is fail-slow-tolerant.

Our work is not the only comprehensive study that exposes unexpected behavior in RSM

implementations [29, 30] Most of the studies on these implementations do not focus on

such behavior in the context of fail-slow faults. Scott et al. [29] analyze an open-source

implementation in akka-raft and expose behavior that occurs during fuzzing. Meanwhile,

Fonseca et al. [30] discovered that bugs in verified RSM implementations were all related

to the protocol implementations. However, none of the bugs exposed in these papers are

directly related to fail-slow faults.

The backlog pattern was also reported in prior work on studies of ZooKeeper [14] and

Verdi [30], but in the form of crashing behavior due to stack overflow. We reassure the

existence of the same problem in a Raft implementation and show that backlog can lead to

fail-slow behavior due to resource overuses. Note that Verdi is a formally verified implemen-

1This chapter reuses material from the following accepted paper: A. Yoo, Y. Wang, R. Sinha, S. Mu, and
T. Xu, “Fail-slow fault tolerance needs programming support,” in Proceedings of the 18th Workshop on Hot
Topics in Operating Systems (HotOS-XVIII), Virtual Event, May 2021.

Authors are Andrew Yoo (author of this thesis), Yuanli Wang, Ritesh Sinha, Shuai Mu, and Tianyin Xu.
According to the Authors’ Rights page for the publisher (ACM), I as the author have rights to reuse the paper.
The Authors’ Rights can be found here: https://authors.acm.org/author-resources/author-rights.
The DOI is yet to come as it was not published yet.

53

tation [31]—the current formal verification has not yet been able to deal with fail-slow fault

tolerance properties. We also build an interface to deal with the root cause findings.

6.2 FAIL-SLOW FAULTS

Fail-slow faults are an active research topic, which includes both long slowdowns and

transient faults with various root causes [12, 13, 14, 32, 33, 34, 35, 36, 37]. Work in this

space also demonstrates the inability to tolerate such faults in state-of-the-art distributed

systems [14, 15, 37]. One example as demonstrated by Do et al. [14] is limplocks where

impact cascades such that the system slows down and cannot effectively fail-over to healthy

components.

Root Causes Arpaci-Dusseau et al. [11] first introduced the “fail-stutter” (aka fail-slow)

fault model for low and unexpected performance of different components. The work de-

scribed different fail-slow faults caused by misconfigurations, resource contentions, and fail-

ures in the hardware itself. However, the work mainly focuses on presenting an overview of

performance faults performed in a laboratory setting instead. Therefore, further work was

needed to show the impact of these fail-slow faults in more detail.

Gunawi et al. [12] extended this work by performing a thorough study on reports of pri-

marily fail-slow hardware faults. The study showed that every component, such as memory,

SSD, and NICs, can have multiple root causes behind its failure. In addition to hardware

failures that occurred internally, the paper also explains in detail external root causes such

as power outages, temperature, and configurations.

In addition to extensive studies on hardware, other prior work has demonstrated the

potential of software bugs [13, 14, 15] and misconfigurations [38, 39, 40] to result in a fail-

slow fault. Some of the root causes caused by software include lock contention leading to

additional tasks [15] and a slowdown from 1 Gbps to 1kbps stemming just from a network

driver bug [14]. These prior investigations on software-related and hardware-related fail-slow

faults provide more reason to explore fail-slow tolerant solutions such as our work.

Approaches Recent work focuses on leveraging monitoring, performance metrics, and

measurements to detect and pinpoint the fail-slow faults [13, 33, 34, 35, 36, 37]. This reactive

approach of detection and localization undeniably mitigates the problem, but a proactive

approach can eliminate these occurrences. Our DepFast can prevent several impacts from

fail-slow faults.

54

Prior work prioritized a proactive approach by designing new protocols that are fail-slow

tolerant in their space. Mehdi et al. [41] built a causally consistent data store that is tolerant

to slowdown cascades in which a single slow shard or component can dictate the performance

of the entire system. The approach involved offloading the decision to commit to the clients

and creating a weaker alternative to Parallel Snapshot Isolation (PSI) using timestamps.

In a recent paper, Ngo et al. [42] developed the first consensus protocol that is tolerant to

a single slowdown by design. The focus is to resolve the weakness of algorithms as they

pertain to a fail-slow leader.

Our work is complementary as it focuses on the implementation level instead of the design

level. The motivation behind our work is to ensure that the implementation can deliver on

the principles of the algorithm. The aforementioned works [41, 42] and our work can be used

in tandem to prevent slowness propagation. Furthermore, the scope of DepFast is not just

a single distributed protocol but can be applicable to many similar algorithms.

55

CHAPTER 7: CONCLUSION

We exposed the fail-slow intolerance of three state-of-the-art RSM-based database systems.
1 None of the three systems could even tolerate a single slow follower. After an arduous

process of searching for the root cause, we found that many of the problems stem from

flawed implementation. We categorized the root causes into three patterns and performed a

comprehensive analysis. TiDB spawns excessive background RPC’s, RethinkDB has backlog

problems involving an unbounded buffer, and MongoDB has transient performance issues

that propagate to the leader.

We then extended DepFast, a library for writing fail-slow tolerant code, using insights that

we have gathered from the databases. DepFast is a collection of interfaces that leverages

coroutines and events to minimize slowness propagation. One of these interfaces is QuorumE

vents where systems can wait on numerous events simultaneously until a majority finishes.

In addition to this functionality, we help developers avoid all three patterns that we observed

by sending warnings at runtime.

We finally implement DepFastRaft, a fail-slow tolerant implementation of Raft, and in-

tegrate it into a key-value store database (DepFastDB). We show that DepFastDB can

effectively tolerate different fail-slow faults that affect other databases. In addition, DepFast

can detect the patterns in other databases with near-perfect accuracy in our trials.

Future work for this project includes extending DepFast to other protocols. Moreover, we

want to detect fail-slow faults that occur on the leader. The end goal is to have a library

that can eliminate fail-slow intolerant code entirely. As we have demonstrated, implementing

fail-slow tolerant code in distributed systems in general is a complicated task. DepFastRaft

is one large step forward to achieving this goal.

A short version of the thesis has been accepted and will be presented at HotOS-XVIII [43].

1This chapter reuses material from the following accepted paper: A. Yoo, Y. Wang, R. Sinha, S. Mu, and
T. Xu, “Fail-slow fault tolerance needs programming support,” in Proceedings of the 18th Workshop on Hot
Topics in Operating Systems (HotOS-XVIII), Virtual Event, May 2021.

Authors are Andrew Yoo (author of this thesis), Yuanli Wang, Ritesh Sinha, Shuai Mu, and Tianyin Xu.
According to the Authors’ Rights page for the publisher (ACM), I as the author have rights to reuse the paper.
The Authors’ Rights can be found here: https://authors.acm.org/author-resources/author-rights.
The DOI is yet to come as it was not published yet.

56

REFERENCES

[1] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger, K. Niemi,
A. Woods, A. Birzin, R. Poss, P. Bardea, A. Ranade, B. Darnell, B. Gruneir, J. Jaf-
fray, L. Zhang, and P. Mattis, “CockroachDB: The Resilient Geo-Distributed SQL
Database,” in Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD’20), Portland, OR, USA, June 2020.

[2] D. Huang, Q. Liu, Q. Cui, Z. Fang, X. Ma, F. Xu, L. Shen, L. Tang, Y. Zhou, M. Huang,
W. Wei, C. Liu, J. Zhang, J. Li, X. Wu, L. Song, R. Sun, S. Yu, L. Zhao, N. Cameron,
L. Pei, and X. Tang, “TiDB: A Raft-based HTAP Database,” in Proceedings of the 46th
International Conference on Very Large Data Bases (VLDB’20), Tokyo, Japan, August
2020.

[3] M. Brooker, T. Chen, and F. Ping, “Millions of Tiny Databases,” in Proceedings
of the 17th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’20), Santa Clara, CA, February 2020.

[4] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd,
S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szyma-
niak, C. Taylor, R. Wang, and D. Woodford, “Spanner: Google’s Globally-Distributed
Database,” in Proceedings of the 10th USENIX Conference on Operating Systems De-
sign and Implementation (OSDI’12), Hollywood, CA, USA, October 2012.

[5] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free Coordination
for Internet-scale Systems,” in Proceedings of the 2010 USENIX Conference on USENIX
Annual Technical Conference (USENIX ATC’10), Boston, MA, June 2010.

[6] M. Burrows, “The Chubby lock service for loosely-coupled distributed systems,” in
Proceedings of the 7th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI’06), Seattle, WA, USA, November 2006.

[7] M. Isard, “Autopilot: Automatic Data Center Management,” SIGOPS Operating Sys-
tem Review, vol. 41, no. 2, p. 60–67, April 2007.

[8] L. Lamport, “Paxos made simple,” ACM SIGACT News (Distributed Computing Col-
umn) 32, 4 (Whole Number 121, December 2001), pp. 51–58, December 2001.

[9] D. Ongaro and J. Ousterhout, “In Search of an Understandable Consensus Algorithm,”
in Proceedings of the 2014 USENIX Annual Technical Conference (USENIX ATC’14),
June 2014.

[10] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proceedings of the
Third Symposium on Operating Systems Design and Implementation, February 1999.

57

[11] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, “Fail-Stutter Fault Tolerance,” in
Proceedings of the 8th Workshop on Hot Topics in Operating Systems (HotOS’17), May
2001.

[12] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman, X. Lin,
T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey, D. Srinivasan, B. Panda, A. Baptist,
G. Grider, P. M. Fields, K. Harms, R. B. Ross, A. Jacobson, R. Ricci, K. Webb, P. Al-
varo, H. B. Runesha, M. Hao, and H. Li, “Fail-Slow at Scale: Evidence of Hardware
Performance Faults in Large Production Systems,” in Proceedings of the 16th USENIX
Conference on File and Storage Technologies (FAST’18), Oakland, CA, USA, February
2018.

[13] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and R. Yao,
“Gray Failure: The Achilles’ Heel of Cloud-Scale Systems,” in Proceedings of the 16th
Workshop on Hot Topics in Operating Systems (HotOS’17), Whistler, BC, Canada,
May 2017.

[14] T. Do, M. Hao, T. Leesatapornwongsa, T. Patana-anake, and H. S. Gunawi, “Limplock:
Understanding the Impact of Limpware on Scale-out Cloud Systems,” in Proceedings of
the 4th ACM Symposium on Cloud Computing (SOCC’13), October 2013.

[15] J. Li, Y. Chen, H. Liu, S. Lu, Y. Zhang, H. S. Gunawi, X. Gu, X. Lu, and D. Li,
“PCatch: Automatically Detecting Performance Cascading Bugs in Cloud Systems,” in
Proceedings of the 39th ACM European Conference in Computer Systems (EuroSys’18),
April 2018.

[16] “TiDB,” https://pingcap.com/.

[17] “RethinkDB,” https://rethinkdb.com/.

[18] “MongoDB,” https://www.mongodb.com/.

[19] R. van Renesse and F. B. Schneider, “Chain Replication for Supporting High Through-
put and Availability,” in Proceedings of the 6th USENIX Conference on Operating Sys-
tems Design and Implementation (OSDI’04), San Francisco , CA, USA, December 2004.

[20] MongoDB Documentation, “Manage Chained Replication,” https://docs.mongodb.
com/manual/tutorial/manage-chained-replication/.

[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking
Cloud Serving Systems with YCSB,” in Proceedings of the 1st ACM Symposium on
Cloud Computing (SOCC’10), Indianapolis, Indiana, USA, 2010.

[22] J. Ousterhout, “Why threads are a bad idea (for most purposes),” in Presentation at
the 1996 USENIX Annual Technical Conference, September 1995.

[23] L. Lamport, “Fast Paxos,” Microsoft Research, Tech. Rep. MSR-TR-2005-112, July
2005.

58

[24] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more consensus in egalitar-
ian parliaments,” in Proceedings of the 23rd ACM Symposium on Operating Systems
Principles (SOSP’13), November 2013.

[25] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. K. Ports, “Building
consistent transactions with inconsistent replication,” in Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP’15), October 2015.

[26] F. B. Schneider, “Implementing fault-tolerant services using the state machine approach:
A tutorial,” ACM Comput. Surv., vol. 22, no. 4, p. 299–319, December 1990.

[27] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M. Leon, Y. Li,
A. Lloyd, and V. Yushprakh, “Megastore: Providing scalable, highly available storage
for interactive services,” in Proceedings of the Conference on Innovative Data system
Research (CIDR), January 2011.

[28] J. Li, E. Michael, and D. R. K. Ports, “Eris: Coordination-free consistent transac-
tions using in-network concurrency control,” in Proceedings of the 26th Symposium on
Operating Systems Principles, New York, NY, USA, October 2017.

[29] C. Scott, A. Panda, V. Brajkovic, G. Necula, A. Krishnamurthy, and S. Shenker, “Min-
imizing faulty executions of distributed systems,” in Proceedings of the 13th Usenix
Conference on Networked Systems Design and Implementation, March 2016.

[30] P. Fonseca, K. Zhang, X. Wang, and A. Krishnamurthy, “An empirical study on the
correctness of formally verified distributed systems,” in Proceedings of the Twelfth Eu-
ropean Conference on Computer Systems (EuroSys’17), April 2017.

[31] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst, and T. Ander-
son, “Verdi: A framework for implementing and formally verifying distributed systems,”
in Proceedings of the 36th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI’15), June 2015.

[32] S. Jha, S. Cui, S. Banerjee, T. Xu, J. Enos, M. Showerman, Z. T. Kalbarczyk, and
R. K. Iyer, “Live Forensics for HPC Systems: A Case Study on Distributed Storage
Systems,” in Proceedings of the International Conference for High-Performance Com-
puting, Networking, Storage and Analysis (SC’20), Virtual Event, November 2020.

[33] B. Panda, D. Srinivasan, H. Ke, K. Gupta, V. Khot, and H. S. Gunawi, “IASO: A
Fail-Slow Detection and Mitigation Framework for Distributed Storage Services,” in
Proceedings of the 2019 USENIX Annual Technical Conference (USENIX ATC’19),
Renton, WA, July 2019.

[34] Q. Zhang, G. Yu, C. Guo, Y. Dang, N. Swanson, X. Yang, R. Yao, , M. Chintalap-
ati, A. Krishnamurthy, and T. Anderson, “Deepview: Virtual Disk Failure Diagnosis
and Pattern Detection for Azure,” in Proceedings of the 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’18), Renton, WA, USA, April
2018.

59

[35] C. Tan, Z. Jin, C. Guo, T. Zhang, H. Wu, K. Deng, D. Bi, and D. Xiang, “NetBouncer:
Active Device and Link Failure Localization in Data Center Networks,” in Proceedings
of the 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’19), Boston, MA, USA, February 2019.

[36] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H. H. Liu, J. Padhye, B. T. Loo, and
G. Outhred, “007: Democratically Finding the Cause of Packet Drops,” in Proceedings
of the 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’18), Renton, WA, April 2018.

[37] C. Lou, P. Huang, and S. Smith, “Understanding, Detecting and Localizing Partial
Failures in Large System Software,” in Proceedings of the 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’20), Santa Clara, CA, February
2020.

[38] X. Sun, R. Cheng, J. Chen, E. Ang, O. Legunsen, and T. Xu, “Testing Configura-
tion Changes in Context to Prevent Production Failures,” in Proceedings of the 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI’20), Vir-
tual Event, November 2020.

[39] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy, “Early Detection of
Configuration Errors to Reduce Failure Damage,” in Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI’16), Savannah,
GA, November 2016.

[40] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and S. Pasupathy,
“Do Not Blame Users for Misconfigurations,” in Proceedings of the 24th Symposium on
Operating System Principles (SOSP’13), Farmington, PA, November 2013.

[41] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bronson, and W. Lloyd, “I can’t believe
it’s not causal! scalable causal consistency with no slowdown cascades,” in Proceedings
of the 14th USENIX Conference on Networked Systems Design and Implementation,
March 2017.

[42] K. Ngo, S. Sen, and W. Lloyd, “Tolerating Slowdowns in Replicated State Machines
using Copilots,” in Proceedings of the 14th USENIX Conference on Operating Systems
Design and Implementation (OSDI’20), November 2020.

[43] A. Yoo, Y. Wang, R. Sinha, S. Mu, and T. Xu, “Fail-slow fault tolerance needs pro-
gramming support,” in Proceedings of the 18th Workshop on Hot Topics in Operating
Systems (HotOS-XVIII), Virtual Event, May 2021.

60

