
© 2022 Wenyu Wang



EMPOWERING AUTOMATED MOBILE UI TESTING WITH EXTERNAL SUPPORT

BY

WENYU WANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2022

Urbana, Illinois

Doctoral Committee:

Professor Tao Xie, Chair
Professor Darko Marinov
Assistant Professor Tianyin Xu
Dr. Mukul Prasad, Fujitsu Research of America



ABSTRACT

While mobile devices have become an integral part of modern daily life, the ever-growing com-

plexity and fast pace of app feature development have imposed unprecedented challenges on mak-

ing these mobile apps robust and reliable. User Interface (UI), as the primary medium of user

interactions, is naturally a good entry point for testing mobile apps. While manual and scripted

UI testing is a common practice, automated UI testing is becoming increasingly popular. By

mimicking how human users interact with apps through the UIs, automated UI test generation

tools are capable of detecting reliability and usability issues, complementing manual and scripted

testing by requiring little to no human testing effort.

There have been numerous mobile UI test generation tools from both the research community

and industry after years of development, mainly focusing on designing novel exploration algorithms

on the Android platform. Despite showing the best overall test effectiveness in their own evaluation

settings, most of the existing tools are found to barely outperform a baseline tool, Monkey, when

evaluated upon comprehensive sets of Android apps. The observation is made by independent

measurement studies (including one described in this dissertation) involving both relatively simple

open-source apps and popular, complex industrial apps. The finding, contradicting researchers’

common belief, suggests a significant effectiveness gap that needs to be filled for automated mobile

UI testing, especially on industrial apps with generally high impacts.

Aiming to understand the aforementioned effectiveness gap, we empirically investigate the test

process and results from our measurement study, yielding three relevant findings: (1) there is no

“silver-bullet” tool that outperforms all other tools on every app, suggesting that it is difficult

to build a single tool that adapts well to different apps with diverse UI designs; (2) a tool’s test

effectiveness is not solely decided by its exploration algorithm, and the tool’s implementation also

makes differences; (3) it is possible to enhance the design or the implementation of different tools

using unified approaches. In the context of existing work’s focus on designing novel exploration

algorithms, our findings suggest that it is worthwhile to develop complementary techniques that

enhance existing tools to unleash the power of different exploration algorithms on various complex

industrial apps.

Inspired by the aforementioned findings, this dissertation presents three parts of research that

explore the possibilities for existing automated UI test generation tools to be empowered with

external automated support (i.e., techniques that are applicable to various tools while keeping

them fully automatic). These parts of work enhance different components in the workflow of

automated Android UI test generation tools. The first part (Toller) focuses on enhancing

infrastructure support that enables a tool’s exploration algorithm to obtain states from and execute

actions on the test device, allowing the tool to iterate faster and cover more App Under Test
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(AUT) functionalities within limited time. The second part (Vet) focuses on providing exploration

guidance for a tool on a specific AUT, based on our observation that a tool’s exploration algorithm

or implementation might have applicability issues in certain conditions. The third part (Epit)

focuses on parallelization coordination for a tool and a specific AUT on multiple test devices to

improve the overall test effectiveness or reduce testing costs by reducing overlapped explorations.

Our evaluations show that the proposed techniques can help state-of-the-art automated Android

UI test generation tools achieve substantially better test effectiveness or reduce testing costs on

popular and complex industrial apps.
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CHAPTER 1: INTRODUCTION

Mobile devices have become an integral part of modern daily life, especially in the pandemic era

(e.g., food ordering, grocery delivery, and social networking). The ever-growing complexity and fast

pace of app feature development have imposed unprecedented challenges on making these mobile

apps robust and reliable [2]. User Interface (UI), as the primary medium of user interactions, is

naturally a good entry point for testing mobile apps. UIs generally expose vast functionalities

through unified interfaces, making them a good fit for automated testing. While manual and

scripted UI testing is a common practice, automated UI testing is becoming increasingly popular [3,

4, 5, 6]. Automated UI test generation tools are capable of detecting reliability and usability

issues, complementing manual and scripted testing by requiring little to no human testing effort.

Developers and testers can effortlessly run automated UI test generation tools anytime, for long

periods of time, and for multiple apps across many devices. Besides aiming to achieve comparable

coverage of app functionalities with human efforts, these tools can also help with more thoroughly

covering app logic that could be overlooked by human testers.

Automated UI test generation tools work by mimicking how human users interact with apps

through the UIs, where Figure 1.1 shows a simplified view of these tools’ workflow in general.

Specifically, the entire testing process is driven by the exploration algorithm, which is the core

component of an automated UI test generation tool. The exploration algorithm repeatedly inter-

acts with the test device, where the App Under Test (AUT) is installed and running. At each step,

the exploration algorithm first obtains information about the current state of the test device and

AUT (e.g., screen contents). Based on the currently and historically observed status, the explo-

ration algorithm then decides which UI action (e.g., a screen tap or a key press) or system action

(e.g., app restarting) to perform on the test device. A tool usually generates test logs or reports

along with the testing process to help developers/testers understand how the tool exercises the

AUT. Additionally, developers/testers can measure the test effectiveness of a tool by monitoring

the testing process, usually by collecting the code coverage and crash triggering statistics.

There have been numerous mobile UI test generation tools from both the research community

and industry after years of development, mainly focusing on designing novel exploration algorithms

on the Android platform. Monkey [7], an Android UI test generation tool developed by Google,

is one of the earliest efforts in this direction. The tool produces purely randomized UI event se-

quences and efficiently injects them into the target Android system without considering the design

details of the AUT. Developed after the release of Monkey, various test generation tools aim to im-

prove Monkey’s simple exploration algorithm. They are mainly randomness-driven/evolutionary-

algorithm-based tools [8, 9, 10], model-based tools [11, 12, 13, 14, 15], and systematic-exploration-

based tools [16, 17, 18]. In each tool’s own evaluation setting, the tool authors find that their

tool achieves better overall test effectiveness compared with Monkey (and often the time, other
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Figure 1.1: A simplified view of an automated UI test generation tool’s workflow in
general and this dissertation’s main research work

previously proposed tools) when given a reasonable amount of test time budget.

However, subsequent measurement studies [19, 20] find that most of the existing tools barely

outperform Monkey in terms of overall test effectiveness when evaluated upon comprehensive sets

of Android apps, contradicting researchers’ and practitioners’ common belief. A study [19] in

2015 draws this conclusion based on experimental results of 10 tools (other than Monkey) on 68

relatively simple, open-source apps (where 56 out of 68 apps have fewer than 10 activities and

no app has more than 50 activities). Multiple tools are proposed after this study using the 68

open-source apps as the evaluation subjects. Subsequently, our study [20] (Chapter 2) in 2018

reaffirms the conclusion based on experimental results of 5 tools (other than Monkey; 4 of them

are tools not studied in [19]) on 68 popular and relatively complex industrial apps from the Google

Play store [21] (where the median number of activities of apps used in our study is 50). Our study

additionally shows that state-of-the-art mobile UI test generation tools generally yield low code

coverage (about 30% in method coverage) after hours of testing on these popular industrial apps.

The findings indicate a significant effectiveness gap that needs to be filled for automated mobile

UI testing on complex industrial apps.

Aiming to understand the aforementioned effectiveness gap, we empirically investigate the test

process and results from our study (Chapter 2), yielding three relevant findings. The first finding

is that there is no “silver-bullet” in the scope of tools. Each tool (including Monkey) works best on

a certain set of apps, as indicated by the diverse relative test effectiveness ranking among tools on

different apps in our study. The fact suggests that it is difficult to build a single tool that adapts

well to different apps with diverse UI designs. The second finding is that a UI test generation

tool’s effectiveness is not solely decided by its exploration algorithm–the tool’s implementation

also makes differences. For instance, we observe that some tools inject UI inputs at much lower

speeds compared with Monkey in our experiments. While such implementations usually suffice on

simple open-source apps, these tools will need much more time to cover various functionalities on

feature-rich industrial apps, being undesirable in evaluations where the test time budget is limited.
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The third finding is that it is possible to enhance the design or the implementation of different tools

using unified approaches. One example is that multiple tools are found to be prone to unnecessarily

repetitive UI exploration (caused by defects in the exploration algorithms or implementations),

which can be revealed by automated runtime UI monitoring that does not necessarily need a tool’s

cooperation. In the context of existing work’s focus on designing novel exploration algorithms, our

findings suggest that it is worthwhile to develop complementary techniques that enhance existing

tools to unleash the power of different exploration algorithms on various complex industrial apps.

Inspired by the aforementioned findings, this dissertation aims to explore the possibilities for

existing automated UI test generation tools to achieve substantially better test effectiveness with

external automated support (i.e., techniques that are applicable to various tools while keeping them

fully automatic). This dissertation presents three parts of research on this direction, achieved by

enhancing different components in the workflow of these tools (as illustrated in Figure 1.1). The

first part (Chapter 3, Toller [22]) focuses on enhancing infrastructure support that enables a

tool’s exploration algorithm to obtain states from and execute actions on the test device, allowing

the tool to iterate faster and cover more AUT functionalities within limited time. The second

part (Chapter 4, Vet [23]) focuses on providing exploration guidance for a tool on a specific

AUT, based on our observation that a tool’s exploration algorithm or implementation might

have applicability issues in certain conditions. The third part (Chapter 5, Epit) focuses on

parallelization coordination for a tool and a specific AUT on multiple test devices to improve

the overall test effectiveness or reduce testing costs by reducing overlapped explorations. Besides

enhancing automated UI testing, I have also worked on UI capture/replay [24], UI regression

testing [1], Android privacy [25, 26], and machine translation testing [27, 28]. However, this

dissertation will focus on the work related to enhancing automated UI testing.

1.1 THESIS STATEMENT

The thesis statement of this dissertation is the following:

Existing mobile UI test generation tools can be complemented with external automated

support to achieve substantially better test effectiveness on complex mobile apps given

limited test time.

In this dissertation, we first explore the opportunities of providing better infrastructure support

for tools. Specifically, we find that existing state-of-the-art Android UI test generation tools spend

on average 70% of their test time budget obtaining UI information from the screen (UI Hierarchy

Capturing) and executing UI actions (UI Event Execution) in the testing process. Given limited

test time, if we are able to improve the efficiency of these two types of UI operations, the tool

can iterate faster and cover more AUT functionalities, resulting in better test effectiveness. Based
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on this finding, we propose Toller, a tool consisting of much more efficient mechanism for

UI Hierarchy Capturing and UI Event Execution through infrastructure enhancements to the

Android operating system. After integration with existing state-of-the-art automated Android UI

test generation tools, Toller substantially improves these tools’ test effectiveness.

We then investigate how a tool can be guided to better explore the AUT. We specifically target

exploration tarpits, where tools get stuck with a small fraction of app functionalities for an extensive

amount of time. For example, a tool logs out an app at early stages without being able to log

back in, and since then the tool gets stuck with exploring the app’s pre-login functionalities (i.e.,

exploration tarpits) instead of its main functionalities. While tool vendors/users can manually

hardcode rules for the tools to avoid specific exploration tarpits, these rules can hardly generalize,

being fragile in face of diverted testing environments, fast app iterations, and the demand of

batch testing product lines. We propose Vet, a general approach and its supporting system to

automatically identify and resolve exploration tarpits using trace analysis and app manipulation.

We find that Vet identifies exploration tarpits that reveal not only limitations in UI exploration

strategies but also defects in tool implementations. Vet automatically addresses the identified

exploration tarpits, enabling each evaluated tool to achieve best test effectiveness.

Last, we explore the possibility of automatically coordinating a tool’s exploration on multiple

devices. We mainly target the situation of deploying automated UI testing on testing clouds where

developers/testers are billed by the total amount of machine time used, which brings convenience

and economical benefits to mobile app developers/testers. We specifically aim to address over-

lapped app explorations that waste testing budgets and lead to lower overall test effectiveness.

We propose Epit, a parallel testing approach that automatically manipulates the AUT on mul-

tiple devices to guide the UI test generation tool into different loosely coupled UI subspaces for

exploration. We find that Epit helps substantially reduce the overlapped explorations, allowing

state-of-the-art tools to reach comparable code coverage using substantially less machine time

compared with the baseline.

1.2 CONTRIBUTIONS

This dissertation makes the following main contributions:

• This dissertation presents an empirical study which aims to understand the effectiveness of

Android UI test generation tools on industrial apps. We directly compare the state-of-the-

art tools with regard to code coverage and fault-detection ability on 68 carefully selected

industrial apps, which are substantially more complex and impactful compared with open-

source apps involved in previous studies. Our results suggest that there exists a significant

effectiveness gap that needs to be filled for automated mobile UI testing on complex industrial

apps. Additionally, our empirical investigation into the test process and results provides
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insights on further improving the test effectiveness, motivating the line of work presented by

this dissertation.

• This dissertation describes Toller, a tool consisting of efficient mechanism for two types

of UI operations (UI Hierarchy Capturing and UI Event Execution) through infrastructure

enhancements to the Android operating system. Toller injects itself into the same virtual

machine as the app under test, giving Toller direct access to the app’s runtime memory.

Toller is thus able to directly (1) access UI data structures, and thus capture contents

on the screen without the overhead of invoking the Android framework services or remote

procedure calls (RPCs), and (2) invoke UI event handlers without needing to execute the

UI events. Compared with the often-used UIAutomator [29], Toller reduces average time

usage of UI Hierarchy Capturing and UI Event Execution operations by up to 97% and 95%,

respectively. We integrate Toller with existing state-of-the-art Android UI test generation

tools and achieve the range of 11.8% to 70.1% relative code coverage improvement on average.

We also find that Toller-enhanced tools are able to trigger 1.4x to 3.6x distinct crashes

compared with their original versions without Toller enhancement. These improvements

are so substantial that they also change the relative competitiveness of the tools under

empirical comparison.

• This dissertation presents Vet, a general approach and its supporting system to automati-

cally identify and resolve exploration tarpits for the given specific Android UI test generation

tool on the given specific AUT. Vet runs the tool on the AUT for some time and records UI

traces, based on which Vet identifies exploration tarpits by recognizing their patterns in the

UI traces. Vet then pinpoints the actions (e.g., clicking logout) or the screens that lead to

or exhibit exploration tarpits. In subsequent test runs, Vet guides the test generation tool

to prevent or recover from exploration tarpits. From our evaluation with state-of-the-art An-

droid UI test generation tools on popular industrial apps, Vet identifies exploration tarpits

that cost up to 98.6% test time budget. These exploration tarpits reveal not only limitations

in UI exploration strategies but also defects in tool implementations. Vet automatically

addresses the identified exploration tarpits, enabling each evaluated tool to achieve higher

code coverage and improve crash-triggering capabilities.

• This dissertation describes Epit, a parallel testing approach that automatically manipulates

the AUT on multiple devices to guide the UI test generation tool into different loosely

coupled UI subspaces for exploration, to improve the overall test effectiveness or reduce

testing costs by reducing overlapped explorations. Epit conducts our novel on-the-fly trace

analysis during the testing process to find loosely coupled AUT UI subspaces desirable for

partitioning. By controlling access to these UI subspaces during testing, Epit conceptually

transforms the AUT into different variants suitable to be tested independently by the tool
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on different devices. Our evaluation results show that Epit helps state-of-the-art tools reach

comparable code coverage using up to 85% less machine time than the baseline. In addition,

Epit helps reduce the overlapped explorations by up to 71.1%.

1.3 DISSERTATION ORGANIZATION

The main parts of this dissertation are organized as follows:

Chapter 2. Understanding The Effectiveness of Android UI Test Generation Tools

on Industrial Apps. This chapter presents a motivational study for this dissertation’s work,

where we find (1) a significant effectiveness gap that needs to be filled for automated mobile UI

testing on complex industrial apps, and (2) the insights that inspire this dissertation’s work to

bridge the gap through enhancing existing tools with tool-independent external support.

Chapter 3. TOLLER: Enhancing Infrastructure Support by System Design. This

chapter presents Toller, a tool to provide infrastructure enhancements for UI Hierarchy Cap-

turing and UI Event Execution to Android UI test generation tools.

Chapter 4. VET: Providing Exploration Guidance via Identifying and Avoiding UI

Exploration Tarpits. This chapter presents Vet, a general approach and its supporting system

to automatically identify and resolve exploration tarpits for the given specific Android UI test

generation tool on the given specific AUT.

Chapter 5. EPIT: Facilitating Parallelization Coordination with UI Exploration

Space Partitioning. This chapter presents Epit, a parallel testing approach that automatically

manipulates the AUT on multiple devices to guide the UI test generation tool into different loosely

coupled UI subspaces for effective exploration.

Chapter 6. Related Work. This chapter presents an overview of related work on automated

UI testing and other relevant directions.

Chapter 7. Conclusions and Future Work. This chapter concludes the dissertation and

discusses potential directions to further stretch the work from this dissertation.
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CHAPTER 2: UNDERSTANDING THE EFFECTIVENESS OF ANDROID UI
TEST GENERATION TOOLS ON INDUSTRIAL APPS

2.1 OVERVIEW

Researchers have also proposed various test generation tools to automate Android UI testing [8,

9, 11, 13, 14, 16, 18, 24, 30, 31, 32, 33]. These industrial or academic test generation tools all show

satisfactory performance according to their own respective evaluation on various open-source or

industrial apps. Table 2.1 shows the statistics of subjects used for evaluating existing Android test

generation tools (published in major software engineering conferences). The last row of the table

also shows a study conducted by Choudhary et al. [19] in 2015 by comparing different Android

test generation tools. In the table, coverage comparison (denoted as ‘Emp. Comp.’) shows the

numbers of open-source apps (denoted as ‘#Opn.’) and industrial apps (denoted as ‘#Ind.’)

used in evaluating the proposed tool’s capability in terms of code coverage or/and fault detection

(against other tools). By default, the code coverage is compared across tools. ‘Case #Ind.’ shows

the numbers of industrial apps used in case studies for the proposed tools. These case studies does

not report code coverage or compare the proposed tool against other related previous tools. The

sole purpose of these studies is to evaluate the proposed tools’ applicability on industrial Android

testing tasks (by reporting the results of only fault detection). One exception there is A3E [16],

which is evaluated on only code coverage without on fault detection (note that no tool comparison

is conducted there).

As shown in Table 2.1, there exists no comparison among existing tools over industrial

apps in terms of both code coverage and fault detection. Subjects for empirical tool

comparison (in the ‘Emp. Comp.’ column) include only open-source apps, with one exception

(WCTester [32]) where the proposed tool is compared with only one baseline tool (Monkey) on

only one industrial app (WeChat). In addition, although the case-study evaluation of a few tools

includes industrial apps (in the ‘#Case Ind.’ column), no tool comparison is conducted there, and

no case studies on industrial apps measure both code coverage and fault detection. There exist

a gap and yet a strong need to investigate and compare how well these proposed tools perform

on industrial apps that, in contrast to open-source apps, are usually (1) much more complex with

regard to functionalities and implementations, (2) better maintained and tested, and (3) with

much larger user bases and higher impacts.

To fill this gap and give practitioners and researchers insights on how existing tools perform

on industrial apps, in this chapter, we present the first empirical study that conducts comparison

among existing tools on industrial apps in terms of both code coverage and fault detection. In

particular, we investigate how existing available state-of-the-art test generation tools perform on

68 widely-used industrial apps in terms of code coverage (method and activity coverage) and

fault detection (the number of distinct triggered crashes). These apps span across 30 different
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Table 2.1: Overview of existing Android test generation tools and their evaluation
subjects. ♣ indicates that both code coverage and fault detection are compared
across tools on open source apps. ♢ indicates that only code coverage is measured
whereas fault detection is not measured on industrial apps. △ indicates that the
tool is compared with only Monkey but no other tools.

Tool/Study Venue
Emp. Comp. Case
#Ind. #Opn. #Ind.

A3E [16] OOPSLA’13 0 0 ♢28
ACTEve [18] FSE’12 0 5 0
DroidBot [14] ICSE-C’17 0 2 0
Dynodroid [9] FSE’13 0 50 1000
GUIRipper [30] ASE’12 0 ♣1 0
Monkey [7] - - - -
Sapienz [8] ISSTA’16 0 ♣68 1000
Stoat [13] FSE’17 0 ♣93 1661

SwiftHand [11] OOPSLA’13 0 10 0
WCTester [32] FSE-Ind’16 △1 0 0
Study by [19] ASE’15 0 ♣68 0

categories and each of these apps has at least 1 million installs according to Google Play [21]. We

empirically study the coverage and fault-detection results to gain insights on each tool’s strengths

and weaknesses. We also study how to efficiently combine some of these tools to achieve better code

coverage or fault detection capabilities on testing industrial apps. We also report our experience

in applying these tools to testing tasks for industrial Android apps.

In this chapter, our empirical study provides app developers and tool researchers/vendors with

insights on the strengths and weaknesses of existing test generation tools, helping them improve

their tools’ design and implementation and their handling of realistic tasks for industrial apps. In

particular, we address four main research questions in our study:

• RQ1: What is the code coverage (method coverage and activity coverage) achieved by each

test generation tool under study on applicable industrial apps?

• RQ2: How many unique crashes can each test generation tool trigger on each applicable

industrial app? What are the causes of these crashes?

• RQ3: How to efficiently combine multiple test generation tools on applicable industrial apps

to achieve better coverage and fault detection than applying these tools individually?

• RQ4: How much effort does it require to set up each test generation tool for testing industrial

apps?

We run different test generation tools under study on selected industrial apps to study the

effectiveness of these tools. According to our results, Monkey achieves the highest method coverage
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on 22 of 41 apps whose method coverage data can be obtained. Of all 68 apps under study, Monkey

also achieves the highest activity coverage on 35 apps, while Stoat is able to trigger the highest

number of unique crashes on 23 apps. Overall, different tools achieve the best test effectiveness

on various apps, i.e., there is no “silver-bullet” tool that outperforms all other tools on every app.

To gain better understanding of the tool performance on industrial apps, similar to a previous

study methodology [34], we rank each covered method/activity or triggered unique crash in each

industrial app based on the number of test generation tools that have covered the method/activity

or triggered the unique crash. For instance, a method/activity or unique crash is considered rank-1

if only one test generation tool has covered the method/activity or triggered the unique crash.

Our results show that, on many industrial apps, Monkey has the highest numbers of rank-1

methods and activities, and Stoat is able to trigger the highest numbers of rank-1 unique crashes.

Our analysis also provides suggestions for combining multiple tools for better coverage or fault

detection than applying these tools individually.

In summary, this chapter makes the following main contributions:

• Empirical investigation on the effectiveness of existing available Android UI test generation

tools when being applied on industrial apps. We find that there is no “silver-bullet” tool

that outperforms all other tools on each app in terms of test effectiveness.

• Detailed analysis of the coverage results achieved by each tool to provide insights on the

strengths and weaknesses of the test generation tools under study and on how to better

leverage these tools.

• Hands-on experience report of applying multiple state-of-the-art test generation tools on

complex industrial apps. Our observations suggest the opportunities of achieving better

test effectiveness for automated UI testing through enhancing existing tools with tool-

independent external support.

• A strong implication that testing researchers for Android test generation tools should empir-

ically compare a newly proposed tool with related previous tools on industrial apps besides

open-source apps, going beyond the current common research practice of comparing tools on

only open-source apps.

2.2 BACKGROUND

In this section, we present an overview of the Android app components and the Android OS

architecture.
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2.2.1 Android App Components

From the view of users and other apps, an Android app consists of four types of components:

Activities, Intent Filters, Services, and Content Providers [35].

Activities. Activities are designed to show UI screens consisting of sets of layouts and UI widgets

(e.g., buttons). Widgets are associated with sets of attributes (e.g., sizes and positions) and can

be bound to callback methods to handle UI events (e.g., short clicks). An activity is typically used

for a single specific scenario such as logging in and user registration.

Intent Filters. Intents are messaging objects used by components within an app or across

different apps to communicate with each other. Intent filters are used to allow only the designated

intent types to be received and processed by the components. Launching an app, for instance, is

achieved by sending a specific intent to the app main activity that intercepts such intents.

Services. Services are intended to perform tasks in the background without being attached to

a UI screen. Downloading tasks, for example, are usually implemented using services to avoid

blocking the usage of app main functionalities.

Content Providers. Content providers enable apps to expose and manage a globally shared set

of data. For instance, a user’s contact information is stored in an Android system app and may

be accessed by other apps using the specific content provider.

2.2.2 Android OS Architecture

The Android OS is an open-source Linux-based software stack [36]. Android apps run within

individual sandboxes, namely instances of the Dalvik Virtual Machine (DalvikVM) [37], on top

of native libraries and the Linux kernel. Android frameworks, which are responsible for low-level

functionalities of the Android OS including UI and activity management, also run within instances

of the DalvikVM and can be reached by apps via Android APIs. System apps are pre-installed on

the Android OS to provide users with basic features such as phone calling and SMS sending.

The Java source code of an Android app is compiled into dex-code [38] and subsequently pack-

aged as an Android Package (APK) file along with other resource files. Developers are also allowed

to write their app libraries in C/C++ as native libraries and invoke them through the Java Native

Interface (JNI). The app can then be installed on a compatible Android OS. At runtime, the

system’s DalvikVM reads the app’s dex-code and executes it. Starting from Android 4.4, the An-

droid Runtime (ART) is included with the Android OS, where the ART translates and optimizes

dex-code to native machine code during installation to enable faster execution. Note that both

DalvikVM and ART have the 64K reference limitation (i.e., there cannot be more than 65,536

methods in a single .dex file that contains an app’s dex-code) due to the design of the DalvikVM

instruction set. Android provides multidex support [39] to mitigate this limitation.
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Table 2.2: Overview of Android test generation tools under study. Note that
instrumentation is optional for Sapienz and Stoat.

Tool Open Source
No Need of Modification Exploration

Strategy
No Need of App
Source CodeApp Platform

Monkey [7] ✓ ✓ ✓ Random ✓

WCTester [32, 33] ✗ ✓ ✓ Random ✓

Sapienz [8] ✓ ✓* ✗ Evolutionary ✓

Stoat [13] ✓ ✓* ✓ Model-based Evolutionary ✓

DroidBot [14] ✓ ✓ ✓ Model-based ✓

A3E-Depth-First [16] ✓ ✗ ✓ Systematic ✓

2.3 SELECTION OF ANDROID TEST GENERATION TOOLS

We choose 6 state-of-the-art UI test generation tools for our study. Monkey [7] is the official test

generation tool shipped with all Android devices, while the rest are all published at top venues

of software engineering. We select tools that are applicable on at least half of the industrial apps

under study. Table 2.2 presents an overview of the test generation tools that we examine and our

decision on tool selection.

2.3.1 Selected Tools under Study

Monkey Monkey [7] is a purely randomized Android test generation tool (from Google) that

generates pseudo-random streams of UI events (e.g., clicks, touches, and gestures on UI) and

limited types of system-level events (such as volume controls) to unmodified Android apps. Monkey

is the most widely used tool in industrial settings due to its applicability to a variety of application

settings (e.g., ease of use and compatibility with different Android platforms) [19].

WCTester To inherit the advantages of Monkey while addressing its major limitations, the

WeChat team develops a new approach [32, 33] incorporating three main strategies. First,

WCTester finds and triggers only enabled events on each UI screen. Second, WCTester focuses on

generating events with higher chances to change current UI states. Third, WCTester considers the

UI state history and avoids repetitions during exploration. The new approach leads to significant

performance improvements on testing the WeChat app, one of the most popular messenger apps

in the world with over 1 billion monthly active users [40].

Sapienz Sapienz [8, 41] is an evolutionary-testing-based test generation tool for Android UI

testing. It leverages a genetic algorithm [42] to evolve generated seed input sequences to search

for the optimized test suites containing short input sequences while maximizing code coverage and

fault revelation. Pre-defined input sequences (i.e., motif genes) are leveraged to complement the

random exploration and provide local exercise for different types of UI widgets. String resources

inside apps are extracted as seeds for text inputs. Multi-level instrumentation is supported to
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accommodate various apps. Test suites can be evaluated simultaneously on multiple devices to

speed up the search process.

Stoat Stoat [13] is a UI test generation tool for Android apps, with model-based evolutionary

testing. It constructs a probabilistic UI state-transition model through dynamic exploration and

optional static analysis at the first stage. It then evolves the model to search for the optimized

model with regard to comprehensive fitness scores of the concrete input sequences derived from

Gibbs sampling [43] on models. Code coverage, model coverage, and test-suite diversity are re-

flected in the fitness score. System-level events are also randomly injected to further enhance the

testing effectiveness.

DroidBot DroidBot [14] is a programmable, light-weight, and model-based Android UI test

generation tool. It generates UI-guided test inputs based on a state-transition model constructed

on the fly. It also allows developers to write testing scripts to customize the exploration strategy.

Detailed testing reports are provided after each test to help developers understand apps’ behavior.

DroidBot has received over 300 stars on GitHub [44] at the time of writing.

A3E-Depth-First A3E [16] includes a systematic test generation tool (i.e., A3E-Depth-First)

that performs a depth-first search strategy during exploration. Such a search strategy mimics user

actions and aims to thoroughly cover app functionalities. Another strategy named Targeted Explo-

ration is also proposed for fast, direct exploration of activities (as opposed to the general-purpose

exploration that aims for higher code coverage or fault detection) in A3E. The strategy is based on

high-level control flow graphs capturing activity transitions and constructed by performing static

dataflow analysis on apps’ bytecode.

2.3.2 Excluded Tools and Reasons

This section describes the Android test generation tools that are published in top venues but

are not included in our study. We further provide reasons why these Android test generation tools

are not applicable for the study.

Dynodroid Dynodroid [9] is a guided random test generation tool that generates user UI events

and system-level events. By instrumenting the Android OS, Dynodroid computes the set of rele-

vant events that can execute code of the app under test. Furthermore, Dynodroid generates more

system-level events than Monkey such as incoming phone calls and geolocation changes.

Reason. Dynodroid works on only emulators with Android OS version 2.3 due to the require-

ment of instrumenting the Android platform, and the authors of Dynodroid publish only the
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instrumented version for Android 2.3. Very few industrial apps under our study still support such

an outdated Android system that was released in 2010.

GUIRipper GUIRipper [30] is a model-based test generation tool. It constructs a finite-state-

machine (FSM) model of the UI and performs the depth-first search (DFS) exploration strategy.

To build the model, GUIRipper instruments the APK file of the app under test and dynamically

analyzes the app UI to obtain relevant events related to UI widgets. The tool then systematically

traverses the app UI, generating and executing obtained relevant events when new states are

encountered.

Reason. We fail to adapt GUIRipper to real devices (note that only a binary version of GUIRip-

per for the Windows OS is available). In addition, even on emulators, GUIRipper works on only

Android 4.0 and it fails to process most industrial apps under study.

SwiftHand SwiftHand [11] is a model-based test generation tool. It features a specialized

active learning algorithm to approximate a model of the app under test to guide exploration into

unexplored parts of the app’s state space. Unlike traditional active learning algorithms such as

L∗ [45], such design minimizes the number of restarts during exploration. SwiftHand requires to

instrument the APK file of the app under test to obtain the app UI information during testing.

Reason. Due to possible implementation defects, SwiftHand fails on most of the industrial apps

under study during instrumentation with error messages such as ArrayIndexOutOfBoundsException,

or simply never finishes instrumentation and produces GiB-sized log files.

ACTEve ACTEve [18] is a concolic-testing [46] tool for Android apps. By instrumenting both

the Android SDK and the app under test, ACTEve symbolically tracks events from the originating

points (e.g., tap coordinates on screen) to the code handling the events. Such approach limits the

search space for feasible events and avoids generating redundant inputs. The tool also identifies

read-only or ineffective events to further reduce the sizes of event sequences.

Reason. Similar to Dynodroid, ACTEve works on only Android 2.3 and it requires to instrument

both the Android SDK and Android apps.

2.4 STUDY METHODOLOGY

In this section, we present our study methodology including the industrial-app selection, cover-

age/crash measurement, and study setup.

13



Table 2.3: Overview of industrial apps under study and their applicability on
selected test generation tools

App Name Version Category #Install Login #Method #Activity
Applicability

M. W. Sa. St. D. A.

Abs 4.2.0 Health & Fitness 10m+ ✗ 47217 31 ✓ ✓ ✓ ✓ ✓ ✗

AccuWeather 5.3.5-free Weather 50m+ ✗ 59429 43 ✓ ✓ ✓ ✓ ✓ ✓

Adobe Acrobat 18.1.0 Productivity 100m+ ✗ - 42 ✓ ✓ ✓ ✓ ✓ ✓

Amazon Kindle 8.5.0.77 Books & Reference 100m+ ✓ - 123 ✓ ✓ ✓ ✓ ✓ ✓

Autolist 5.2.2 Auto & Vehicles 1m+ ✗ - 30 ✓ ✓ ✓ ✓ ✓ ✓

AutoScout24 9.3.14 Auto & Vehicles 10m+ ✓ 104043 40 ✓ ✓ ✓ ✓ ✓ ✓

Best Hairstyles 1.17 Beauty 1m+ ✗ 5703 4 ✓ ✓ ✓ ✓ ✓ ✓

CNN 5.1 News & Magazines 10m+ ✗ 52677 31 ✓ ✓ ✓ ✓ ✓ ✓

Crackle 5.2.1 Entertainment 10m+ ✗ 52393 16 ✓ ✓ ✓ ✓ ✓ ✓

Duolingo 3.75.1 Education 100m+ ✗ 60702 55 ✓ ✓ ✓ ✓ ✓ ✓

ES File Explorer 4.1.6 Productivity 100m+ ✓ 96067 105 ✓ ✓ ✓ ✓ ✓ ✓

Evernote 7.12 Productivity 100m+ ✓ 89512 160 ✓ ✓ ✓ ✓ ✓ ✓

Excel 16.0.9126 Productivity 100m+ ✗ 84138 27 ✓ ✓ ✓ ✓ ✓ ✗

Facebook 164.0.0 Social 1b+ ✓ - 587 ✓ ✓ ✓ ✓ ✗ ✗

Filters For Selfie 1.0.0 Beauty 1m+ ✗ 2883 8 ✓ ✓ ✓ ✓ ✓ ✓

Flipboard 4.1.1 News & Magazines 500m+ ✓ 27527 74 ✓ ✓ ✓ ✓ ✓ ✗

Floor Plan Creator 3.2 Art & Design 5m+ ✗ 8847 13 ✓ ✓ ✓ ✓ ✓ ✓

Fox News 3.0.0 News & Magazines 10m+ ✗ - 31 ✓ ✓ ✓ ✓ ✓ ✓

G.P. Books 4.0.47 Books & Reference 1b+ ✗ - 33 ✓ ✓ ✓ ✓ ✓ ✓

G.P. Music 8.7.6773 Music & Audio 1b+ ✗ 23713 65 ✓ ✓ ✓ ✓ ✓ ✓

G.P. Newsstand 4.7.0 News & Magazines 1b+ ✗ 70514 32 ✓ ✓ ✓ ✓ ✓ ✓

Gmail 8.3.12 Communication 1b+ ✗ - 60 ✓ ✓ ✓ ✓ ✓ ✗

GO Launcher Z 2.51 Personalization 100m+ ✗ 170699 182 ✓ ✓ ✓ ✓ ✓ ✓

GoodRx 5.3.6 Medical 1m+ ✗ 50105 61 ✓ ✓ ✓ ✓ ✓ ✓

Google 7.24.32 Tools 1b+ ✗ - 117 ✓ ✓ ✓ ✓ ✓ ✗

Google Calendar 5.8.24 Business 500m+ ✓ - 32 ✓ ✓ ✓ ✓ ✓ ✗

Google Chrome 65.0.3325 Communication 1b+ ✗ - 84 ✓ ✓ ✓ ✓ ✓ ✗

ibisPaint X 5.1.5 Art & Design 10m+ ✗ 28106 36 ✓ ✓ ✓ ✓ ✓ ✓

Instagram 38.0.0 Social 1b+ ✓ - 40 ✓ ✓ ✓ ✓ ✓ ✗

inStar 0.9.8 Art & Design 5m+ ✗ 52911 23 ✓ ✓ ✓ ✓ ✓ ✓

LINE Camera 14.2.4 Photography 100m+ ✗ 83214 64 ✓ ✓ ✓ ✓ ✓ ✗

Marvel Comics 3.10.3 Comics 5m+ ✗ 25563 44 ✓ ✓ ✓ ✓ ✓ ✓

Match 18.03.01 Dating 10m+ ✗ 52519 66 ✓ ✓ ✓ ✓ ✓ ✓

McDonald 5.12.0 Food & Drink 10m+ ✓ - 62 ✓ ✓ ✓ ✓ ✓ ✓

Merriam-Webster 4.1.2 Books & Reference 10m+ ✗ 25554 17 ✓ ✓ ✓ ✓ ✓ ✓

Messenger 160.0.0 Communication 1b+ ✓ - 310 ✓ ✓ ✓ ✓ ✓ ✗

Mirror 30 Beauty 1m+ ✗ 7215 12 ✓ ✓ ✓ ✓ ✓ ✓

My baby Piano 2.22.2614 Parenting 5m+ ✗ 726 3 ✓ ✓ ✓ ✓ ✓ ✓

NFL 14.3.46 Sports 50m+ ✗ - 46 ✓ ✓ ✓ ✓ ✓ ✓

Nike Run Club 2.14.1 Health & Fitness 10m+ ✓ - 113 ✓ ✓ ✓ ✓ ✓ ✗

NOOK 4.7.0.39 Books & Reference 10m+ ✗ 91032 132 ✓ ✓ ✓ ✓ ✓ ✓

OfficeSuite 9.3.11997 Business 100m+ ✗ - 126 ✓ ✓ ✓ ✓ ✓ ✓

OneNote 16.0.9126 Business 100m+ ✓ - 76 ✓ ✓ ✓ ✓ ✓ ✗

Photos 3.18.0 Photography 1b+ ✗ - 114 ✓ ✓ ✓ ✓ ✓ ✗

Pinterest 6.59.0 Lifestyle 100m+ ✓ 100420 33 ✓ ✓ ✓ ✓ ✓ ✓

Quizlet 3.15.2 Education 10m+ ✓ 71511 58 ✓ ✓ ✓ ✓ ✓ ✓

realtor.com 8.13.2 House & Home 10m+ ✗ 44723 34 ✓ ✓ ✓ ✓ ✓ ✓

Sing! 5.4.1 Music & Audio 100m+ ✓ - 53 ✓ ✓ ✓ ✓ ✓ ✗

Sketch 8.0.A.0.2 Art & Design 50m+ ✗ - 46 ✓ ✓ ✓ ✓ ✓ ✓

Speedometer 3.6 Auto & Vehicles 1m+ ✗ 17030 11 ✓ ✓ ✓ ✓ ✓ ✓

Spotify 8.4.48 Music & Audio 100m+ ✓ 206474 113 ✓ ✓ ✓ ✓ ✓ ✗

TED 3.1.16 Education 10m+ ✗ - 27 ✓ ✓ ✓ ✓ ✓ ✓

The Weather Chnl. 8.10.0 Weather 50m+ ✗ - 99 ✓ ✓ ✓ ✓ ✓ ✓

Ticketmaster 1.11.0 Events 5m+ ✗ - 121 ✓ ✓ ✓ ✓ ✓ ✗

Translate 5.18.0 Tools 500m+ ✗ 29666 33 ✓ ✓ ✓ ✓ ✓ ✓

TripAdvisor 25.6.1 Food & Drink 100m+ ✓ 106519 213 ✓ ✓ ✓ ✓ ✓ ✓

trivago 4.9.4 Travel & Local 10m+ ✗ 34790 29 ✓ ✓ ✓ ✓ ✓ ✓

UC Browser 11.5.0 Communication 500m+ ✗ - 63 ✓ ✓ ✓ ✓ ✓ ✓

WatchESPN 2.5.1 Sports 10m+ ✗ 22686 16 ✓ ✓ ✓ ✓ ✓ ✓

Wattpad 6.82.0 Books & Reference 100m+ ✓ 89639 93 ✓ ✓ ✓ ✓ ✓ ✓

Waze 4.36.0.1 Maps & Navigation 100m+ ✗ - 203 ✓ ✓ ✓ ✓ ✓ ✓

WEBTOON 2.0.4 Comics 10m+ ✓ 81503 62 ✓ ✓ ✓ ✓ ✓ ✗

Wish 4.16.5 Shopping 100m+ ✓ 31512 74 ✓ ✓ ✓ ✓ ✓ ✗

Word 16.0.9126 Productivity 100m+ ✗ 77895 27 ✓ ✓ ✓ ✓ ✓ ✗

Yelp 9.33.0 Food & Drink 10m+ ✓ 204308 277 ✓ ✓ ✓ ✓ ✓ ✓

YouTube 13.12.60 Video Player & Editor 1b+ ✗ - 48 ✓ ✓ ✓ ✓ ✓ ✗

Zedge 5.38.7 Personalization 100m+ ✗ 138309 35 ✓ ✓ ✓ ✓ ✓ ✓

Zillow 9.4.2 House & Home 10m+ ✗ - 82 ✓ ✓ ✓ ✓ ✓ ✓
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2.4.1 Industrial-App Selection

We choose to obtain industrial apps from Google Play, the official Android app market by

Google with huge user base. We sample multiple top-recommended apps with the highest numbers

of downloads from each category, and manage to harvest 68 industrial apps that are compatible

with Android 4.4, the most recent version of Android supported by most of the top-recommended

apps and all test generation tools under study. Note that the WeChat app is specifically excluded

due to the fact that WCTester, one of the tools under study, is specifically optimized for the app

and could potentially cause bias in the result. We also manually register accounts for apps that

require logging in to access their major functionalities. In addition, apps requiring special/sensitive

information (e.g., banking) or related to real-world services (e.g., taxi calling) are skipped to

minimize undesirable side effects in the study.

Table 2.3 shows the detailed information of each selected industrial app and its applicability on

the selected test generation tools. ‘#Install’ shows the number of installs of the app according to

Google Play. ‘Login’ denotes whether logging in is required by the app for its majority function-

alities to be available. ‘#Method’ indicates the number of methods in each app as reported by

the instrumentation tool, for which ‘-’ indicates that we do not instrument the app for method

coverage (more details are available in Section 2.4.2). ‘#Activity’ shows the number of activities in

each app as extracted from AndroidManifest.xml. In the ‘Availability’ header section, ‘M.’, ‘W.’,

‘Sa.’, ‘St.’, ‘D.’, and ‘A.’ stand for Monkey, WCTester, Sapienz, Stoat, DroidBot, and A3E-Depth-

First, respectively. Note that the same abbreviation convention is used in subsequent analysis. As

shown in the table, most of the selected apps have more than 100 million installs, while each app

has at least 1 million installs. These apps span across 30 different categories and are popularly

used by Android users everyday. Such factors distinguish these industrial apps from open-source

apps, which often have only a few users and very limited functionalities. As shown in Figure 2.1,

on the open-source apps involved in [19], the median numbers of activities and methods are 4 and

212, respectively. On the industrial apps used in our study, the median numbers of activities and

methods are 50 and 52,677, respectively.

2.4.2 Coverage/Crash Measurement

For code-coverage measurement, we use Ella [47] to instrument all the industrial apps, and collect

statistics of method coverage during testing. To avoid potential issues by dual-instrumentation

(i.e., instrumentation duplicately conducted by both Ella and a test generation tool under study

to collect method coverage), we share the Ella-collected method coverage information with test

generation tools that need the coverage information during testing instead of letting the tools

instrument the app again. Note that we focus on coverage of only Java code without considering

the native code because Android apps’ main functionalities are typically implemented in Java5.
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Figure 2.1: Statistics of activity and method1 counts of open-source apps used
by [19] (in blue color) and industrial apps used in our study (in orange color). Note
that median and mean values are labeled in each box plot.

In practice, we find that Ella fails to instrument some large industrial apps under study due to

the 64K reference limitation of DalvikVM, and some successfully instrumented apps fail to run

properly on Android devices due to self-protection mechanisms. To avoid potential bias on app

selection caused by instrumentation, we still keep all these apps in the study without collecting

their method coverage information. Table 2.3 also shows whether each app is actually instrumented

in the experiments as indicated by the ‘#Method’ column. In total, Ella manages to instrument

41 apps in our study. In addition, we measure activity coverage by periodically monitoring the

activity stack on the testing device and extracting all activity names from AndroidManifest.xml

in each app.

For crash measurement, we monitor the Logcat [48] on target devices during testing and record

error messages related to stack traces. We filter out stack traces that are not related to the app

under test by checking whether the app’s package name is present. Only unique stack traces are

counted, achieved by hashing all code locations in each stack trace (instead of the entire stack

trace, which might contain environment related information).

1The statistics of #methods on industrial apps used in our study are obtained on 41 apps that Ella is able to
instrument (see Section 2.4.2).
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2.4.3 Study Setup

We run each test generation tool continuously for 3 hours on each of their applicable industrial

apps under study. Note that for Stoat, we follow the settings described in the tool’s corresponding

paper [13] by allocating 1 hour for model construction and 2 hours for model evolution. Each test

(i.e., a combination of one test generation tool and one applicable app) is run 3 times to compensate

potential influence brought by randomness during testing. All tests of the same app are run on

the same device. For the fairness of comparison, when we run each test, the tool is allowed to use

only one device. For apps requiring logging in to expose most of their functionalities, we choose

to manually log in to these apps before each test begins in order to facilitate in-depth testing

(note that the code coverage before the test begins is not included in the analysis). In addition,

the original implementation of Sapienz clears app data before evaluating each input sequence,

reverting the efforts of manual logging in. In order to set up a normalized testing environment

while keeping the tool’s original design as much as possible, we modify the tool so that it backs

up the app data right after manual logging in and later restores the app data instead of clearing

them.

We conduct our study on official Android x86 emulators and 4 real phones, all running Android

4.4. Each emulator is configured with 4 CPU cores, 2 GiB of RAM, and 1 GiB of SD card. For

each app under study, if the app supports x86 devices, it is tested on a standard emulator each

time; otherwise, it is tested on a certain real phone. Apps’ data and modifications to the SD card

are all reverted after each test. Such design serves as an effort to keep the testing environment

efficient, unified, yet versatile to allow testing various industrial apps. Note that Android ARM

emulators are not used due to their poor performance, which could potentially limit the power of

test generation tools given a bounded amount of time. According to our observation during testing,

most x86 emulators seldom use up all dedicated CPU cores, indicating their good performance.

Also note that we modify each tool’s implementation in only two situations: adapting the tool to

our testing environment, or dealing with an easy-to-fix implementation defect that prevents the

tool from functioning properly (with reference to the tool’s corresponding document or paper).

2.5 CODE COVERAGE RESULTS ON INDUSTRIAL APPS

In this section, we answer RQ1 (what is the code coverage achieved by each test generation tool

under study on applicable industrial apps) by measuring and comparing the method and activity

coverage achieved by each test generation tool on industrial apps in our experiments.
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Table 2.4: Statistics of code coverage/fault detection on industrial apps by test
generation tools under study

App Name
Method Coverage (%) Activity Coverage (%) # of Unique Crashes

M. W. Sa. St. D. A. M. W. Sa. St. D. A. M. W. Sa. St. D. A.

Abs 26 23 25 15 14 - 13 16 10 0 6 - 5 1 3 0 0 -

AccuWeather 24 18 22 13 18 17 30 14 19 9 16 9 13 1 5 1 2 1

Adobe Acrobat - - - - - - 31 2 36 2 2 5 0 0 3 0 0 0

Amazon Kindle - - - - - - 2 3 1 2 2 1 0 0 0 0 0 0

AutoScout24 22 17 17 19 10 6 8 8 5 13 3 5 2 1 0 14 0 2

Autolist - - - - - - 33 67 50 3 3 3 0 0 1 0 0 1

Best Hairstyles 40 35 40 39 35 9 100 100 100 100 100 25 1 0 0 0 0 0

CNN 32 31 23 22 21 12 48 32 26 26 35 6 4 1 3 0 0 0

Crackle 33 25 32 27 27 27 38 25 38 25 25 19 12 0 11 0 1 0

Duolingo 26 24 26 26 28 25 16 16 15 13 22 9 0 1 2 3 0 0

ES File Explorer 20 21 22 13 10 11 22 20 19 10 6 3 1 1 1 5 0 0

Evernote 23 30 26 15 23 14 11 22 14 3 11 2 0 0 1 0 0 1

Excel 23 16 16 6 15 - 7 4 4 4 4 - 0 1 1 0 0 -

Facebook - - - - - - 4 7 3 1 - - 3 7 8 1 - -

Filters For Selfie 50 4 32 1 45 1 50 25 38 13 63 13 9 1 2 0 1 0

Flipboard 32 32 37 28 29 - 12 14 16 8 11 - 4 2 0 4 0 -

Floor Plan Creator 43 36 53 11 32 16 54 38 54 15 31 8 0 0 0 2 0 0

Fox News - - - - - - 29 32 32 3 13 3 5 7 8 0 4 0

G.P. Books - - - - - - 24 15 24 18 15 0 8 2 2 10 1 1

G.P. Music 4 4 4 5 4 3 6 5 3 3 3 2 2 2 4 7 1 1

G.P. Newsstand 5 4 4 4 4 3 6 0 6 0 0 0 1 1 1 1 1 2

GO Launcher Z 23 6 18 11 9 10 14 1 5 1 1 1 0 0 0 0 0 0

Gmail - - - - - - 13 12 17 10 18 - 2 0 3 15 0 -

GoodRx 32 31 31 26 29 22 43 41 31 20 30 7 1 0 17 8 0 1

Google - - - - - - 9 3 4 1 9 - 0 5 1 0 0 -

Google Calendar - - - - - - 22 16 13 9 9 - 7 0 4 14 0 -

Google Chrome - - - - - - 4 2 4 2 2 - 0 0 2 2 0 -

Instagram - - - - - - 25 25 28 10 30 - 3 5 18 0 0 -

LINE Camera 19 28 36 20 7 - 16 28 39 9 9 - 0 0 2 0 0 -

Marvel Comics 19 16 19 14 9 13 50 41 50 30 9 11 5 1 2 9 0 0

Match 10 10 14 12 12 8 9 8 9 3 8 2 0 0 0 0 0 0

McDonald - - - - - - 13 3 15 3 15 8 1 0 0 0 0 0

Merriam-Webster 31 20 34 27 10 19 29 24 24 24 6 6 4 1 4 5 0 0

Messenger - - - - - - 5 9 3 1 1 - 0 0 0 0 0 -

Mirror 22 22 23 21 22 20 33 25 33 17 25 8 4 3 9 5 3 0

My baby Piano 12 3 42 31 30 29 33 33 33 33 33 33 0 0 0 1 0 0

NFL - - - - - - 17 4 13 4 7 4 1 0 1 2 0 1

NOOK 7 3 7 6 13 1 6 2 7 6 12 1 0 0 0 0 0 0

Nike Run Club - - - - - - 30 27 37 1 1 - 3 0 13 0 0 -

OfficeSuite - - - - - - 28 18 11 6 9 1 1 0 0 0 0 0

OneNote - - - - - - 17 20 16 1 13 - 2 0 1 0 0 -

Photos - - - - - - 25 32 25 11 17 - 20 20 13 21 5 -

Pinterest 27 23 26 12 0 6 15 12 21 6 0 3 3 2 3 1 0 0

Quizlet 47 37 46 35 15 32 38 38 40 14 3 9 1 0 1 3 0 0

Sing! - - - - - - 13 19 23 6 15 - 0 0 1 4 0 -

Sketch - - - - - - 37 43 26 13 22 2 8 17 1 5 0 0

Speedometer 29 33 32 24 29 24 73 73 45 18 45 18 2 4 1 0 0 0

Spotify 25 31 33 16 19 - 9 11 12 1 3 - 0 0 0 0 0 -

TED - - - - - - 70 30 56 30 22 15 8 2 2 4 0 0

The Weather Chnl. - - - - - - 9 10 11 10 6 1 1 4 2 5 1 2

Ticketmaster - - - - - - 6 2 7 1 2 - 1 2 1 0 3 -

Translate 32 21 32 14 30 19 58 52 52 12 39 15 0 0 0 2 0 0

TripAdvisor 31 31 29 14 14 1 24 28 24 4 10 0 1 2 5 9 0 1

UC Browser - - - - - - 3 2 3 2 2 2 0 0 0 0 0 0

WEBTOON 26 23 21 19 24 - 50 52 31 16 39 - 1 0 2 1 0 -

WatchESPN 32 21 33 29 13 23 44 31 38 31 13 19 2 0 11 6 0 0

Wattpad 27 37 44 4 30 5 17 32 42 1 16 1 1 2 77 0 0 0

Waze - - - - - - 22 2 8 3 13 1 2 0 0 2 0 0

Wish 33 27 32 21 13 - 35 22 28 5 7 - 0 2 2 0 0 -

Word 23 14 16 6 19 - 7 4 4 0 4 - 0 0 0 0 0 -

Yelp 20 11 20 13 14 4 14 7 12 4 7 0 13 2 26 3 6 2

YouTube - - - - - - 10 6 8 13 2 - 13 2 8 12 0 -

Zedge 36 30 35 21 3 3 23 14 26 6 3 0 12 1 5 9 0 2

Zillow - - - - - - 26 12 20 16 9 4 6 1 2 7 0 1

ibisPaint X 15 18 18 11 16 7 28 28 31 19 31 6 2 3 0 0 2 0

inStar 21 14 21 8 13 3 17 9 17 4 9 4 1 0 1 0 0 1

realtor.com 30 29 30 26 24 19 29 15 24 9 9 6 1 2 1 0 0 0

trivago 40 26 38 18 25 12 41 28 41 17 28 3 1 0 0 5 1 0
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Table 2.4 shows the statistics of method and activity coverage on each app achieved by each

test generation tool under study after 3 hours of testing. ‘-’ in a table cell indicates that the

corresponding tool is not applicable on the corresponding industrial app (due to instrumentation or

tool applicability issues). Table cells with gray backgrounds indicate the highest values compared

with other tools for the same app and coverage type, and multiple tools might have the same

highest coverage on the same app (as shown by multiple table cells with gray backgrounds for

the same app and coverage type). All coverage percentage numbers are the averaged values of

3 repetitions and are rounded to the nearest integer. Note that due to the number rounding,

there might be two tools achieving the same percentage number but only one having the gray

background. Also note that we use the same convention in subsequent analysis.

As can be seen from Table 2.4, Monkey manages to gain the highest method coverage on 22

of 41 apps whose method coverage data can be obtained, although the tool does not achieve

much higher method coverage compared with other tools (especially Sapienz) on multiple apps.

Sapienz comes after Monkey by gaining the highest method coverage on 14 apps, while other

tools perform the best with regard to method coverage on fewer than three apps. Such finding

is different from the evaluation results on open-source apps conducted by the authors of some of

these tools. According to these authors’ evaluation results, they find that their tools achieve higher

code coverage on more apps compared with Monkey. It can also be seen that no tool manages

to cover more than 50% of methods on any app, with the only exception being Sapienz on the

app ‘Floor Plan Creator’. In addition, the majority of the tools achieve less than 30% of method

coverage on most apps even after 3 hours of testing. Such findings suggest that there is still much

space for improving these tools on industrial apps. Another interesting finding is that an app’s

larger code base is not necessarily more difficult to be covered. For example, the app ‘Spotify’

has over 200,000 methods, and Sapienz manages to cover 1/3 of these methods. However, the app

‘Google Play Music’ (abbreviated as ‘G.P. Music’) has about 23,000 methods, but none of 6 tools

cover more than 5% of these methods. Such result also suggests that different industrial apps

might have very different characteristics even under the same category.

The statistics of activity coverage are similar to those of method coverage. Monkey gains the

highest activity coverage on 35 of all 68 apps (including 3 ties, i.e., there are 3 apps on which

Monkey has the same activity coverage as another tool), while Sapienz gains the highest activity

coverage on 28 apps (also including 2 ties). WCTester comes after Sapienz by having the highest

activity coverage on 15 apps (including 3 ties). Such finding suggests that WCTester might be

better at breadth-first exploration than at in-depth exercising. It can also be seen that, although

the overall activity coverage is higher than the method coverage on industrial apps under study,

many of the apps still have very low activity coverage. A possible explanation is that many of

the apps’ main functionalities are actually not reached. Thus, it might be helpful to prioritize

unexplored functionalities in order to better saturate the coverage of industrial apps.

To better understand the tools’ coverage performance, we investigate into each tool’s behavior
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Figure 2.2: Trend of average method coverage of industrial apps achieved by test
generation tools under study

over time during testing. Figures 2.2 and 2.3 show the trend of average method and activity

coverage by each test generation tool under study with regard to the elapsed time during test-

ing. Note that we average the coverage percentage numbers of different apps instead of counts

of methods or activities to avoid imbalanced influence by apps in different sizes. As shown in

Figure 2.2, Sapienz almost always has the highest average method coverage, although its advan-

tage over Monkey becomes smaller as time goes by. When it comes to the activities, as shown

in Figure 2.3, Monkey constantly has higher average activity coverage than Sapienz. These two

tools both have much higher coverage than the remaining four tools. The two tools also gain new

coverage faster than all other four tools on average, leading to more significant advantages over

time. It can also be seen that A3E-Depth-First (abbreviated as ‘A3E’) has comparable or higher

average coverage with WCTester, Stoat, and DroidBot at the beginning of testing. However, A3E-

Depth-First almost stops gaining new coverage after that. According to our observation during

testing, such result might be caused by the tool’s outdated implementation, which often causes

the tool to hang completely (see Section 2.8 for more discussion).

2.6 FAULT DETECTION RESULTS ON INDUSTRIAL APPS

In this section, we answer RQ2 (how many unique crashes can each test generation tool trigger on

each applicable industrial app, and what are the causes of these crashes) by showing the statistics

of unique crashes triggered by each test generation tool on industrial apps in our experiments.

Table 2.4 shows the number of unique crashes triggered by each test generation tool on each
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Figure 2.3: Trend of average activity coverage of industrial apps achieved by test
generation tools under study

applicable industrial app under study. Note that each number reports the total number of unique

crashes triggered by the tool on the app after 3 repetitions. As shown in Table 2.4, Stoat triggers

the highest numbers of unique crashes on 23 apps, outperforming all other tools. Sapienz triggers

the highest numbers of unique crashes on 19 apps, while Monkey accomplishes so on 16 apps.

Other three tools trigger the highest numbers of unique crashes on fewer than 10 apps. Also, the

numbers of unique triggered crashes have much higher deviations across different tools for the

same app, compared with method and activity coverage.

It is somewhat surprising to see that the fault-detection statistics differ from the method and

activity coverage statistics. Aiming to understand the differences, we manually investigate into

a case involving Stoat and a case involving Sapienz, and examine the details of crashes with the

findings as below.

Stoat on the app ‘Photos’. Stoat has the highest number of unique crashes on this app. Stoat

triggers many NullPointerExceptions during starting of activities that take an Intent (see Sec-

tion 2.2.1 for details) as input. Meanwhile, Monkey and other tools trigger other types of exceptions

including ArrayIndexOutOfBoundsException and StackOverflowError. Stoat’s triggering these

crashes during activity starting might benefit from injecting system-level events during testing.

Sapienz on the app ‘Wattpad’. This combination has much more unique crashes than any other

combinations. We find that Sapienz triggers numerous SQLiteExceptions on this app for each of

the three runs. The exception causes are mostly about querying on multiple non-existent tables in

the app’s SQLite database. As the app seems to heavily rely on the SQLite database but does not

properly handle related exceptions, these fatal SQL queries are frequently triggered from multiple
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locations of the app, causing different stack traces. None of other tools is able to trigger such

number of exceptions during testing. A possible explanation is that triggering such crashes requires

special preconditions (e.g., forcibly terminating the app during initialization, which involves SQL

operations for creating these tables) that other tools might not be able to create.

2.7 RANK-1 ANALYSIS ON EXPERIMENT RESULTS

In this section, in order to provide additional insights for answering RQ3 (how to efficiently

combine multiple test generation tools on applicable industrial apps to achieve better coverage and

fault detection), we measure and analyze the statistics of rank-1 method and activity coverage plus

rank-1 unique crashes achieved by each test generation tool on industrial apps in our experiments.

We also analyze the results from previous sections to answer RQ3.

A rank-n method/activity or unique crash indicates that there are n test generation tools being

able to cover the method/activity or unique crash [34]. Specifically, a rank-1 method/activity or

unique crash indicates that only one test generation tool under study covers the method/activity

or trigger the unique crash in at least one run of our experiments. For each tool under study, the

numbers of its covered rank-1 methods/activities and triggered rank-1 unique crashes reflect the

tool’s unique value to testing an app.

Table 2.5 shows the statistics of rank-1 methods, activities, and unique crashes on applicable

industrial apps by the test generation tools under study. A table cell with ‘m/n’ indicates that,

on the corresponding app, the rank-1 methods/activities or unique crashes covered by the cor-

responding test generation tool account for m percent of covered methods/activities or triggered

unique crashes by all the six test generation tools, and all of the tool’s covered methods/activities

or triggered unique crashes are n percent of covered methods/activities or triggered unique crashes

by all the six test generation tools. With such definition, we know that on a specific app, if test

generation tool A’s method/activity or unique crash statistic is ‘a/b’ and tool B’s method/activity

or unique crash statistic is ‘c/d’, by running both tool A and tool B (i.e., combining tool A and

tool B) we could achieve at least max(a+d, b+c) percent coverage of methods/activities or unique

crashes that are covered or triggered by all the six test generation tools.
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Table 2.5: Statistics of rank-1 methods, activities, and unique crashes on industrial
apps by test generation tools under study

App Name
% of Rank-1 Covered Methods % of Rank-1 Covered Activities % of Rank-1 Unique Crashes

M. W. Sa. St. D. A. M. W. Sa. St. D. A. M. W. Sa. St. D. A.

Abs 4/76 16/88 1/74 0/46 0/63 - 0/57 43/100 0/57 0/14 0/29 - 56/56 11/11 33/33 0/0 0/0 -

AccuWeather 5/98 0/75 1/93 1/51 0/74 0/66 33/83 0/39 0/50 17/44 0/44 0/22 47/87 0/7 0/33 7/7 0/13 7/7

Adobe Acrobat - - - - - - 6/88 0/12 12/94 0/12 0/12 0/12 0/0 0/0 100/100 0/0 0/0 0/0

Amazon Kindle - - - - - - 14/50 43/79 0/7 0/21 0/14 0/7 0/0 0/0 0/0 0/0 0/0 0/0

AutoScout24 9/91 1/66 0/73 3/81 3/46 0/23 9/36 0/36 0/36 55/82 0/9 0/18 11/11 5/5 0/0 74/74 0/0 11/11

Autolist - - - - - - 0/73 9/91 0/82 0/5 0/5 0/5 0/0 0/0 50/50 0/0 0/0 50/50

Best Hairstyles 0/95 0/95 0/96 0/95 2/87 0/30 0/100 0/100 0/100 0/100 0/100 0/50 100/100 0/0 0/0 0/0 0/0 0/0

CNN 6/91 1/91 1/62 0/65 0/81 0/34 13/100 0/75 0/69 0/63 0/81 0/13 50/50 13/13 38/38 0/0 0/0 0/0

Crackle 1/98 0/78 1/97 0/86 0/92 0/82 0/86 0/57 0/86 14/71 0/57 0/57 43/57 0/0 43/52 0/0 0/5 0/0

Duolingo 0/90 1/93 1/88 2/90 2/93 0/87 6/65 6/71 0/59 12/65 0/71 0/47 0/0 17/17 33/33 50/50 0/0 0/0

ES File Explorer 4/79 6/82 4/76 4/55 0/54 0/37 5/74 0/69 3/64 13/51 0/33 0/8 13/13 13/13 13/13 63/63 0/0 0/0

Evernote 3/75 7/86 4/78 0/43 1/71 0/35 2/55 14/86 6/61 0/18 0/55 0/6 0/0 0/0 50/50 0/0 0/0 50/50

Excel 17/98 1/77 1/69 0/25 0/67 - 50/100 0/50 0/50 0/50 0/50 - 0/0 50/50 50/50 0/0 0/0 -

Facebook - - - - - - 9/38 50/83 0/36 0/9 - - 11/17 33/39 44/44 6/6 - -

Filters For Selfie 8/96 0/8 0/84 0/2 4/86 0/2 0/80 0/40 0/80 0/20 20/100 0/20 80/90 0/10 10/20 0/0 0/10 0/0

Flipboard 2/72 2/76 11/88 1/65 1/66 - 4/52 0/61 22/70 4/39 0/39 - 40/40 20/20 0/0 40/40 0/0 -

Floor Plan Creator 2/79 0/63 11/95 1/36 1/64 0/40 0/88 0/75 0/88 13/63 0/63 0/25 0/0 0/0 0/0 100/100 0/0 0/0

Fox News - - - - - - 8/85 8/92 0/85 0/8 0/23 0/8 7/36 36/50 14/57 0/0 0/29 0/0

G.P. Books - - - - - - 0/80 0/60 0/80 20/80 0/60 0/0 26/42 0/11 0/11 53/53 0/5 5/5

G.P. Music 9/86 0/89 1/90 0/87 0/88 0/74 0/100 0/100 0/50 0/50 0/50 0/25 8/17 8/17 25/33 50/58 0/8 0/8

G.P. Newsstand 19/96 0/78 1/78 0/78 0/74 0/74 0/100 0/0 0/100 0/0 0/0 0/0 0/50 0/50 0/50 0/50 0/50 50/100

GO Launcher Z 31/89 0/29 5/63 0/36 4/48 0/35 62/88 0/3 6/32 0/3 6/9 0/3 0/0 0/0 0/0 0/0 0/0 0/0

Gmail - - - - - - 0/60 0/47 0/73 20/47 7/80 - 5/11 0/0 11/16 79/79 0/0 -

GoodRx 1/96 0/94 1/93 0/86 0/89 0/66 0/81 3/76 0/51 14/62 0/62 0/11 0/4 0/0 62/65 31/31 0/0 4/4

Google - - - - - - 13/87 0/67 0/47 0/7 0/73 - 0/0 83/83 17/17 0/0 0/0 -

Google Calendar - - - - - - 0/78 0/56 0/56 0/33 11/67 - 28/28 0/0 16/16 56/56 0/0 -

Google Chrome - - - - - - 0/75 0/50 0/75 25/75 0/50 - 0/0 0/0 50/50 50/50 0/0 -

Instagram - - - - - - 0/81 0/81 0/81 13/38 0/75 - 4/13 17/22 65/78 0/0 0/0 -

LINE Camera 1/66 5/81 15/92 0/53 0/29 - 4/61 0/75 21/96 0/21 0/21 - 0/0 0/0 100/100 0/0 0/0 -

Marvel Comics 2/91 0/80 5/94 3/78 0/45 0/61 3/79 0/66 0/76 17/76 0/21 0/17 20/33 0/7 7/13 60/60 0/0 0/0

Match 0/95 0/84 2/97 0/83 0/85 2/54 0/100 0/83 0/100 0/33 0/83 0/17 0/0 0/0 0/0 0/0 0/0 0/0

McDonald - - - - - - 14/86 0/14 0/64 0/21 0/64 14/57 100/100 0/0 0/0 0/0 0/0 0/0

Merriam-Webster 1/83 0/83 15/91 0/68 0/26 0/51 0/75 0/75 13/63 13/50 0/13 0/13 29/29 7/7 29/29 36/36 0/0 0/0

Messenger - - - - - - 0/37 53/95 5/26 0/11 0/11 - 0/0 0/0 0/0 0/0 0/0 -

Mirror 0/94 1/94 3/98 1/92 0/92 0/83 0/100 0/75 0/100 0/75 0/75 0/25 0/31 0/23 31/69 23/38 0/23 0/0

My baby Piano 10/25 0/6 19/87 2/67 0/63 0/61 0/100 0/100 0/100 0/100 0/100 0/100 0/0 0/0 0/0 100/100 0/0 0/0

NFL - - - - - - 45/100 0/36 0/55 0/36 0/45 0/18 20/20 0/0 20/20 40/40 0/0 20/20

NOOK 0/40 0/21 2/41 5/48 46/79 0/5 0/32 0/20 8/40 16/56 32/76 0/4 0/0 0/0 0/0 0/0 0/0 0/0

Nike Run Club - - - - - - 4/84 0/71 12/88 0/2 0/6 - 13/20 0/0 80/87 0/0 0/0 -

OfficeSuite - - - - - - 22/84 8/67 4/31 0/24 0/24 0/2 100/100 0/0 0/0 0/0 0/0 0/0

OneNote - - - - - - 6/83 6/83 6/72 0/6 0/56 - 67/67 0/0 33/33 0/0 0/0 -

Photos - - - - - - 2/77 2/89 0/75 7/55 0/55 - 15/30 18/30 17/20 30/32 3/8 -

Pinterest 6/81 12/85 2/77 0/38 0/0 0/19 0/55 9/64 9/64 9/36 0/0 0/9 33/33 22/22 33/33 11/11 0/0 0/0

Quizlet 1/88 1/69 7/95 1/67 0/28 0/70 0/64 0/69 25/92 3/28 0/6 0/25 20/20 0/0 20/20 60/60 0/0 0/0

Sing! - - - - - - 0/44 11/78 6/83 6/28 0/56 - 0/0 0/0 20/20 80/80 0/0 -

Sketch - - - - - - 0/64 18/82 0/50 7/32 4/46 0/4 26/26 55/55 3/3 16/16 0/0 0/0

Speedometer 2/87 0/90 7/87 0/63 0/79 0/72 0/100 0/100 0/75 0/25 0/63 0/38 0/50 25/100 0/25 0/0 0/0 0/0

Spotify 6/91 1/87 3/91 0/44 0/66 - 22/78 4/65 4/65 0/4 0/17 - 0/0 0/0 0/0 0/0 0/0 -

TED - - - - - - 4/83 0/50 0/67 17/67 0/21 0/21 47/53 13/13 7/13 27/27 0/0 0/0

The Weather Chnl. - - - - - - 11/59 7/52 0/48 26/63 0/26 0/4 0/8 15/31 15/15 38/38 0/8 15/15

Ticketmaster - - - - - - 0/20 0/20 80/100 0/10 0/20 - 0/33 0/67 0/33 0/0 0/100 -

Translate 2/96 0/89 1/96 0/57 1/90 0/56 0/95 0/90 0/100 0/15 0/75 0/25 0/0 0/0 0/0 100/100 0/0 0/0

TripAdvisor 7/88 4/85 2/81 0/43 0/38 0/0 6/78 8/86 3/74 1/19 0/34 0/0 6/6 6/12 24/29 53/53 0/0 6/6

UC Browser - - - - - - 20/60 0/40 40/80 0/20 0/20 0/20 0/0 0/0 0/0 0/0 0/0 0/0

WEBTOON 12/96 0/68 2/76 0/63 0/72 - 3/97 0/92 0/71 0/39 0/63 - 25/25 0/0 50/50 25/25 0/0 -

WatchESPN 1/96 0/63 3/98 1/94 0/37 0/68 11/89 0/56 0/78 11/78 0/22 0/33 11/11 0/0 58/58 32/32 0/0 0/0

Wattpad 4/76 1/83 7/92 0/8 1/65 0/14 5/39 4/65 16/86 0/2 5/35 0/2 1/1 3/3 96/96 0/0 0/0 0/0

Waze - - - - - - 45/93 0/9 2/32 0/20 2/52 0/9 50/50 0/0 0/0 50/50 0/0 0/0

Wish 12/90 2/77 4/85 0/56 0/38 - 25/86 3/53 8/72 0/17 0/19 - 0/0 50/50 50/50 0/0 0/0 -

Word 6/94 3/88 1/68 0/26 1/81 - 0/100 0/100 0/50 0/50 0/50 - 0/0 0/0 0/0 0/0 0/0 -

Yelp 16/94 1/36 2/77 1/61 1/66 0/17 31/87 4/26 1/54 1/24 1/36 0/3 12/32 5/5 39/63 0/7 12/15 5/5

YouTube - - - - - - 18/55 0/27 0/36 45/64 0/9 - 29/42 6/6 13/26 39/39 0/0 -

Zedge 6/96 0/81 2/90 1/58 0/8 0/11 8/83 0/50 8/83 8/42 0/8 0/8 26/52 0/4 0/22 39/39 0/0 9/9

Zillow - - - - - - 20/77 9/46 0/51 9/43 3/20 0/11 33/40 0/7 7/13 40/47 0/0 7/7

ibisPaint X 4/86 1/81 3/73 1/67 0/79 0/29 6/94 0/81 0/69 0/63 0/81 0/13 20/40 40/60 0/0 0/0 0/40 0/0

inStar 1/96 0/69 3/98 0/55 0/60 0/16 0/80 0/40 20/100 0/40 0/40 0/20 33/33 0/0 33/33 0/0 0/0 33/33

realtor.com 5/94 1/79 2/90 0/76 0/66 0/52 36/100 0/36 0/64 0/29 0/21 0/14 33/33 33/67 0/33 0/0 0/0 0/0

trivago 4/96 0/60 1/93 2/58 0/65 0/29 0/65 5/50 0/65 30/60 0/45 0/5 14/14 0/0 0/0 71/71 14/14 0/0
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As shown in Table 2.5, for many industrial apps under study, combining Monkey and Sapienz

facilitates good saturation of covering the app code as they together contribute to over 90% of all

covered methods by all the six tools on these apps. These two tools also have the highest numbers

of rank-1 covered methods on many apps. When it comes to activities, combining Monkey with

Sapienz or Stoat seems to be a good option for most of the apps, because Monkey has the highest

numbers of covered activities (regardless of ranking) on many apps while Sapienz or Stoat can

be good complements when Monkey is not able to cover most activities. For fault detection,

combining Stoat with Sapienz or Monkey seems to be more effective for most of the apps, as Stoat

has the highest numbers of unique crashes (regardless of ranking) on many apps while Sapienz

or Monkey can be good complements. Such suggestion is consistent with the results of manual

investigation from Section 2.6, where we find that Stoat and Sapienz/Monkey can trigger very

different types of crashes. Also, according to the fact that WCTester is designed for WeChat, the

tool might be a good complement with Monkey when the app under test involves similar scenarios

as those in WeChat (e.g., chatting, social, and information browsing). Rank-1 activity statistics

also show hints on this suggestion: WCTester covers the highest numbers of unique activities

on ‘Facebook’, ‘Messenger’, ‘Pinterest’, and ‘TripAdvisor’. All these apps share similar usage

scenarios with some functionalities of WeChat.

2.8 EXPERIENCE IN APPLYING TEST GENERATION TOOLS ON INDUSTRIAL APPS

In this section, we answer RQ4 (how much effort does it require to set up each test generation

tool for testing industrial apps) by reporting our experience on setting up each test generation tool

under study and applying them on selected industrial apps. We additionally report our experience

with Ella [47] and the Android Framework (illustrated in Section 2.2).

2.8.1 Test Generation Tools

Monkey. As the built-in test generation tool shipped with each Android device, Monkey can

be invoked directly using the Android Debug Bridge [49] shell interface. We spend no effort on

setting up Monkey for industrial apps under study.

WCTester. Due to defects in the UIAutomator Python wrapper [50] being used, WCTester

often halts during exploration and produces error messages such as “RPC server not connected”.

We spend about 5 hours investigating and fixing the defects, and after that WCTester becomes

much more stable.

Sapienz. The original implementation of Sapienz supports only emulators. Given that many

apps under study include native libraries compiled against only ARM processors, we modify the

tool’s implementation to add support for real devices. Since the tool is tested on only Android 4.4

and needs to install MotifCore to the system partition, for maximum compatibility, we downgrade
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all real devices to Android 4.4 and acquire the root privileges on all of them. We also modify the

tool’s implementation so that it restores the app data to the point right after manual logging in

instead of clearing them. Finally, we spend more than 10 hours getting Sapienz to work in our

settings.

Stoat. The original implementation of Stoat has multiple issues with our testing infrastructure.

For example, it forcibly kills all Java and ADB processes on the underlying computer to clean up

the environment, unexpectedly terminating our tools for monitoring the testing. Stoat also uses

the problematic UIAutomator Python wrapper. Overall, we spend about 10 hours investigating

and fixing the implementation of Stoat.

DroidBot. DroidBot needs to run its client app under the accessibility mode, which requires

granting the privilege manually in Android system settings. We also sometimes encounter error

messages such as “Please enable DroidBot manually in accessibility settings” even if the tool works

in previous runs. Overall, we spend about 2 hours writing a script to mitigate this issue.

A3E-Depth-First. A3E-Depth-First has several issues in the implementation, such as not being

able to click buttons with labels containing special characters. Due to the outdated implementation

and the need of running the target app under its instrumentation, the tool causes many apps to

crash at beginning, preventing them from being tested. It also hangs during exploration for

unknown reasons even after we try to fix this issue. We spend about 5 hours trying to fix the

issues for the tool.

Note that we have already submitted bug reports on most of the preceding patches to these

existing tools for the original tool authors to improve the quality and robustness of these tools.

Additionally, due to the fact that some tool issues appear only after the experiments have lasted

for some time, it takes a lot of manual efforts to inspect the experiment results to find out such

issues, and the wasted time of running these experiments (with these issues still existing in the

tools) adds up to tens of hours.

We additionally monitor and investigate the testing process of a sample of test runs involving

different tools with human efforts. One interesting finding is that the test effectiveness of multiple

tools might be handicapped by the implementations of these tools. For instance, Stoat injects

UI events at a much lower speed compared with Monkey and Sapienz in our experiments. While

this implementation usually suffices on simple open-source apps when given abundant test time

budget, it will require much more time to cover many functionalities on feature-rich industrial

apps used in our study. The other interesting finding is that tools sometimes choose to explore

UIs in highly ineffective ways, and such cases can be easily identified through monitoring. For

example, Monkey and WCTester are found to get stuck on certain screens for an extensive amount

of time, and such cases can be discovered by monitoring the changes of UIs during testing.

While the tool issues revealed by our aforementioned findings can be addressed by improving

each tool’s individual design and implementation, we find that these issues share similar mitiga-

tion strategies across different tools. One example is that multiple research tools suffer from slow
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implementations, likely caused by the same inefficient UIAutomator framework used to interact

with the test devices. The framework is independent of a tool’s testing strategy and can be sep-

arately enhanced. Another example is that multiple tools are found to be prone to ineffective UI

exploration, which can be revealed by automated runtime UI monitoring that does not necessarily

need a tool’s cooperation. These insights suggest the opportunities of achieving better test effec-

tiveness for automated UI testing through enhancing existing tools with tool-independent external

support.

2.8.2 Ella and the Android framework

Ella. Ella has multiple implementation issues in different modules. In addition, the tool’s

original implementation does not support instrumenting apps with multidex enabled, which is

commonly used by large industrial apps. We spend more than 10 hours fixing the issues and

adding multidex support to Ella.

Android framework. We even encounter an issue in the system framework on Android 4.4.

Specifically, the issue in the UIAutomator framework causes the service to stop working when

there is any special character (e.g., an Emoji icon) on the screen. We fix the issue by modifying the

corresponding Android source code plus recompiling and replacing the UIAutomator framework

(uiautomator.jar). We spend about 5 hours addressing this issue.

2.9 THREATS OF VALIDITY

The main threat to external validity is the representativeness of the studied subjects (i.e., the

degree to which the studied industrial apps and tools are representative of true practice). Our

current tool set contains only six test generation tools due to not being able to apply other test

generation tools on most industrial apps under study. However, these six tools are state-of-the-

art ones that are already compared with more state-of-the-art tools such as Monkey, which is

popularly used in industry. These threats could be reduced by more experiments on wider types

of subjects in future work.

The threats to internal validity are instrumentation effects that can bias our results. Issues in

Ella’s handling of the apps’ binary code, faults in our modification of the existing tools or in our

experiment scripts, etc. might cause such effects. To reduce these threats, we manually inspect

traces of our experiments for sample apps. In addition, we are not able to obtain method coverage

for about half of the industrial apps under study due to Ella’s failing to instrument these apps

or these apps not running normally after instrumentation. We also try coverage collection tools

based on Soot [51] and they simply fail or cause problems on more apps. We are not aware of other

tools that can flawlessly instrument these large, complex, and closed-source apps. Also, it might

cause bias to the selection of apps if we simply discard these apps that fail to be instrumented.
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2.10 SUMMARY

In this chapter, we have presented an empirical study of existing Android test generation tools’

applicability on industrial apps. We directly compare the tools with regard to code coverage and

fault-detection ability. According to our results, Monkey achieves the highest method coverage

on 22 of 41 apps whose method coverage data can be obtained. Of all 68 apps under study,

Monkey also achieves the highest activity coverage on 35 apps, while Stoat is able to trigger the

highest number of unique crashes on 23 apps. We also find that different tools achieve the best

test effectiveness on various apps, i.e., there is no “silver-bullet” tool that outperforms all other

tools on all apps. By analyzing the study results, we provide suggestions for combining different

test generation tools to achieve better performance. We also report our experience in applying

these tools to industrial apps under study. Our study results give insights on how Android UI test

generation tools could be improved to better handle industrial apps.

Our study results offer a strong implication that testing researchers for Android test generation

tools should empirically compare a newly proposed tool with related previous tools on industrial

apps besides open-source apps, going beyond the current common research practice of compar-

ing tools on only open-source apps. Additionally, our observations suggest the opportunities of

achieving better test effectiveness for automated UI testing through enhancing existing tools with

tool-independent external support.
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CHAPTER 3: TOLLER: ENHANCING INFRASTRUCTURE SUPPORT BY
SYSTEM DESIGN

3.1 OVERVIEW

Aiming to understand what makes existing tools perform poorly on popular industrial apps, in

this chapter, we pay particular attention to testing infrastructure’s impacts on testing effectiveness;

these impacts have been constantly overlooked by prior work [8, 9, 10, 11, 12, 13, 15, 16, 17, 18],

which mainly emphasizes algorithmic improvements. We first conduct a motivating study to find

what types of operations from these tools use most of the run time. Our study findings show that

capturing information about the contents on the screen (UI Hierarchy Capturing) and executing UI

events (UI Event Execution) are the two types of operations that consume the most time. In total,

these two factors use on average 70% of the entire run time budget with 34% and 36% belonging to

UI Hierarchy Capturing and UI Event Execution, respectively (as shown in “Combined” in Figure

3.2). These two types of operations, usually provided with infrastructure support, are essential

for most UI test generation tools to perform their duties. Yet, we find that these two types of

operations are often performed inefficiently using UIAutomator [29], a component of the Android

framework. For example, we find that it can take from 0.4 to 8.2 seconds on average to capture one

UI hierarchy using UIAutomator (as shown in Table 3.2). Our experiments (Section 3.5.2) find that

these time usages can be reduced to just tens of milliseconds with infrastructure enhancements.

The findings from our study suggest that there are substantial efficiency improvements that can

be achieved with infrastructure enhancements so that tools can be more effective when given the

same run time.

Based on the aforementioned findings, we propose Toller, a tool to provide infrastructure

enhancements for UI Hierarchy Capturing and UI Event Execution to Android UI test generation

tools. By modifying the Android framework, Toller is capable of injecting itself into any target

app’s virtual machine and has access to the app’s runtime memory. Toller can thus directly read

an app’s internal UI data structures and quickly extract the app’s UI hierarchy, avoiding much of

the overhead caused by using UIAutomator, which relies on the complicated internal logic of the

Android framework as well as remote procedure calls. Toller also enables the direct invocation

of UI event handlers, thereby eliminating the unnecessary time spent on executing low-level UI

events that simulate human interactions (e.g., waiting for long clicks) and have to be translated

to UI element-specific events based on the UI hierarchy. Our experiments show that Toller can

substantially reduce the time required for the aforementioned two types of operations.

We integrate Toller with three state-of-the-art Android UI test generation tools that depend

on UIAutomator: Stoat [13], WCTester [32, 33], and a tool named Chimp, which we implement

following a similar algorithmic design as the originalMonkey [7]. Our experiments with 15 popular,

industrial apps obtained from the Google Play Store show that the average time usages for UI
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Hierarchy Capturing are reduced by about 97%, 77%, and 97% on Chimp, WCTester, and Stoat,

respectively, and for UI Event Execution, the average time usages are reduced by 40%, 18%, and

95% on Chimp, WCTester, and Stoat, respectively.

Given the same run time for tools with and without Toller, the Toller-enhanced tools are

able to execute more events than the original versions of the tools, and the Toller-enhanced tools

on average achieve higher code coverage and trigger more distinct crashes than the original versions

of the tools. In fact, our experiments show that Toller-enhanced tools achieve 11.8% to 70.1%

relative code coverage improvement on average and are able to trigger 1.4x to 3.6x distinct crashes

compared with the original versions of the tools. These improvements are so substantial that they

even change the relative competitiveness of the tools under empirical comparison. For instance,

Stoat achieves a higher average code coverage compared to Monkey only after Stoat is enhanced

with Toller. We additionally involve another Android UI test generation tool, Ape [15], in our

experiments. We find that Ape is already benefiting from its own improved infrastructure support,

despite the fact that the tool authors did not mention the improved infrastructure support in

their paper. We make Toller’s source code and the scripts used to set up Toller publicly

available [52]. We hope that our results can raise the community’s awareness of the significance

of infrastructure support beyond the community’s existing heavy focus on algorithms.

This chapter makes the following main contributions:

• A motivating study to understand what types of operations use most of existing Android

UI test generation tools’ run time. Our results show the potential of two infrastructure

enhancements for improving these tools’ testing efficiency.

• Design and implementation of Toller, which provides two infrastructure enhancements

to Android UI test generation tools so that they can benefit from efficient UI Hierarchy

Capturing and UI Event Execution support.

• Comprehensive experiments involving the integration of Toller with Android UI test gener-

ation tools. Our experiments show that infrastructure enhancements can lead to substantial

effectiveness improvements.

3.2 BACKGROUND

This section presents the relevant background information of Toller, including two Android

UI system interfaces used mainly by test generation tools, the structure of the Android framework,

and UIAutomator.

29



..
<node
text="Settings”
class="android.widget.TextView” />
..
..
<node
class="android.widget.LinearLayout”>
<node
resource-id="icon”
class="android.widget.ImageView” />
<node
text="Data usage”
resource-id="title”
class="android.widget.TextView” />
..

</node>
<node
class="android.widget.LinearLayout”>
..
<node
text="Display”
resource-id="title”
class="android.widget.TextView” />
..

</node>

Figure 3.1: A simplified example of captured UI hierarchy

3.2.1 Android System Interfaces forTestingTools

This section introduces the two Android UI system interfaces that are used by most test gener-

ation tools and that Toller aims to tackle: UI Hierarchy Capturing and UI Event Execution.

UI Hierarchy Capturing enables UI test generation tools to obtain detailed information

about current on-screen contents, including UI properties (e.g., widget type, location, and size)

and hierarchical settings (e.g., some widget being a child of another widget). The captured UI

information serves as context for testing decision making and is especially critical to model-based

tools.

Figure 3.1 shows a simple example of a captured UI hierarchy (represented in XML format) along

with its corresponding screenshot. Each node in the hierarchy depicts a View (abstraction of UI

elements), which can be either a ViewGroup (Views specifically for holding and organizing other

Views) or ordinary View (i.e., UI elements) that users can see and interact with. The hierarchical

relations among Views are reflected by “child of” relations of nodes. Each node contains UI

properties (e.g., text, position, resource ID) that vary across different types and instances of UI

elements.

UI Event Execution enables tools to perform UI events (e.g., screen clicks, text inputs) on

the app under test. The interface is usually invoked after each UI Hierarchy Capturing, where at

each step, a tool gets the current UI state and then executes a UI event based on the state of the

UI. A common way of performing UI events is to inject the corresponding low-level UI events into
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the Android system. For example, long clicking some point (x, y) on the screen can be decomposed

into (1) touching down at (x, y), (2) waiting for 0.5 seconds, and (3) touching up at (x, y). These

actions are processed as if they were from human users.

3.2.2 Structure of Android Framework

This section introduces how app bytecode runs on Android, as well as how the Android frame-

work is structured. This section helps explain how Toller is integrated with the Android frame-

work.

The Android framework can be divided into two parts: the app space part, which runs in the

same virtual machine (VM) as each app’s bytecode, and the system service part, which runs in

standalone VMs and communicates with the app space part through RPCs. The app space part of

the Android framework consists of a number of fundamental Java classes that are accessible from

every Android app. These fundamental classes are preloaded into the VM and cannot be overridden

by app classes. These characteristics of the app space part make it ideal to host Toller’s runtime

stub, which needs to gain direct access to each app’s runtime memory. Section 3.4 presents more

details about how Toller makes use of direct access to app runtime memory and the benefits of

doing so.

3.2.3 UIAutomator

One component of the Android framework is UIAutomator [29], the standard service for UI

interactions on an Android device, used by not only automated UI test generation tools but also

UI test scripting platforms such as Espresso [53].

Implementation of UIAutomator can be divided into three parts. The first part runs as a

system service, which coordinates all UIAutomator related activities on the device. The second

part resides in the app space Android framework, responsible for collecting UI-related information

from the app runtime memory and communicating with the system service counterpart. The third

part acts as a client to the system service, with which a user can request UI information to be

captured or UI event to be executed.

There is much overhead in using UIAutomator, especially when it is used to capture UI hier-

archies. When a user sends a request to the system service for UI Hierarchy Capturing through

remote procedure calls (RPCs), the service first needs to look up the active UI windows and then

dispatch the request using RPCs to each app process owning the UI windows. When the app space

Android framework counterpart receives the request, it uses accessibility interfaces to gather the

UI hierarchy for each requested UI window and transmits the UI hierarchies back to the system

service. When each app process has finished processing, the system service finally formats the UI

hierarchies into one XML document and then transmits the document back to the user. Section
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3.4 presents details for how Toller can reduce this overhead.

3.3 MOTIVATING STUDY

A recent study [20] has found that Android test generation tools are substantially less effective

on popular industrial apps, compared with open-source apps, which are often used for evaluation.

Many popular industrial apps are feature-rich and have much larger codebases than open-source

apps. Existing work [8, 9, 10, 11, 12, 13, 15, 16, 17, 18] has been focusing on designing sophisticated

UI exploration algorithms to achieve better testing effectiveness. Although testing effectiveness

can be improved with sophisticated algorithms, one often overlooked aspect is the efficiency of

infrastructure support, which is necessary for tools to perform their duties. Given that a common

way of evaluating Android test generation tools is to set a run time limit and measure code

coverage or crash triggering ability at the end of the run time, the efficiency of infrastructure

support directly affects a tool’s overall testing effectiveness.

To guide enhancements to Android test generation tools, we conduct a motivating study to

understand the extent and sources of inefficiency from infrastructure support. Our study focuses

on understanding the (in)efficiencies of Android UI test generation tools interacting with the

testing devices. Our findings enable us to design and implement a general solution for different

tools. While UI Hierarchy Capturing and UI Event Execution are necessary parts of tool-device

interactions, test generation tools can also have other types of interactions. For example, a tool

may execute a shell command through Android Debug Bridge (ADB) [49] to start the target app.

Our motivating study aims to understand the time usages by different types of interactions to

learn about their potentials for enhancements.

3.3.1 Experiment Settings

To drive our design of Toller, we run and profile three tools: Chimp, WCTester [33], and

Stoat [13]. All three of these tools use UIAutomator [29] and control the testing devices from a

computer (i.e., having no on-device components themselves), making it easy to profile the tools’

interactions with the testing devices. The following are more details about these three tools:

• We implement Chimp, a tool based on Monkey [7]. Similar to Monkey, Chimp randomly

decides on what UI events to generate. The main difference between Chimp and Monkey is

that Chimp is aware of the UI element locations when generating UI events while Monkey

is unaware. Note that we do not include Monkey directly in our study because it does not

capture any UI information from the target app and just injects random low-level UI events.

Therefore, the enhancements provided by Toller are unlikely to improve Monkey’s testing

effectiveness. On the other hand, Chimp shares the same exploration strategy as Monkey
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Table 3.1: Overview of industrial apps for experiments. Note that
‘#Inst’ denotes the approximate number of downloads.

App Name Version Category #Inst APK Size
Abs 4.2.0 Health & Fitness 10m+ 57 MB
Duolingo 3.75.1 Education 100m+ 12 MB
Filters For Selfie 1.0.0 Beauty 1m+ 21 MB
GoodRx 5.3.6 Medical 1m+ 12 MB
Google Translate 6.5.0.RC04 Tools 500m+ 26 MB
Marvel Comics 3.10.3 Comics 5m+ 6.2 MB
Merriam-Webster 4.1.2 Books & Reference 10m+ 66 MB
Mirror 30 Beauty 1m+ 3.3 MB
My baby Piano 2.22.2614 Parenting 5m+ 3.7 MB
Sketch 8.0.A.0.2 Art & Design 50m+ 25 MB
trivago 4.9.4 Travel & Local 10m+ 12 MB
WEBTOON 2.4.3 Comics 10m+ 23 MB
Word 16.0.9126 Productivity 100m+ 74 MB
YouTube 15.35.42 Video Player & Editor 1b+ 93 MB
Zedge 7.2.2 Personalization 100m+ 33 MB

and makes use of Toller’s infrastructure enhancements. Specifically, at each step, Chimp

(1) obtains the current UI hierarchy, (2) determines what UI event types are executable (i.e.,

there is at least one UI element with a corresponding action handler) on the current screen,

(3) randomly chooses a UI event type based on a predefined probability distribution, and

(4) randomly chooses an applicable UI element (and action parameters if needed) to apply

the next action on.

• WCTester [33] is a practical upgrade from Monkey, featuring widget awareness, state aware-

ness, and various heuristics to improve its effectiveness. Developed by researchers and practi-

tioners [32, 33], the tool has been deployed on WeChat, an app with over one billion monthly

active users. The tool has moderate testing effectiveness on various industrial apps accord-

ing to a previous study [20]. Although WCTester is not open-sourced, the authors [32, 33]

shared the tool with us upon request.

• Stoat [13] is a sophisticated model-based tool featuring probabilistic modeling and sampling-

based model evolution. While the Stoat paper [13] reports that Stoat outperforms Monkey

based on an evaluation using open-source apps, a previous study [20] shows that Stoat

generally achieves low code coverage on popular industrial apps and achieves lower code

coverage than Monkey. Stoat is open-sourced.

All of our experiments are conducted on the official Android x86-64 emulators running Android

6.0 on a server with Xeon E5-2650 v4 processors. Each emulator is allocated with 4 dedicated

CPU cores, 2 GiB of RAM, and 2 GiB of internal storage space. The emulators are stored on a
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Figure 3.2: Time usage distribution by operation types

RAM disk and backed by discrete graphics cards for minimal mutual influences caused by disk

I/O bottlenecks and CPU-intensive graphical rendering.

Our experiments consist of 15 widely used industrial apps from the Google Play Store and are

selected from obtaining the top apps from 13 different categories. The selected apps must all run

on Android 6.0 x86-64 emulators and do not require logging in, given that logins can be flaky due

to network calls and require expensive manual checks afterwards. Details of these apps are shown

in Table 3.1. Each test generation tool runs on each app for one hour without interruption. If a

tool exits before using up the run time budget in some run, we automatically launch the tool to

start testing again until the allotted one hour is up.

3.3.2 Results

Figure 3.2 shows the breakdown of time usages by different types of tool operations. Specifically,

we measure the number of occurrences as well as the end-to-end time usages of three types of

operations: UI Hierarchy Capturing, UI Event Execution, and ADB command executions that

are not used for the first two purposes (labeled as “Misc Interaction”). The remaining time used

during testing is then considered to be used internally by the tool.

As shown in Figure 3.2, UI Hierarchy Capturing and UI Event Execution take most of the

run time budget on all of the studied tools. By putting results from all three tools together

(“Combined”), we see that these two types of interactions each take about 1/3 of the entire run

time. Our findings suggest that focusing on the two types of operations has good potential for

improving the efficiency of these tools and consequently the effectiveness of the tools when the

tools are given a specific run time budget. In Section 3.5, we show how the use of Toller to

enhance UI Hierarchy Capturing and UI Event Execution can lead to higher average code coverage

and better crash triggering ability for the same three tools and 15 apps used in this motivating

study.
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3.4 DESIGN AND IMPLEMENTATION OF TOLLER

Figure 3.3 shows an overview of Toller’s design. Toller’s source code and our scripts to

set up Toller are publicly available [52]. Toller resides in the same VM as the app under

test, giving Toller fast and direct access to the app’s runtime memory. Toller is thus able to

(1) resolve the app’s internal UI-related data structures to generate UI hierarchies, and (2) dy-

namically analyze, invoke, or alter UI event handlers to perform UI events or understand/control

app behaviors. To resolve UI-related data structures, Toller uses Java reflection to read the

single-instanced AccessibilityManager class that indirectly points to all visible windows’ root

view groups. Toller then recursively finds all Java objects corresponding to child views (i.e., in-

stances of subclasses of android.view.View) to generate hierarchies. To invoke UI event handlers,

Toller directly calls the corresponding action invocation methods (e.g., performClick()) upon

View objects. Note that Toller’s UI Event Execution strategy falls back to low-level UI event

injections on event handlers that have not been covered by a low-level UI event injection. This

strategy helps Toller by (1) invoking low-level UI event injections at least once for every event

handler that Toller directly invokes and (2) preventing the direct invocation of event handlers

from covering less code than low-level UI event injections. These low-level injections can cover

more code than directly invoking a specific event handler, say EH, because low-level injections

may first invoke a topmost View’s event handler only for it to then invoke a child View’s event

handler until the event eventually reaches EH.

We also design Toller to be non-intrusive to the app under test: Toller is bundled with the

app-space Android framework classes on the testing device and app installation packages are not

modified. This design is particularly useful for testing close-sourced industrial apps, because (1)

many apps have self-protection mechanisms, preventing unauthorized changes to the installation

packages, and (2) manipulating a large app’s bytecode is highly error-prone (for example, just

adding a new class during instrumentation may cause an app’s .dex file to exceed the 64K method

limit [39]).

For our experiments, we integrate Toller with the Android 6.0 framework on both emulators

and real devices. While we experience no issue with our way of integration, we would still like to

point out that it is possible to use Toller without modifying the Android framework; in such a

case, developers could simply need to add Toller to the app’s codebase when building the app.

We discuss more about the trade-offs of this option in Section 3.7. In brief, we take the following

steps to injectToller into an Android framework. First, we obtain the Android framework’s DEX

bytecode from the target device using ADB. Second, we convert the Android framework’s bytecode

into Smali [54] IR code. Third, we compile Toller’s source code into Smali code. Fourth, we

modify the Android framework’s Smali code to incorporate Toller’s Smali code. Finally, we

convert all Smali code into DEX bytecode and replace the Android framework’s bytecode on the

target device with the converted DEX bytecode.
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Figure 3.3: Overview of Toller’s design

As Android test generation tools typically run on a computer, while the app under test and

Toller run on a device, the tools and Toller need a mechanism to communicate (e.g., share

UI hierarchy information) with one another. Toller uses Unix’s abstract socket for this commu-

nication as Android already provides good support (e.g., LocalServerSocket) for such commu-

nication. By doing so, Toller also does not need the app to have any specific permissions (e.g.,

networking, read/write storage).

As developers often change UncaughtExceptionHandlers when apps are first started to avoid

sharing implementation details, Toller can also be used to disable apps’ UncaughtExceptionHandlers.

Disabling such handlers helps ensure that stack traces are printed to system logs so that exper-

iments can understand crash statistics from such logs (e.g., our experiments in Section 3.5.4).

To disable such handlers, Toller periodically (every five seconds in our experiments) calls

Thread.setDefaultUncaughtExceptionHandler() to restore the default handler to ensure that

stack traces from crashes are printed to the system logs.

Toller’s implementation of UI Event Execution relies on Toller’s UI Hierarchy Capturing.

Concretely, in a Toller-captured UI hierarchy, each UI element is associated with a globally

unique identifier, which is linked to the memory address of the underlying View object (see Section

3.2.2 for more details on how UI hierarchies are represented). Toller-enhanced test generation

tools can subsequently use these identifiers to precisely specify the UI element that should be

executed. This feature is especially helpful when (1) an app’s UI is constantly changing and UI

events from the tools cannot be easily executed on the desired UI element, and (2) a tool wants

to execute UI events on not-easily accessible UI elements such as list items that are visible only

after scrolling. In general, we find that Toller with UI Hierarchy Capturing and UI Event

Execution has better testing effectiveness than Toller with just UI Hierarchy Capturing (see

Section 3.5.6 for more details). Therefore, in all of our experiments except Section 3.5.6, we define

Toller-enhanced as Toller with both UI Hierarchy Capturing and UI Event Execution.
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Table 3.2: UI Hierarchy Capturing (Capt) efficiency comparison. Note that
for each tool T, TO refers to its original version, while TE refers to our
Toller-enhanced version. Time is shown in milliseconds.

ChimpO ChimpE WCTesterO WCTesterE StoatO StoatE
Time per capt 846 22 360 82 8175 245

# of capt 31182 47599 47666 83603 1348 47525

Table 3.3: UI Event Execution (Exec) efficiency comparison. Note that for
each tool T, TO refers to its original version, while TE refers to our
Toller-enhanced version. Time is shown in milliseconds.

ChimpO ChimpE WCTesterO WCTesterE StoatO StoatE
Time per exec 762 454 455 372 8395 391

# of exec 22045 57714 51137 65340 2118 44466

3.5 EVALUATION

To understand the impact that Toller’s infrastructure enhancements can have on Android

test generation tools, we investigate five main research questions:

RQ1: How does each of Toller’s infrastructure enhancements contribute to Android test gen-

eration tools’ efficiency?

RQ2: How does enhancing Android test generation tools with Toller improve achieved code

coverage?

RQ3: How does enhancing Android test generation tools with Toller improve achieved crash

triggering ability?

RQ4: How much do covered code entities and triggered crashes overlap for each tool that is and

is not enhanced with Toller, respectively?

RQ5: How does each of Toller’s infrastructure enhancements contribute to Android test gen-

eration tools’ effectiveness?

We address RQ1 to understand how Toller’s various infrastructure enhancements affect the

run time performance benefits of Toller. We address RQ2 and RQ3 to understand how Toller

affects Android test generation tools on two metrics commonly used to evaluate such tools and

to understand whether the effectiveness rankings of these tools change when they are and are

not enhanced with Toller, respectively. We address RQ4 to understand the extent that a

tool enhanced with Toller covers the same code entities and triggers the same crashes as the

tool not enhanced with Toller. Finally, we address RQ5 to understand how Toller’s various

infrastructure enhancements affect two metrics commonly used to evaluate Android test generation

tools.
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Table 3.4: Average method coverage for all tool versions. Note that Mk, Ch, Wt,
and St denote Monkey, Chimp, WCTester, and Stoat, respectively. For each tool T,
TO refers to its original version, while TE refers to our Toller-enhanced version.
ApeS refers to the slow version of Ape. Each integer cell shows the average number
of covered distinct methods across three runs by the corresponding tool version on
the corresponding app. For each tool T, ∆ = (TE −TO)/TO × 100%. Average
∆ = (TE −TO)/TO × 100% = (ΣTE − ΣTO)/ΣTO × 100%.

App Name ApeS ApeO ∆ Mk ChO ChE ∆ WtO WtE ∆ StO StE ∆
Abs 8273 8424 1.8% 6213 6656 6874 3.3% 7527 7622 1.3% 3538 5282 49.3%
Duolingo 14180 14598 2.9% 8948 13500 13447 -0.4% 11659 13482 15.6% 6297 14006 122.4%
Filters For Selfie 2369 5489 131.7% 4077 2290 2262 -1.2% 2608 2170 -16.8% 2345 2227 -5.0%
GoodRx 15524 14272 -8.1% 13149 14033 15499 10.4% 13829 15904 15.0% 8716 12243 40.5%
Google Translate 8918 9169 2.8% 7554 7376 8477 14.9% 8793 8960 1.9% 3653 6855 87.7%
Marvel Comics 5306 5873 10.7% 4538 4672 4781 2.3% 4378 4460 1.9% 3459 4908 41.9%
Merriam-Webster 8229 8287 0.7% 5141 7657 8486 10.8% 6661 8241 23.7% 7238 7856 8.5%
Mirror 1120 1124 0.4% 426 1253 657 -47.6% 1105 851 -23.0% 887 948 6.9%
My Baby Piano 1096 3419 212.0% 165 1583 1652 4.4% 1373 1553 13.1% 700 219 -68.7%
Sketch 7695 8124 5.6% 6871 8081 8532 5.6% 7666 7782 1.5% 5755 7766 34.9%
trivago 19491 20079 3.0% 19678 18721 19317 3.2% 19373 19164 -1.1% 4325 19424 349.1%
WEBTOON 20415 24493 20.0% 19775 12590 21457 70.4% 14329 23338 62.9% 5695 13672 140.1%
Word 12057 12387 2.7% 11911 10875 12713 16.9% 12834 12612 -1.7% 8445 11482 36.0%
Youtube 28026 24888 -11.2% 17945 17086 18123 6.1% 17923 18930 5.6% 11162 18434 65.1%
Zedge 32937 43080 30.8% 28139 35532 38786 9.2% 34530 36665 6.2% 19490 30664 57.3%
Average 12376 13580 9.7% 10302 10794 12071 11.8% 10973 12116 10.4% 6114 10399 70.1%

3.5.1 Evaluation Setup

To answer our RQs, we use the same experiment environment and set of apps as our motivating

study (Section 3.3.1). We collect the method coverage as code coverage achieved by each run using

the MiniTrace [55] tool, which modifies DalvikVM/ART and does not require app instrumentation.

We consider only crashes originated from app bytecode and collect code locations in stack traces as

crash signatures. We obtain stack traces by monitoring and filtering Android Logcat [48] messages.

As mentioned in Section 3.4, we use Toller to remove apps’ UncaughtExceptionHandlers to

ensure that stack traces are being reported to Logcat.

In addition to the three Android UI test generation tools used in our motivating study (Section

3.3.2), we also use Ape [15], another state-of-the-art tool, for our experiments. We use the four

tools in the following settings.

• Both WCTester and Stoat run on computers and use UIAutomator to capture UI hierarchies.

To enhance the two tools with Toller while keeping implementation changes minimal, we

translate Toller’s captured UI hierarchies to the UIAutomator’s format to make them

directly readable by these two tools. For UI Event Execution, WCTester injects low-level

UI events directly using ADB shell commands, while Stoat sends UI element queries to

UIAutomator to generate and inject the corresponding low-level UI events. We replace both

tools’ original implementation of UI Event Execution with Toller.

• Like WCTester and Stoat, Chimp also runs on computers and can use UIAutomator to

capture UI hierarchies. To enhance Chimp with Toller, we choose to fully incorporate

38



Toller into Chimp to avoid unnecessary translations of UI hierarchies. For UI Event

Execution, Chimp injects low-level UI events directly using ADB shell commands while its

Toller-enhanced version uses Toller for UI Event Execution.

• As the most recently proposed state-of-the-art tool in our experiments, Ape already provides

support for fast UI Hierarchy Capturing in its implementation by using hidden Android

accessibility service APIs. These implementation details are not explicitly discussed in the

tool’s paper [15]. To show the significance of infrastructure support on Ape, we modify Ape

to build its slow version, which leverages UIAutomator services in the same way as the other

tools. We then compare the slow version’s testing effectiveness with the original version of

Ape. Note that unlike the other Toller-enhanced tools, the original Ape contains only the

UI Hierarchy Capturing enhancement and not the UI Event Execution enhancement because

UI Event Execution requires Toller’s UI Hierarchy Capturing (Section 3.4).

In total, we have nine tool versions in our experiments: Chimp (with and without Toller),

WCTester (with and without Toller), Stoat (with and without Toller), Ape (original and slow

version), and Monkey. To compensate for potential randomness in our experiments introduced

by tool or app logic, we run each tool on each app three times, with each run being one hour.

Overall, we spend 27 hours per app (9 tool versions * 3 runs for each version) and a total of 405

hours (27 * 15 apps) for all apps.

3.5.2 RQ1: Efficiency of Enhancements

To understand how Toller’s UI Hierarchy Capturing and UI Event Execution infrastructure

enhancements affect the run time performance benefits of Toller, we integrate Toller with the

three test generation tools from Section 3.3.1 and re-run the experiments in the same settings. The

time usage statistics of UI Hierarchy Capturing and UI Event Execution are shown in Tables 3.2

and 3.3, respectively. Note that the numbers for each tool are aggregated from running on all

15 apps once. As shown in Tables 3.2 and 3.3, Toller is capable of reducing overheads for

both primitive interfaces on all three tools. Specifically, the average time usages for UI Hierarchy

Capturing are reduced by about 97%, 77%, and 97% on Chimp, WCTester, and Stoat, respectively.

For UI Event Execution, the average time usages are reduced by 40%, 18%, and 95% on Chimp,

WCTester, and Stoat, respectively. We find that UI Event Execution has less substantial overhead

reductions than UI Hierarchy Capturing because as described in Section 3.4, Toller falls back

on using low-level UI event injections on event handlers that have not been covered by a low-level

UI event injection.

UI Hierarchy Capturing and UI Event Execution can take a substantially different amount of

time for different tools because some of the tools use different approaches to invoke UIAutomator

(e.g., directly invoking the uiautomator command in the ABD shell as used by Chimp, or using
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Figure 3.4: Average method coverage by elapsed time during testing. Note that
each data point shows how many methods have been covered on average across
three runs on all apps by the respective tool, after the corresponding amount of
time has elapsed in each run. The ending number of covered methods for each tool
is the same as that in the “Average” row in Table 3.4.

a service wrapper [29] for ease of programming in the case of WCTester and Stoat). Another

observation is that the original implementation of Stoat takes much more time than the other

tools to perform both types of operations. We find that this result is related to how Stoat uses the

UIAutomator service wrapper: Stoat’s implementation essentially sets up and establishes new con-

nections to the on-device service agent before each capture or action. On the contrary, WCTester

sets up this connection only once and persists the connection, eliminating much overhead.

3.5.3 RQ2: Code Coverage Benefits

Table 3.4 shows the average coverage statistics of each pair of tools and apps from our experi-

ments. Figure 3.4 shows the changes of average code coverage across all apps for each tool along

with run time. Note that methods that can be covered after app launch but before testing starts

are excluded. As shown in Table 3.4 and Figure 3.4, using Toller’s infrastructure enhancements

helps improve the testing effectiveness of various Android UI test generation tools. Specifically,

enhancing Chimp, WCTester, and Stoat with Toller yields 11.8%, 10.4%, and 70.1% average

method coverage improvements, respectively. For Ape, the tool’s own fast UI Hierarchy Capturing

implementation brings 9.7% average method coverage improvement. It should also be noted that

the aforementioned percentages are calculated based on the average number of covered methods

across different apps, where apps with a larger codebase can have a bigger impact on the results.

One key finding is that the differences of code coverage brought by infrastructure enhancements
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Table 3.5: Cumulative numbers of distinct crashes for all tool versions. Note that
Ch, Wt, and St denote Chimp, WCTester, and Stoat, respectively. For each tool T,
TO refers to its original version, while TE refers to our Toller-enhanced version.
Each integer cell under TO or TE shows the cumulative number of distinct crashes
across three runs by the corresponding tool version on the corresponding app. A
blank cell indicates no crash. Each integer cell under ΣT indicates the union
number of covered methods by the two tool versions on the corresponding app.
%O = TO/ΣT× 100%, similar for %E. In the ‘Total’ row, each integer indicates the
sum value of all numbers in the respective column, while each percentage is
calculated from sum values using the same methodology as aforementioned.

App Name ApeS %S ApeO %O ΣApeMKChO %O ChE %E ΣChWtO %O WtE %E ΣWtStO %O StE %E ΣSt
Abs 1 33% 2 67% 3 3 1 100% 0% 1 3 75% 1 25% 4 8 67% 12 100% 12
Duolingo 1 50% 1 50% 2 - - 0% 1 100% 1 6 55% 9 82% 11
Filters For Selfie - - 1 - - - - 3 75% 4 100% 4
GoodRx 0% 1 100% 1 5 100% 5 1 13% 7 88% 8 6 67% 5 56% 9
Google Translate 0% 1 100% 1 0% 1 100% 1 - - 8 73% 5 45% 11
Marvel Comics 1 100% 0% 1 0% 1 100% 1 0% 1 100% 1 9 82% 9 82% 11
Merriam-Webster - - - - - - 4 44% 9 100% 9
Mirror 3 60% 5 100% 5 5 3 60% 5 100% 5 5 83% 4 67% 6 5 63% 7 88% 8
My Baby Piano - - - - - - - -
Sketch - - - - - - 4 80% 4 80% 5
trivago 1 33% 2 67% 3 3 1 100% 0% 1 0% 1 100% 1 8 53% 11 73% 15
WEBTOON 0% 1 100% 1 1 - - 1 100% 0% 1 8 57% 14 100% 14
Word 0% 1 100% 1 2 0% 4 100% 4 1 33% 2 67% 3 6 55% 11 100% 11
Youtube - - 0% 1 100% 1 2 100% 0% 2 13 59% 16 73% 22
Zedge 1 100% 0% 1 0% 1 100% 1 0% 3 100% 3 4 40% 9 90% 10
Total 8 42% 14 74% 19 15 5 25% 18 90% 20 13 43% 20 67% 30 9261%125 82%152

Table 3.6: Distribution of exception types for all tool versions. Note that each cell
shows the number of distinct crashes of the specific type triggered by the
corresponding tool on all apps. A blank cell indicates no crash. If an exception
type appears only once across all tools and apps, it is counted in “Other” instead
of being shown in a separate row. Thus, the numbers of distinct crashes in
“Other” also indicate the numbers of exception types. The “Total” column shows
the numbers of distinct crashes for each exception type across all tools.

Exception Type ApeS ApeO Mk ChO ChE WtO WtE StO StE Total

ActivityNotFoundException 2 5 4 2 4 4 3 3 11
ExceptionInInitializerError 2 2 3
IllegalArgumentException 1 1 2
IllegalStateException 2 3 4 2 4 2 17
NoClassDefFoundError 2 2 2
NullPointerException 1 4 2 1 5 9 5 11 25
OutOfMemoryError 1 2 3
RuntimeException 2 2 4 2 3 6 2 81 102 129
Other 1 3 1 2 2 2 11

Total 8 14 15 5 18 13 20 92 125 203

can be substantial enough to change the relative competitiveness among tools. For example, Table

3.4 shows that for Stoat, compared with Monkey, the Toller-enhanced version achieves higher

average code coverage, while the original version achieves lower average code coverage. In Ape’s

case, the slow version has much smaller advantages over other tools: its average code coverage
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is only about 2% relatively higher than the Toller-enhanced WCTester. We also find that the

original Ape achieves higher code coverage than other tools on 10 apps, while the slow Ape does

that on only 4 apps. For comparison, the Toller-enhanced Chimp and WCTester top the ranks

on 4 and 3 apps, respectively, when we omit the original Ape from consideration. Figure 3.4

additionally shows that the slow Ape (denoted as ApeS) constantly has comparable average code

coverage as the Toller-enhanced WCTester (denoted as WCTesterE), where ApeS starts to

beatWCTesterE after 40 minutes of testing. Interestingly, according to Figure 3.4, the Toller-

enhanced WCTester even has higher code coverage than all other tools in the first several minutes

of testing. Specifically, when we observe the area under the curve (AUC) for every minute, we

find that if developers are given at most 9 minutes to use Android UI test generation tools, then

the Toller-enhanced WCTester gives the highest AUC instead of the original Ape.

Analysis of Negative Code Coverage Improvements To better understand our results for

this RQ, we manually study some of our results to understand why some tools have negative code

coverage improvements on some apps after Toller’s infrastructure enhancements. Specifically,

we manually look into all of the cases where the coverage decrement is over 1% given that smaller

changes (<1%) are likely caused by random noise. We look at tool logs and differences in method

coverage to speculate root causes.

We are able to identify only one major cause for the reduced effectiveness: Unsupported UI

element types. The current implementation of Toller does not support obtaining the inner

contents of certain types of UI elements, such as WebViews that maintain their own non-standard,

internal UI-related data structures. These WebViews are a major cause for why apps such as

“Filters For Selfie” and “Mirror” have negative code coverage improvements for WCTester. Both

of these two apps have Google’s AdMob SDK embedded and the SDK relies on WebViews to display

ads. Without knowing the UI hierarchy inside, it is difficult for tools to produce meaningful UI

events to fully exercise this ads-related logic. Future work should explore how Toller can better

handle certain types of UI elements (e.g., falling back to UIAutomator for WebViews).

3.5.4 RQ3: Crash Triggering Benefits

Table 3.5 shows the cumulative number of distinct crashes (from three runs) for all tool versions

evaluated on each app. As shown in the table, the Toller-enhanced versions are capable of

substantially improving the total number of distinct crashes, from 5, 13, and 92 to 18, 20, and 125

for Chimp, WCTester, and Stoat, respectively. In Ape’s case, the total crash count rises from 8 to

14 by using Ape’s improved infrastructure support. Overall, we find that there are 43 pairs of tools

and apps with at least one crash (non-empty cells under ΣT). Of the 43 pairs, 30 and 10 pairs have

more and fewer (respectively) crashes triggered by enhanced tool versions than original/slow tool

versions. The remaining 3 pairs have the same number of crashes for both tool versions. Of the 30
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Table 3.7: Cumulative method coverage for all tool versions. Note that Ch, Wt,
and St denote Chimp, WCTester, and Stoat, respectively. For each tool T, TO

refers to its original version, while TE refers to our Toller-enhanced version.
Each integer cell under TO or TE shows the cumulative number of covered
distinct methods across three runs by the corresponding tool version on the
corresponding app. Each integer cell under ΣT indicates the union number of
covered methods by two tool versions on the corresponding app.
%O = TO/ΣT× 100%, similar for %E. In the ‘Average’ row, each integer indicates
the average value of all numbers in the respective column, while each percentage
is calculated from average values using the same methodology as
aforementioned.

App Name ApeS %S ApeO %O ΣApe ChO %O ChE %E ΣCh WtO %O WtE %E ΣWt StO %O StE %E ΣSt
Abs 8872 95% 9318 100% 9348 9077 97% 7479 80% 9369 9107 89% 8205 80% 10206 6367 77% 7380 89% 8290
Duolingo 14789 96% 15018 97% 15471 14282 97% 14235 96% 14770 12086 81% 14136 94% 14989 12397 80% 14937 96% 15558
Filters For Selfie 2380 42% 5684 99% 5730 2343 97% 2286 95% 2407 2759 68% 2177 54% 4067 2479 73% 3365 99% 3406
GoodRx 16451 96% 15504 90% 17191 14973 89% 16214 97% 16762 14383 85% 16615 98% 16911 12257 81% 14173 93% 15185
Google Translate 9709 93% 10292 99% 10428 8545 79% 10537 97% 10829 9732 95% 9689 95% 10192 6519 72% 7665 85% 9000
Marvel Comics 5614 81% 6688 96% 6946 5016 98% 4940 96% 5140 4736 94% 4614 92% 5031 4667 83% 5344 95% 5647
Merriam-Webster 8776 97% 8614 95% 9046 8293 90% 8858 96% 9223 6859 75% 8710 95% 9192 8353 86% 9314 95% 9766
Mirror 1196 93% 1253 97% 1290 1514 99% 796 52% 1534 1309 97% 959 71% 1354 1058 79% 1213 91% 1335
My Baby Piano 1572 31% 5059 100% 5065 1590 87% 1810 100% 1818 2682 66% 1555 38% 4083 1654 100% 253 15% 1662
Sketch 8737 92% 8919 94% 9519 8687 93% 8955 96% 9311 8120 91% 8264 93% 8913 6874 71% 9351 97% 9614
trivago 19999 97% 20437 100% 20524 19857 98% 19980 98% 20342 20010 98% 19847 97% 20399 6072 29% 20926 100% 20981
WEBTOON 23982 85% 27149 97% 28088 18048 63% 27933 98% 28643 19754 68% 27185 93% 29238 9957 36% 25123 91% 27457
Word 13550 93% 13034 90% 14514 11711 78% 14645 97% 15095 13946 94% 13706 93% 14763 11055 80% 13493 98% 13768
Youtube 31010 87% 28268 79% 35681 21122 86% 21427 87% 24572 20101 77% 23709 91% 26069 20866 71% 22451 76% 29427
Zedge 39932 77% 50763 98% 51562 52210 93% 41536 74% 56212 39612 95% 38550 92% 41765 28960 68% 36159 85% 42503
Average 13771 86% 15067 94% 16027 13151 87% 13442 89% 15068 12346 85% 13195 91% 14478 9302 65% 12743 89% 14240

pairs where the enhanced tool versions have more crashes, 21 pairs’ cumulative crashes are all from

the enhanced tool versions (highlighted cells under TE and ApeO). On the other hand, of the 10

pairs where the enhanced tool versions have fewer crashes, only 6 pairs’ cumulative crashes are all

from the original/slow versions. In general, when the original/slow versions trigger more crashes,

the differences are generally small: only one crash for 7 of the 10 pairs. Randomness in the tools’

and apps’ logic is likely responsible for why original/slow versions can trigger more distinct crashes

than Toller-enhanced versions. Overall, our results find that infrastructure enhancements help

test generation tools with not only covering more code but also triggering more distinct crashes.

Exception Types We additionally study the distribution of exception types. As shown in

Table 3.6, the Toller-enhanced versions trigger not only more instances of crashes, but also

more types of exceptions (the number of non-empty cells): from 3, 4, and 6 types to 8, 6, and

9 types on Chimp, WCTester, and Stoat, respectively. In Ape’s case, the slow version triggers 5

types of exceptions, while the original version triggers only 4 types. One possible explanation for

this finding is the randomness in the tools’ and apps’ logic. Nevertheless, our results still find that

infrastructure enhancements help most test generation tools trigger more distinct types of crashes.

3.5.5 RQ4:Overlap of CodeCoverage andCrashes

In RQ4, we investigate whether the code coverage achieved and crashes triggered by tools with

infrastructure enhancements are subsumed by what the original/slow versions of the tools achieve
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and trigger. To answer this RQ, we measure the overlaps between code coverage achieved and

distinct crashes triggered by both versions of each tool.

Table 3.7 shows the cumulative code coverage for all tool versions. Specifically, for each tool

on each app, this table shows how many methods are covered by either version in any run, as

well as how many methods can be covered by only one of the versions. As shown in the table,

the Toller-enhanced versions achieve, on average, 89%, 91%, and 89% coverage of all methods

that can be covered by either version of Chimp, WCTester, and Stoat, respectively. In Ape’s case,

the original version achieves 94% coverage of all methods that can be covered by either the slow

or original version. Our results suggest that tool versions with infrastructure enhancements can

generally replace the original versions as the versions with enhancements provide the most of the

coverage achievable by either version.

We use the same methodology to show the overlaps of crashes triggered by the two versions of

each tool. As shown in Table 3.5, the Toller-enhanced versions also cover most of the crashes

triggered by either version shown by the %E columns in the table. In fact, 90%, 67%, and 82%

of the cumulative distinct crashes detected by Chimp, WCTester, and Stoat, respectively, are

triggered by the Toller versions. For Ape, the original version covers 74% of all crashes. Our

results again suggest that tool versions with infrastructure enhancements can generally replace

the original versions as the enhanced versions provide the most of the detected crashes.

3.5.6 RQ5: Effectiveness of Enhancements

To understand how Toller’s two enhancements have contributed to test generation tools’ code

coverage and crash triggering ability, we additionally conduct experiments by enabling only UI

Hierarchy Capturing and comparing its results with the setting where both enhancements are used

(results in Sections 3.5.3 and 3.5.4). We do not evaluate only UI Event Execution, as Toller’s

UI Event Execution implementation depends on UI Hierarchy Capturing and does not work on

its own as discussed in Section 3.4. Tables 3.8 and 3.9 show the average method coverage and the

number of distinct crashes, respectively, for all test generation tools using different enhancement

options under the same experimental settings. More detailed experiment data is available on our

website [52].

As shown in Tables 3.8 and 3.9, enhancing UI Hierarchy Capturing already improves both

achieved code coverage and triggered crashes, while enhancing UI Event Execution leads to even

better testing effectiveness, particularly for the number of distinct crashes triggered. One inter-

esting finding is that for Chimp and WCTester, the UI Event Execution enhancement does not

improve the overall code coverage. Beyond the fact that all tools are likely to cover less new code

as time increases, we identify multiple additional causes for why UI Event Execution may not

increase code coverage:
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Table 3.8: Average method coverage for enhancements.
Note that “None” denotes that no infrastructure
enhancement is applied. “HC Only” denotes that only
UI Hierarchy Capturing enhancement is used, while
“HC + EE” denotes that both UI Hierarchy Capturing
and UI Event Execution enhancements are used.

None HC Only ∆ HC + EE ∆
Chimp 10794 12072 11.8% 12071 11.8%
WCTester 10973 12112 10.4% 12116 10.4%
Stoat 6114 10121 65.5% 10399 70.1%

Table 3.9: # of distinct crashes for enhancements

None HC Only ∆ HC + EE ∆
Chimp 5 8 1.6x 18 3.6x
WCTester 13 15 1.2x 20 1.5x
Stoat 92 103 1.1x 125 1.4x

• As discussed in Section 3.4, UI Event Execution skips the logic of dispatching low-level UI

events on UI elements, likely resulting in the loss of coverage. We mitigate this limitation by

falling back to low-level UI event injection when we find an event handler that has not been

exercised. However, the strategy could still miss edge cases (e.g., when different UI elements

share the same parameterized event handler class).

• Faster UI Event Execution and faster UI Hierarchy Capturing can result in higher CPU

usages and overload the emulators, likely causing apps to stop responding.

• Tools might not be accustomed to both fast UI Event Execution and fast UI Hierarchy

Capturing. Being unaccustomed to both may cause the tools to be too fast when an app

loads content asynchronously, and the time overhead incurred by slower UI Event Execution

or UI Hierarchy Capturing actually helps the tools properly wait for the content to load.

Such cases are known to cause UI flaky tests [56].

Future work should explore how to carefully design solutions to address the aforementioned

causes. For example, future work can intelligently decide on the waiting time at each step to mit-

igate the effects of device overloading or asynchronous loading with minimal unnecessary waiting

costs.

3.6 THREATS TO VALIDITY

The internal threats to the validity of our work are that Toller’s implementation and the

scripts used to generate the tables and figures could have faults that might have affected our
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results. Furthermore, our setup of the Android test generation tools used in our experiments

could have been incorrect and affected our results. To mitigate these internal threats to validity,

we design our experiments to output extensive logs along with the metrics used in our experiments.

We then manually analyze a sample of the logs from our experiments to ensure that the presented

results match what we observe from the logs.

The main external threat to the validity of our work is the representativeness of the apps and the

Android UI test generation tools selected for our experiments. To mitigate this threat to validity,

we select the top apps from 13 different categories of apps on the Google Play Store. Therefore,

the selected apps vary greatly in their functionality and APK size (from 3.3MB to 93MB). The

Android test generation tools used for our experiments are from a previous study [20] of Android

UI test generation tools. The study finds that Monkey is the best Android UI test generation tool

among six tools. Among these tools, we find that two are runnable on our infrastructure and do

not require app instrumentation. To demonstrate the improvements that Toller can have on

Android UI test generation tools, particularly on ones that use UIAutomator, we select the two

tools from the previous study and implement a version of Monkey, known as Chimp, that uses

UIAutomator for our experiments.

Another threat to the validity of our work is the randomness from the Android UI test generation

tools, apps, and emulators. Namely, across different runs of the same tool, app, and emulator,

the obtained metrics could change. To mitigate this threat to validity, we run each pair of tools

and apps three times, where each run is performed on a newly-created emulator with the same

software and hardware configurations throughout all of the experiments. The conclusions that we

make from our results are then from the aggregation of the three runs for each pair of tools and

apps.

3.7 DISCUSSION

Modifying Android OS. For our experiments, we modify AOSP Android 6.0 on both emula-

tors and real devices. Our modified emulator image is publicly available [52] as a portable testing

environment for others to immediately begin using.

While modifying the Android framework eliminates the risks of app instrumentation, it is true

that modifying the Android framework can also be undesirable. For instance, we might fail to

modify a customized Android OS. Additionally, the modification usually requires root access to

the testing device, not being always feasible. To support developers who may be interested in

infrastructure enhancements without modifying the Android framework, we also design Toller

so that it can be bundled with the target app’s code through source code integration or binary

instrumentation. Because Toller relies on only Android framework classes, it is only necessary

to inject a startup method call into existing app code to make Toller work.

On the other hand, we argue that different testing needs should be satisfied with different ways
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of support. Specifically, the Android-framework-based solution is suitable for external testing on

certain devices, such as app examinations conducted by app marketplaces. The code-bundling-

based solution may be more suitable for in-house testing conducted by app developers, such as

compatibility testing that involves various devices.

3.8 SUMMARY

Much work has been proposed by researchers to improve Android UI test generation tools with

sophisticated algorithmic designs. Recent studies have shown that these tools barely outperform

(w.r.t. code coverage and crash triggering ability) Monkey, a simple tool that generates and injects

purely randomized UI events. To understand the inefficiencies of Android test generation tools, we

have conducted a motivating study to determine the sources and extents of the inefficiencies for

these tools. Our motivating study has found that capturing information about the contents on the

screen (UI Hierarchy Capturing) and executing UI events (UI Event Execution, such as clicks) use

on average 70% of the testing run time. Based on our findings, we have proposed Toller, a tool

to provide efficient infrastructure support for UI Hierarchy Capturing and UI Event Execution to

Android UI test generation tools. Our experiments show that Toller can substantially (1) reduce

the run time used by the infrastructure that the test generation tools depend on and (2) improve

the code coverage and crash triggering ability of these tools when they are given a reasonable

amount of run time. We make the source code of Toller and the scripts used to set up Toller

publicly available [52]. We hope that our results can raise the community’s awareness of the

significance of infrastructure support beyond the community’s existing heavy focus on algorithms.
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CHAPTER 4: VET: PROVIDING EXPLORATION GUIDANCE VIA
IDENTIFYING AND AVOIDING UI EXPLORATION TARPITS

4.1 OVERVIEW

In this chapter, we mainly focus on detecting and taming the factors that lead to the ineffective-

ness of existing mobile UI test generation tools. We find that existing mobile UI test generation

tools are often prone to exploration tarpits1, where tools get stuck with a small fraction of app

functionalities for an extensive amount of time. We show a real-world example in Section 4.2,

where a state-of-the-art Android UI test generation tool named Ape [15] decides to log itself out

one minute after testing an app starts, without being able to log back in, and since then gets

stuck with exploring the app’s pre-login functionalities (i.e., exploration tarpits) instead of its

main functionalities. It is possible that tool vendors/users manually hardcode rules for the tools

to avoid specific exploration tarpits, such as instructing Ape to avoid tapping the “logout” button

or writing a script to support automatic login. However, these rules can hardly generalize, being

fragile in face of diverted testing environments (e.g., unreliable network to process login requests),

fast app iterations, and the demand of batch testing product lines. Our findings in Section 4.5.2

show various cases as such where exploration tarpits can be caused by unexpected flaws in a tool’s

exploration strategies or implementation defects.

To automatically identify and resolve exploration tarpits, in this chapter, we propose a general

approach and its supporting system named Vet for the given specific Android UI test generation

tool on the given specific app under test (AUT). Vet works in three stages. (1) Vet runs the tool

on the AUT for some time and records the interactions between the tool and AUT, in the form of

UI traces. A UI trace consists of app UIs interleaving with the actions taken by the tool. (2) Vet

then analyzes the collected traces to identify trace subsequences (termed regions) that manifest

exploration tarpits. (3) Vet guides the tool in subsequent test runs to prevent or recover from an

exploration tarpit by monitoring the testing progress and taking actions based on findings from

the identified regions.

Vet includes two specialized algorithms targeting two corresponding patterns of exploration

tarpits: Exploration Space Partition and Excessive Local Exploration (see Section 4.2 and Section

4.4). Exploration Space Partition, corresponding to Figure 4.1a, indicates that the fraction of app

functionalities explored by the tool is disconnected from most of the app functionalities after some

specific action (e.g., tapping “OK” in Screen C). Such situations can be prevented by disabling the

aforementioned action. Excessive Local Exploration indicates that the tool enters a hard-to-escape

fraction of the app UIs and needs a significant amount of time to reach other functionalities, as

demonstrated in Figure 4.1b. This issue can be addressed by either preventing the tool from

1The name of exploration tarpits is inspired by the Mythical Man-Month book [57].
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entering (e.g., disabling “START” in Screen E in Figure 4.1b) or assisting the tool to escape (e.g.,

restart the app upon observation of Screen F). To design the two algorithms, we first construct

fitness value formulas that quantify how well a region on the given trace matches a targeted

pattern. We then apply fitness value optimization on the entire trace to determine the region that

best fits our targeted patterns.

We evaluate Vet using three state-of-the-art Android UI test generation tools (Monkey [7],

Ape [15], and WCTester [32, 33]) with 16 widely used industrial apps. We collect 144 traces by

running each tool on each app three times for one hour each (original runs). Vet reports at least

one exploration tarpit region in each (tool, app) pair, with 131 regions in total, each spanning

about 27 minutes on average. The longest regions span over 59 minutes, about 98.6% of the one-

hour testing time budget. After inspecting the 131 reported regions, we confirm the root causes of

96 regions, including both limitations of UI exploration strategies (e.g., early logouts) and defects

in tool implementation (e.g., hanging), as shown in Section 4.5.2. We then perform six other

one-hour runs for each (tool, app) pair: (1) three guided runs using Vet to automatically avoid

all the exploration tarpit regions identified in the original runs during testing on three runs, and

(2) three comparison runs not using Vet.

Based on the preceding evaluation setup, we compare the code coverage (of the given app)

achieved by applying each tool with and without the assistance of Vet given the same time

budget. Specifically, we compare the combined code coverage and the numbers of distinct crashes

for (1) original runs and guided runs, and (2) original runs and comparison runs. The evaluation

results show that on average a tool assisted by Vet achieves up to a 15.3% relative code coverage

increment and triggers up to 2.1x distinct crashes than the tool without the assistance of Vet.

In summary, this chapter makes the following main contributions:

• A new perspective of improving the given automated UI test generation tool by automatically

identifying and addressing exploration tarpits for the given target AUT;

• Algorithms for effective identification of two manifestation patterns of exploration tarpits;

• A practical system [58] that can be automatically applied to enhance any Android UI test

generation tool such as Monkey [7], Ape [15], and WCTester [32, 33], on any AUT;

• Comprehensive evaluation of Vet, demonstrating that Vet reveals various issues related to

tools or app usability, and that Vet automatically resolves those issues, helping the tools

achieve up to a 15.3% relative code coverage increment and 2.1x distinct crashes on 16 popular

industrial apps.
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A B C D

2 mins 58 mins

(a) Exploration Space Partition

E F G

22 mins

(b) Excessive Local Exploration

Figure 4.1: Motivating examples of exploration tarpits described in Section 4.2.
Note that colored bars on the top represent the progress of two 1-hour tests, where
green bars refer to normal exploration and red bars refer to exploration tarpits.
Dashed straight arrows indicate visiting the screen from some other screen, and
solid arrows show transitions between two screens after clicking the red-boxed UI
elements. The dashed curve arrow on Screen D depicts that Ape cycles around D
until the end of testing. The dashed curve arrow on Screen F shows that Monkey
stays on F within the 22-minute exploration tarpit window.

4.2 MOTIVATING EXAMPLES

We present two concrete examples from our experiments covering Exploration Space Partition

and Excessive Local Exploration (see Section 4.4). These examples provide contexts for further

discussion and help illustrate the motivations that drive the design of Vet.
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4.2.1 Exploration Space Partition

We run Ape [15], a state-of-the-art Android UI test generation tool to test a popular app,

Microsoft OneNote. The result is illustrated in Figure 4.1a. We manually set up the account to

log in to the app’s main functionalities, and then start Ape. We run Ape without interruptions

for one hour and check the test results afterward.

In the one-hour testing period, Ape explores only 12% (9 out of 76) activities. To understand

the low testing effectiveness, we investigate the UI trace captured during testing and find the root

cause to be exploration tarpits:

1. Ape performs exploration around OneNote’s main functionalities for about two minutes, cover-

ing 7 (out of 9) of all the activities covered in the entire one-hour test run. We omit this phase

in Figure 4.1a.

2. About two minutes after testing starts, Ape arrives at the “Settings” screen (Screen A) and

decides to click “Account” (the red-boxed UI element) for further exploration.

3. Ape arrives at the “Account” screen (Screen B) and clicks the “Sign Out” button. The click

pops up a window (Screen C) asking for confirmation of getting logged out.

4. Ape clicks “CANCEL” first, and then goes back to the “Account” screen. However, Ape

clicks the “Sign Out” button again, knowing that there is one action not triggered yet in the

confirmation dialog. Subsequently, Ape clicks the “OK” button (Screen C) and logs itself out.

5. The logout leads to the entry screen (Screen D). From this point, Ape has access to only a

small number of functionalities (e.g., logging in). Ape cannot log in due to the difficulty of

auto-generating the username/password of the test account. In the remaining 58 minutes, Ape

explores two new activities in total.

This example represents Exploration Space Partition described in Section 4.1. The essential

problem is that Ape does not understand UI semantics—it does not know that the majority of

OneNote’s functionalities will be unreachable by clicking the “OK” button at the time of action.

4.2.2 Excessive Local Exploration

Figure 4.1b presents another example in which we run Monkey [7], a widely adopted tool, to test

another popular industry-quality app, Nike Run Club. In this example, Monkey spends about 22

minutes trying to saturate one of the app’s functionalities. After investigating into the collected

UI trace, we find the following behavior when Monkey interacts with the app:

1. Monkey explores other functionalities normally before entering Screen E that allows the tool to

enter the functionality where the tool later gets trapped. We name the functionality the trapping
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functionality. Monkey clicks the “START” button and enters the trapping functionality (Screen

F).

2. Monkey keeps clicking around in the trapping functionality. To escape from the trapping

functionality, Monkey first needs to press the Back button, and a confirmation dialog (Screen

G) will pop up. Monkey then has to click the “OK” button to finish escaping. However, due to

being widget-oblivion, Monkey clicks only randomly on the screen, resulting in constant failures

to click “OK” when the confirmation dialog is shown. Furthermore, the dialog disappears when

Monkey clicks outside of its boundary, and Monkey needs to press the Back button again to

make the confirmation show up one more time. It takes 22 minutes for Monkey to find and

execute an effective escaping UI event sequence and finally leave the trapping functionality.

3. The aforementioned behaviors are repeatedly observed in the trace (with different amounts of

time used for escaping).

This example represents Excessive Local Exploration behavior described in Section 4.1. The

essential problem is that Monkey is both widget- and state-oblivion, i.e., the tool is unable to locate

actionable UI elements efficiently or sense whether it has been trapped and react accordingly (e.g.,

by restarting the target app).

4.2.3 Implications

To prevent such undesirable exploration behaviors, a conceptually simple idea is to de-prioritize

exploring the entries to aforementioned trapping states (i.e., the “OK” button in Screen C, and

“START” button in Screen F). One potential solution is to develop natural language processing

(NLP) or image processing based approaches that can infer the semantics of UI elements [59,

60, 61, 62]. While solutions based on understanding UI semantics are revolutionary, they are

challenging due to fundamental difficulties rooting in NLP and image processing.

In this chapter, we explore a more practical and evolutionary solution based on understanding

exploration tarpits by mining UI traces. We show that it is feasible to identify the existence and

location of such behavior through pattern analysis on interaction history. Given the location of

exploration tarpits, we can further identify which UI actions might have led to such behavior.

Taking the example of Figure 4.1, Ape starts to visit a very different set of screens (e.g., the

welcome screens in Screen D in Figure 4.1a) after clicking “OK”, and the number of explored

screens dramatically decreases. Therefore, we can look at the screen history and find the time

point where the symptom starts to appear. The UI action located at the aforementioned time

point is then likely the cause of the symptom. Our Vet system uses a specialized algorithm

(Section 4.4.2) to effectively locate the starting time point of exploration tarpits similar to the

aforementioned instance.
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4.3 BACKGROUND

This section presents background knowledge about UI hierarchy to help readers understand our

algorithm design and implementations in the scope of Android UI testing.

A UI hierarchy structurally represents the contents of app UI shown at a time. Each UI hierarchy

consists of UI properties (e.g., location, size) for individual UI elements (e.g., buttons, textboxes)

and hierarchical relations among UI elements. On Android, each activity internally maintains the

data structure for its current UI hierarchy. Typically, UI elements are represented by View [63]

subclass instances, and hierarchical relations are represented by child Views of ViewGroup [64]

subclass instances.

A key component of UI testing is to identify the current app functionality. The functionality

is identified by equivalence check for UI hierarchies, because UI hierarchies are usually used as

indicators of apps’ functionality scenarios. Thus, checking the equivalence between the current

and past UI hierarchies allows tools to identify whether a new functionality is being exercised.

If the current functionality has been covered, the tool can additionally leverage the knowledge

associated with the functionality to decide on the next actions. There are different ways to check

UI hierarchy equivalence:

• Strict comparison. A simple way to check the equivalence of two UI hierarchies is to compare

their UI element trees and see whether they have identical structure and UI properties at each

node. In practice, such simple equivalence checking is too strict. For example, on an app

accepting text inputs, a tool checking exact equivalence can count a new functionality every

time one character is typed.

• Checking similarity. A workaround to the aforementioned issue of strict comparison is to

check similarities of two UI hierarchies against a threshold. However, ambiguity can become the

new issue, given that the similarity relation is not transitive: suppose that A is similar to both

B and C, it is still possible that B is not similar to C. Then if both B and C are in the history

(regarded as different functionalities), and A comes as a new UI hierarchy, the tool is unable to

decide on which functionality to use the associated knowledge from. To fix the ambiguity issue,

we can perform screen clustering, essentially putting mutually similar screens into individual

groups and regarding each group as representing one single functionality. Then the downside is

that screen clustering can be a computationally expensive operation, especially for traces with

many screens.

• Comparing abstractions. A more advanced solution is to check the equivalence at an abstrac-

tion level, employed by many model-based UI test generation tools [11, 13, 15, 65, 66]. In the

previous example, one can leave out all user-controlled textual UI properties from the hierarchy

and the equivalence check can tell that the tool is staying on the same screen regardless of what

has been entered. While abstracting UI hierarchies is conceptually effective, it is challenging
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to design effective UI abstraction functions. The difficulty lies in identifying UI properties or

structural information to distinguish different app functionalities, especially when screens have

variants with relatively subtle differences.

Ape [15] includes adaptive abstractions to address the challenge of automatically finding

proper UI abstraction functions in different scenarios. Ape dynamically adjusts its abstraction

strategy (e.g., which UI property values should be preserved) during testing based on feedback

from strategy execution (e.g., whether invoking actions on UI hierarchies with the same ab-

straction yields the same results). Unfortunately, the adaptive abstraction idea assumes the

availability of sufficiently diverse execution history for feedback, and such history is not always

available when analyzing given traces as in our situation.

Given the pros and cons of the aforementioned ways, we empirically adopt a hybrid approach

for UI hierarchy equivalence check. First, we always abstract UI hierarchies: (1) we consider only

visible UI elements (i.e., View.getVisibility() == VISIBLE, and the element’s bounding box

intersects with its parent’s screen region), (2) we keep the activity ID and the original hierarchical

relations among UI elements, and (3) we retain only UI element types and IDs from UI properties.

Second, we check the similarities of abstract UI hierarchies and cluster them into groups only

when the analysis is sensitive to the absolute number of distinct screens. More details on achieving

clustering efficiently are elaborated in Section 4.4.3.

4.4 THE VET APPROACH

4.4.1 Overview

We propose Vet, a general approach and its supporting system that automatically identifies

and addresses exploration tarpits for any given Android UI test generation tool on any given

AUT. Our implementation of Vet is publicly available at [58].

As illustrated in Figure 4.2, for a given tool and AUT, Vet works in three stages. First, Vet

runs the target tool on the AUT for a certain amount of time and records the interactions between

the tool and AUT. With help from our Android framework extension Toller [22], Vet collects

trace(s) that consist of AUT UIs interleaving with the tool’s actions. Then, Vet analyzes each

individual trace with specialized algorithms to identify trace subsequences (termed regions) that

manifest the tool’s exploration tarpits. Optionally, one can rank the identified regions based on

their time lengths, where longer regions receive higher ranks, to prioritize regions that are likely

to exhibit exploration tarpits with higher impacts (see Section 4.5.2). Finally, Vet learns from

the identified regions and guides the tool in subsequent runs to avoid exploration tarpits, by

monitoring the testing progress and taking actions based on findings from the identified regions.

With the support from Toller, Vet is currently capable of (1) preventing specified actions by
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disabling the corresponding UI elements at runtime and (2) assisting the AUT to escape from

the specified screens by restarting the AUT. The identified regions additionally support manual

investigations of testing efficacy by providing localization help.

Stage I: Trace Collection

App Under 
Test

UI Testing
Tool

Traces VET
Detection

Algorithms

Our
Infra+

UI & Action Recording

Exploration
Tarpit

Regions

Stage II: Analysis

Stage III: Enhanced Exploration

Avoidable
Actions & 
Screens

Android Framework

Our
Infra+

UI Monitoring & Manipulation

Android Framework

Figure 4.2: Overview of Vet.
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Figure 4.3: Two patterns of exploration tarpits. Note that each subgraph
corresponds to an example trace, where each circle represents a distinct screen in
the trace (e.g., each subfigure in Figure 4.1), each arrow indicates that action(s) is
observed between two screens in the trace, and each curved rectangle depicts a UI
subspace. Red arrows denote destructive actions (e.g., clicking “OK” in Screen C of
Figure 4.1a, “START” in Screen E of Figure 4.1b) while dashed arrows show where
traces begin.

We equip Vet with two specialized algorithms targeting two patterns of exploration tarpits: Ex-

ploration Space Partition and Excessive Local Exploration. Characteristics of the two algorithms’

targeted patterns are illustrated in Figure 4.3 and discussed as follows:

• Exploration Space Partition. As shown in Figure 4.3a, the UI test generation tool traverses

through a UI subspace (Subspace 2) for a long time after the execution of some action (the
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red arrow), and the tool is unable to return to the previously visited UI subspace (Subspace

1). Furthermore, the tool visits much fewer distinct screens after the action. The presence of

the symptom suggests that the tool has triggered a destructive action (effectively the partition

boundary of the entire trace and beginning of the exploration tarpit) that prevents the tool from

further exploring the app’s major functionalities. The first motivating example from Section

4.2 corresponds to this symptom, where clicking the “OK” button is the destructive action that

gets Ape trapped in multiple screens related to logging in (Subspace 2) and prevents Ape from

further accessing OneNote’s main functionalities (Subspace 1).

• Excessive Local Exploration. As shown in Figure 4.3b, the UI test generation tool is trapped

in a small UI subspace (Subspace 2) for an extended amount of time after the execution of the

corresponding destructive action (the red arrow). However, the tool is capable of returning to the

previously visited UI subspace (Subspace 1) despite the difficulties. It is also likely that the tool

will get trapped again within Subspace 2 after returning to Subspace 1. Consequently, the tool

spends an excessive amount of time repetitively testing limited functionalities in this hard-to-

escape subspace. The second motivating example from Section 4.2 corresponds to this symptom,

where clicking the “START” button gets Monkey trapped in Screens F and G (Subspace 2).

Clicking “OK” helps Monkey go back to Screen E (within Subspace 1) and other functionalities,

but it does not take a long time before the tool gets trapped again within Subspace 2.

As can be seen, Exploration Space Partition targets higher-level irreversible transition of UI

exploration space, while Excessive Local Exploration focuses on lower-level difficulties of exercising

a specific functionality. Note that it is possible for the regions reported by the two algorithms

on the same trace to overlap. For example, Excessive Local Exploration might also capture

exploration tarpits within Exploration Space Partition’s trapped UI subspace (corresponding to

Subspace 2 in Figure 4.3). Such overlaps do not prevent us from finding meaningful targeted

exploration tarpits: different exploration tarpits revealed by regions identified by both algorithms

suggest the existence of different exploration difficulties.

In the remaining of this section, we describe the two algorithms for capturing Exploration

Space Partition and Excessive Local Exploration in Section 4.4.2 and Section 4.4.3, respectively.

We show that pattern capturing can be expressed as optimization problems. Table 4.1 describes

the notations used to describe Vet’s algorithms.

4.4.2 Capturing Exploration Space Partition

According to our introductions of Exploration Space Partition, we need to find a destructive

action exerted on screen Sn as the partition boundary such that the aforementioned characteristics

from Section 4.4.1 can be best reflected. For instance, considering our first motivating example in
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Table 4.1: Notations and descriptions used in the algorithms

Notation Description

Si Screen #i in the trace represented by the UI hierarchy.
ti The timestamp of screen Si being observed.
Sl,r A region of screens starting at Screen #l and ending at

Screen #r (with both ends included).
{Sl,r} The set of distinct screens from Sl,r by de-duplicating

their UI hierarchies.
|Ss

l,r| The number of occurrences of s in Sl,r.
tmin A predefined threshold that decides the minimum time

length of any Sl,r (i.e., tr − tl ⩾ tmin) that may be
included in algorithm outputs.

Section 4.2, we hope to pick up the screen shown in Figure 4.1c as Sn. We optimize the following

formula to find the most desirable Sn from a trace with N screens:

argmin
1⩽n<Ep

[
∑

s∈{S1,n}

|Ss
n+1,N |

N − n
] + 2 · σ( |{Sn+1,N}|

|{SEp+1,N}|
− 1)− 1 (4.1)

In the formula, Ep is a pre-calculated limit indicating the upper bound of n during optimization,

and σ denotes the Sigmoid function. Note that N − n can be pulled out of the sum subformula.

The intuition of the formula design is as follows:

1. As part of the characteristics, the tool should ideally be able to visit few to no screens that have

appeared no later than Sn after the tool passes Sn. Correspondingly, in our motivating example,

screens shown before Figure 4.1c (depicting the app’s main functionalities) are dramatically

different from the screens afterward (logging in, ToS, etc.). In the formula, the nominator of

the first term (intended to be minimized) quantifies the proportion of screens seen before Sn

within Sn+1,N .

2. As the denominator of the first term, N − n essentially calculates how many (non-distinct)

screens the tool visits after Sn. There are two purposes of this design. First, we hope to

normalize the first term in the formula (so that two terms can weigh the same). Given that∑
s∈{S1,n} |S

s
n+1,N | =

∑
s∈{S1,n}∩{Sn+1,N} |Ss

n+1,N | ⩽
∑

s∈{Sn+1,N} |Ss
n+1,N | = N − n, the first term

is guaranteed to fall within [0, 1]. Second, we want to push Sn backward (note that smaller

n makes the first term smaller) because we assume that the design makes Sn closer to the

exploration tarpit’s root cause, which should appear earlier than other causes.

3. As another part of the characteristics, the tool stays within a certain UI subspace for a long

time; thus, the tool will go through screens within the subspace very often. If the tool generally

uniformly visits most or all distinct screens within the subspace, by observing a small period of
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exploration (corresponding to SEp+1,N in the formula) we should have a fairly precise estimation

(i.e., {SEp+1,N}) of the subspace boundary, which is characterized by {Sn+1,N}. The second

term in the formula corresponds to this intuition, where the closer {SEp+1,N} is to {Sn+1,N}
(note that {SEp+1,N} ⊆ {Sn+1,N}), the more favorable it becomes during optimization.

4. By setting an upper bound Ep on n and regularizing the ratio with a Sigmoid function and

applying appropriate linear transformations, we can guarantee that the second term in the

formula always ranges from 0 to 1, being the same as the first term. In the end, two terms in

the formula contribute equally to optimization choices.

To determine Ep on each trace, because our optimization scope does not include any interval

shorter than [Ep, N ], we choose a value such that tN − tEp is closest to tmin.

After obtaining a potentially suitable Sn through optimizing the aforementioned formula, we

additionally check whether |{S1,n}| > |{Sn+1,N}| is satisfied, essentially enforcing the property

that the exploration space should be smaller after the partition. Finally, the reported region is

Sn+1,N .

4.4.3 Capturing Excessive Local Exploration

Based on the characteristics of Excessive Local Exploration from Section 4.4.1, we should track

the presence of a region showing that the tool is trapped within a small UI subspace for an

extended amount of time. For our second motivating example in Section 4.2, one valid choice is

the 22-minute region starting from the button click in Screen E of Figure 4.1b. We accordingly

optimize the following formula to find the boundaries Sl and Sr of the most suitable region on a

trace:

argmin
1⩽l⩽r⩽N

|{Map(Sl,r,Merge({Sl,r}))}|
r − l + 1

(4.2)

In the formula, Merge denotes the operation of merging similar screens (this operation will be

introduced later). As the optimization formula suggests, we hope to find a suitable region such that

it covers few distinct screen groups despite that the tool tries to explore diligently (by injecting

numerous actions quantified by r − l + 1). Then if tr − tl ⩾ tmin, we regard that the exploration

tarpit region Sl,r can be reported. Accordingly in our motivating example, the choice of Sl is

Screen F of Figure 4.1b and Sr is the last instance of Screen G of Figure 4.1b in the 22-minute

region. Sl−1 corresponds to Screen E of Figure 4.1b, and the destructive action is reported.

Note that there can be more than one region exhibiting Excessive Local Exploration behavior

within a single trace, given the possibility for the tool to escape the UI subspaces where Excessive

Local Exploration behavior is observed. In order to find all potential regions, we iterate the
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Algorithm 4.1: Merge: Merging similar screens into groups (each group is represented
by its root screen in R)

Input: A set of abstract UI hierarchies H
Output: A mapping R : H 7→ R, where R ⊆ H
Sort h ∈ H by |h| in ascending order
R← {}
foreach h ∈ H do

R[h]← nil
end
foreach h ∈ H do

if R[h] = nil then
R[h]← h
foreach h′ ∈ H do

if R[h′] = nil ∧ SimCheck(h, h′) then
R[h′]← h

end

end

end

end
return R

aforementioned optimization process on remaining region(s) each time after one region is chosen,

until no more region can be divided.

Design of Merge. As mentioned in Section 4.3, involving screen merging is especially useful

for handling Excessive Local Exploration, given that the aforementioned optimization formula

is very sensitive to the absolute numbers of distinct screens. Being part of the challenge, an

efficient (and mostly effective) screen merging algorithm requires careful design. Given a set of

distinct abstract screens (represented by UI hierarchies) to merge, a relatively straightforward (and

precise) approach is to first calculate the tree editing distance [67] for each pair of abstract UI

hierarchies for similarity check, and then use combinatorial optimization [68] to decide the optimal

grouping strategy (e.g., by converting to an Integer Linear Programming [69] problem), such that

all screens within the same group are mutually similar and the total number of groups is minimal.

Unfortunately, such an algorithm requires exponential time in regards to the number of distinct

abstract screens to merge. The design will likely fall short on traces collected using industrial-

quality apps, from which we can easily capture hundreds to thousands of distinct abstract screens.

Aiming to make the algorithm practically efficient, we relax the definition of similarity and

the goal of optimization from the aforementioned merging algorithm based on insights from our

observations. Specifically, we find that in many cases, similar screens can be seen as screen variants

derived from base screens by inserting a small number of leaf nodes or subtrees into the abstract UI

hierarchy. Based on this assumption with some tolerance for inaccuracy, we can (1) design a more

efficient tree similarity checker (Algorithm 4.2), which considers only node insertion distances and
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Algorithm 4.2: SimCheck: UI hierarchy similarity checker

Input: Abstract UI hierarchies h1, h2

Output: Whether h1, h2 are similar enough
Const: Max allowed distance dmax, empirically set to 3
seq1 ← []
foreach node ∈ DepthFirstTraverse(h1) do

seq1 ← seq1 :: (Props(node),Depth(node))
// Props obtains the node’s UI properties that are preserved during abstraction. See
more details in Section 4.3.

end
seq2 ← []
foreach node ∈ DepthFirstTraverse(h2) do

seq2 ← seq2 :: (Props(node),Depth(node))
end
lcs← LongestCommonSequence(seq1, seq2)
if |lcs| < min(|h1|, |h2|) then

return false

else
return max(|h1|, |h2|)− |lcs| ⩽ dmax

end

has Θ(|h1| · |h2|) time complexity (compared with O(|h1| · |h2| ·Height(h1) ·Height(h2)) for full

tree edit distance), and (2) replace the inefficient combinatorial optimization with a highly efficient

greedy algorithm (Algorithm 4.1), which tries to find all the base screens with O(|H|2 ·maxh∈H |h|2)
time complexity. In practice, with multiple other optimizations not affecting the level of time

complexity, the algorithm needs only several seconds on average to process a trace. Even for a

very long trace with 2,000 distinct abstract screens and tens of thousands of concrete screens, the

algorithm runs for only several minutes.

4.5 EVALUATION

Our evaluation answers the following research questions:

• RQ1: How effectively can Vet help reveal Android UI test generation tool issues with the

identified exploration tarpit regions?

• RQ2: What is the extent of effectiveness improvement of Android UI test generation tools

through automatic enhancement by Vet?

• RQ3: How likely do Vet algorithms miss tool issues in their identified exploration tarpit

regions?
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Table 4.2: Overview of industrial apps used for evaluation. Note
that ‘#Install’ denotes the approximate number of downloads.
‘Login’ indicates whether the app requires logging in to access
most features.

App Name Version Category #Install Login
AccuWeather 5.3.5-free Weather 50m+ ✗

AutoScout24 9.3.14 Auto & Vehicles 10m+ ✗

Duolingo 3.75.1 Education 100m+ ✗

Flipboard 4.1.1 News & Magazines 500m+ ✓

Merriam-Webster 4.1.2 Books & Reference 10m+ ✗

Nike Run Club 2.14.1 Health & Fitness 10m+ ✓

OneNote 16.0.9126 Business 100m+ ✓

Quizlet 3.15.2 Education 10m+ ✓

Spotify 8.4.48 Music & Audio 100m+ ✓

TripAdvisor 25.6.1 Food & Drink 100m+ ✓

trivago 4.9.4 Travel & Local 10m+ ✗

Wattpad 6.82.0 Books & Reference 100m+ ✓

WEBTOON 2.4.3 Comics 10m+ ✗

Wish 4.16.5 Shopping 100m+ ✓

YouTube 15.35.42 Video Player & Editor 1b+ ✗

Zedge 7.2.2 Personalization 100m+ ✗

4.5.1 Evaluation Setup

Android UI Testing Tools and Android Apps. We use three state-of-the-art Android UI

test generation tools: Monkey [7], Ape [15], and WCTester [32, 33]. We use 16 popular industry

Android apps from the Google Play Store, as shown in Table 4.2. These 16 apps are from a

previous study [20], which picks the most popular apps from each of the categories on Google Play

and compares multiple test generation tools applied on these apps. The apps that we choose need

to work properly on our testing infrastructure: (1) they need to provide x86/x64 variants of native

libraries (if they have any), (2) they do not constantly crash on our emulators, and (3) Toller

is able to obtain UI hierarchies on most of the functionalities. We additionally skip apps that (1)

have relatively limited sets of functionalities, or (2) require logging in for access to most features

and we are unable to obtain a consistently usable test account (e.g., some apps have disabled our

test accounts after some experiments).

Trace Collection. We run each tool on every app for three times to alleviate the potential

impacts of non-determinism in testing. Each run takes one hour without interruption, and we

restart the tool if it exits before using up the allocated run time. Toller records one UI trace

for each test run. While Vet runs separately on each UI trace, results are grouped for each (tool,

app) pair. In total, we collect 144 one-hour UI traces from 48 (tool, app) pairs.

Testing Platform. All experiments are conducted on the official Android x64 emulators

running Android 6.0 on a server with Xeon E5-2650 v4 processors. Each emulator is allocated
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with 4 dedicated CPU cores, 2 GiB of RAM, and 2 GiB of internal storage space. Emulators are

stored on a RAM disk and backed by discrete graphics cards for minimal mutual influences caused

by disk I/O bottlenecks and CPU-intensive graphical rendering. We manually write auto-login

scripts for apps with “Login” ticked in Table 4.2, and each of these scripts is executed only once

before the corresponding app starts to be tested in each run. To alleviate the flakiness of these

auto-login scripts, we manually check the collected traces afterward and rerun the experiments

with failed login attempts.

Overall Statistics. Vet reports 131 regions to exhibit exploration tarpits, averaging 2.7 on

each (tool, app) pair. Based on Vet’s reports, the average amount of time involved in explo-

ration tarpits is about 27 minutes per region, with the maximum being 59 minutes and minimum

being slightly more than 10 minutes (given that we empirically set tmin = 10 minutes for all the

experiments).

4.5.2 RQ1. Detected Tool Issues

Methodology We evaluate the effectiveness of Vet algorithms in capturing exploration tarpits

that reveal issues of test generation tools upon AUTs. Specifically, we first group exploration

tarpit regions by the (tool, app) pairs that these regions are observed on. Then, we rank the

regions within each (tool, app) pair by their time lengths as mentioned in Section 4.4.1. Finally,

we manually investigate each of 131 regions from all (tool, app) pairs. We report any issue for

each of these regions with manual judgment. Note that we count only the issue that we consider

most specific to the exploration tarpit revealed by each region: if both issues A and B contribute

to the exploration tarpit on some region, and A also contributes to other regions on the same

trace, we count only B in the statistics.

Results We are able to determine tool issues on 96 of 131 manually investigated regions. Table

4.3 shows the distribution of issue types w.r.t the tool and region ranking. Note that we find each

(tool, app) pair to have up to three regions reported by Vet; thus, rank-1/2/3 regions cover all

131 regions (with 48/43/40 regions each). The tool issues can be traced to two root causes: apps

under test require extra knowledge for effective testing, and tool defects prevent themselves from

progressing. We discuss specific issues w.r.t. these two root causes:

• App logout or equivalent (abbreviated as “LOUT” in Table 4.3) accounts for exploration

tarpits on 23% (22 out of 96) of investigated regions with identified issues. Some apps essentially

require login states for the majority of their functionalities to be accessible. However, the tools

used in our experiments have no knowledge about the consequences of clicking the “logout”

buttons in different apps before the tools actually try clicking these buttons. Unfortunately,

after the tools try out such actions (driven by their exploration strategies), the apps’ login states
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Table 4.3: Distribution of confirmed issue types. Note that ‘Mk’ and ‘Wt’ refer
to Monkey and WCTester, respectively. Issue type details are discussed in
Section 4.5.2.

Issue
Rank-1 Rank-2 Rank-3

Total
Ape Mk Wt Sum Ape Mk Wt Sum Ape Mk Wt Sum

LOUT 5 2 1 8 5 2 1 8 4 1 1 6 22
UI 0 4 0 4 0 3 0 3 2 4 0 6 13

NTWK 0 5 0 5 0 3 0 3 0 3 0 3 11
LOOP 0 0 7 7 0 0 8 8 0 0 5 5 20
ESC 0 4 0 4 0 2 0 2 0 2 0 2 8
ABS 0 0 2 2 0 0 2 2 0 0 1 1 5
MISC 5 1 2 8 5 1 0 6 3 0 0 3 17
Total 10 16 12 38 10 11 11 32 9 10 7 26 96

(both on-device and on-server) have been destroyed. The tools then have to spend all remaining

time on a limited number of functionalities, leading to exploration tarpits. This case reveals a

common weakness of existing UI test generation tools—they have a limited understanding of

action semantics. As can be seen from Table 4.3, Ape is more likely to be affected by this type

of issues.

• Unresponsive UIs (“UI”) are found in 14% (13 out of 96) of regions. We find that some

apps stop responding to UI actions after the advertisement banner is clicked, even though the

apps’ UI threads are not blocked. The issue is likely caused by the UI design defects in the

Google AdMob SDK. The AUTs should be restarted as soon as possible to resume access to

their functionalities. According to Table 4.3, Monkey is most vulnerable to such issues. One

interesting finding is that Ape is actually also vulnerable to unresponsive UIs although the tool’s

implementation is capable of identifying such situations. However, while Ape proceeds to restart

the app most of the times when Ape finds the app unresponsive, Ape fails to do so occasionally.

• Network disconnections (“NTWK”) are found in 11% (11 out of 96) of regions. We find

that turning networking off is undesirable for some apps, especially when the disconnection

lasts for a long time. Consequently, these apps may show only messages prompting users to

check their networks, leaving nothing for exploration. Tools such as Monkey can control network

connections through Android system UI (e.g., by clicking the “Airplane Mode” icon). While the

capability helps test app logic in edge conditions in general, it might hurt the tool’s effectiveness

on apps heavily relying on network access. All regions with the aforementioned issue come from

Monkey’s traces.

• Restart/action loops (“LOOP”) are found in 21% (20 out of 96) of regions. The tool es-

sentially keeps restarting or performing the same actions on the target app after some point.

One potential cause for such issues is that the tool thinks that all UI elements in the target
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app’s main screen have been explored. The tool might need to revise its exploration strategy

for discovering more explorable functionalities.

• Obscure escapes (“ESC”) are found in 8% (8 out of 96) of regions. Defects in a tool’s design

or implementation can make it difficult for the tool to escape from certain app functionalities,

and consequently, the tool loses opportunities to explore other functionalities. For instance,

Monkey finds it challenging to escape a screen where the only exit is a tiny button on the screen

(see the second motivating example in Section 4.2), due to the tool’s lack of understanding of

UI hierarchies.

• UI abstraction defects (“ABS”) are found in 5% (5 out of 96) of regions. Defects in a tool’s

UI abstraction strategies can trick the tool into incorrectly understanding the testing progress.

Seen from collected traces, WCTester considers all texts as part of abstract UI hierarchies.

While the strategy works well in a wide range of testing scenarios, it keeps the tool repetitively

triggering actions on UI elements with changing texts (such as counting down), given that the

tool incorrectly thinks that new functionalities are being covered.

• Miscellaneous tool implementation defects (“MISC”) are in 18% (17 out of 96) of regions.

In our case, we find potential implementation defects in three tools: (1) Ape and Monkey fail

to handle unresponsive apps (“Injection failed” or being unable to obtain UI hierarchies), and

(2) WCTester is found to explore only a certain fraction of app functionalities after some point.

Another finding is that the ratio of confirmed issues decreases when the rank goes lower (38/48 =

79% for rank-1, 32/43 = 74% for rank-2, and 26/40 = 65% for rank-3), suggesting the usefulness

of prioritizing regions based on their lengths.

4.5.3 RQ2. Improvement of Testing Performance

This section shows that the identified exploration tarpit regions by Vet can be used to auto-

matically address tool issues.

Automatic fix application The essential idea is to prevent some tool issues from happening

again or getting rid of tool issues quickly by controlling the interactions between tools and apps.

Specifically, given an exploration tarpit region, we identify the UI element that the tool acts on

right before the region begins, and then we use Toller to disable the UI element for Vet-guided

runs. Many tool issues can be targeted by this simple approach. For example, if we disable the

advertisement banners that lead to Unresponsive UIs in Section 4.5.2, tools will simply not run into

the undesirable situation, and they can focus on testing other more valuable app functionalities.

In some cases when there are multiple entries to the region and existing traces do not reveal all

the entries, the aforementioned approach might fail. We mitigate this limitation by monitoring
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and controlling the testing progress—currently, if we observe any of the most frequently appearing

screens from Excessive Local Exploration regions, we restart the AUT in Vet-guided runs.

We implement UI element disablement by relying on Toller to monitor screen changes during

testing and dynamically modify UI element properties. When a target screen (i.e., a UI screen

containing any target UI element, as determined by UI hierarchy equivalence check) shows up, we

pinpoint the target UI element by matching with the path to each UI element from the root UI

element. Once we confirm that the target UI element exists on the current screen, we instruct

Toller to disable the UI element, which will not respond to any further action on itself. For the

edge case where the action is not on any UI element (e.g., pressing the Back button), we restart

the target app once we see the corresponding target screen. Note that there is no need to modify

the app installation packages given that we manipulate app UIs dynamically.

Methodology of experiments We aim to measure the testing effectiveness throughout the

entire process of applying Vet. For each (tool, app) pair, in addition to the three initial runs

for trace collection, we perform the experiments for three runs in each of these three settings:

(1) Disabling UI elements based on rank-1 regions (rank-1 guided runs; see Section 4.4.1 for our

ranking strategy), (2) Disabling UI element based on rank-1, rank-2, and rank-3 regions (rank-

1/2/3 guided runs), and (3) Keep the same settings as initial runs (comparison runs). Note that

each run also lasts for one hour, and all experiments are conducted in the same hardware and

software environment regardless of different settings.

We measure method coverage (numbers of uniquely covered methods in app bytecode) as one

testing effectiveness metric in our experiments. Note that methods involved by app initialization

(i.e., before tools start to test) are excluded for a more precise comparison of code coverage gain.

Upon each (tool, app) pair, we use the following Test Groups (TGs) for effectiveness comparison:

• TG-1 : three initial runs and three comparison runs.

• TG-2 : three initial runs and three rank-1 guided runs.

• TG-3 : three initial runs and three rank-1/2/3 guided runs.

Each group consists of six one-hour runs, intended for reducing random biases. We accumulate

the method coverage of all runs within a group for the group’s method coverage. Test Group 1

serves as the baseline, while the other two test groups aim to measure how much testing effec-

tiveness gain can Vet users expect. The main reason for experimenting with exploration tarpit

regions of different ranks is that there can be multiple tool issues on an AUT, and addressing only

one of the issues might not suffice.

We also measure the crash triggering capabilities with cumulative numbers of distinct crashes.

We consider only crashes from bytecode given that Android apps are predominantly written in
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Table 4.4: Cumulative code coverage statistics. Note that ‘#Mn’ shows the total
number of covered methods in Test Group n. ∆Mn = (#Mn −#M1)÷#M1 × 100%.

App Name
Ape Monkey WCTester

#M1
Rank-1 Rank-1/2/3

#M1
Rank-1 Rank-1/2/3

#M1
Rank-1 Rank-1/2/3

#M2 ∆M2 #M3 ∆M3 #M2 ∆M2 #M3 ∆M3 #M2 ∆M2 #M3 ∆M3

AccuWeather 21977 22485 2.3% 22538 2.6% 14830 29266 97.3% 24990 68.5% 14982 15104 0.8% 14797 -1.2%
AutoScout24 17245 17274 0.2% 22713 31.7% 23455 23270 -0.8% 23085 -1.6% 18637 22157 18.9% 22154 18.9%
Duolingo 15186 15299 0.7% 15510 2.1% 13676 14598 6.7% 14582 6.6% 12319 14625 18.7% 14450 17.3%
Flipboard 9594 9742 1.5% 9510 -0.9% 5949 7482 25.8% 7125 19.8% 7872 7901 0.4% 8265 5.0%
Merriam-Webster 9056 9093 0.4% 9093 0.4% 5617 8992 60.1% 9275 65.1% 9328 9089 -2.6% 9010 -3.4%
Nike Run Club 30523 29937 -1.9% 29939 -1.9% 24472 24592 0.5% 26645 8.9% 19754 21936 11.0% 22460 13.7%
OneNote 6681 7134 6.8% 7028 5.2% 7131 7114 -0.2% 7381 3.5% 6453 6675 3.4% 6933 7.4%
Quizlet 17000 17114 0.7% 16900 -0.6% 13722 13995 2.0% 13995 2.0% 14679 14865 1.3% 14448 -1.6%
Spotify 19759 21475 8.7% 21475 8.7% 20616 22200 7.7% 21486 4.2% 18897 29298 55.0% 19632 3.9%
TripAdvisor 29857 30645 2.6% 31006 3.8% 16773 20919 24.7% 20919 24.7% 26773 28467 6.3% 28180 5.3%
trivago 20706 20710 0.0% 20711 0.0% 20216 20489 1.4% 20482 1.3% 19952 19964 0.1% 20032 0.4%
Wattpad 22960 22668 -1.3% 22447 -2.2% 14541 13717 -5.7% 15276 5.1% 15067 15884 5.4% 15982 6.1%
WEBTOON 32933 31674 -3.8% 31599 -4.1% 31477 30176 -4.1% 30176 -4.1% 25720 27659 7.5% 27659 7.5%
Wish 8829 8850 0.2% 9106 3.1% 8490 8522 0.4% 8269 -2.6% 6948 7191 3.5% 7207 3.7%
Youtube 26874 33301 23.9% 33757 25.6% 29316 32087 9.5% 35892 22.4% 22179 29143 31.4% 30233 36.3%
Zedge 42899 43074 0.4% 43433 1.2% 31245 38103 21.9% 44931 43.8% 36671 37464 2.2% 38343 4.6%
Average 20755 21280 2.5% 21673 4.4% 17595 19720 12.1% 20282 15.3% 17264 19214 11.3% 18737 8.5%

JVM languages (Java and Kotlin). Crashes are identified by hashing the code locations in stack

traces. We additionally leverage Toller to disable each app’s UncaughtExceptionHandler,

which is widely used by industrial apps to collect crash reports and might prevent crash information

from being exposed to the Android log system (i.e., Logcat [48]) and captured by our scripts.

It should also be noted that Toller monitors, captures, and manipulates UIs with negligible

overheads; thus, the testing effectiveness of original runs should remain comparable with and

without Toller in use. In addition, Vet analyzes traces very efficiently, usually requiring only

a few seconds on a single trace, while analysis of multiple traces can be trivially parallelized.

Results Tables 4.4 and 4.5 show the effectiveness improvements by comparing three test groups.

As can be seen from the results, automatically applying fixes based on Vet’s identified exploration

tarpit regions helps Ape, Monkey, and WCTester achieve up to 4.4%, 15.3%, and 11.3% cumulative

code coverage improvements relatively on 16 apps using the same amount of time. Additionally,

Vet helps Ape, Monkey, and WCTester achieve up to 2.1x, 2.1x, and 1.9x overall distinct crashes,

respectively. It should be noted that Vet’s automatic approach does not address all the tool

issues—some issues, especially those rooting in tool implementations, are likely addressable by

only humans.

For most (tool, app) pairs with improvements, considering only rank-1 exploration tarpit re-

gions is sufficient for code coverage gain. However, there are cases where code coverage increases

considerably when we consider rank top-3 regions instead. One explanation is that there are mul-

tiple applicability issues, or multiple instances of exploration tarpit corresponding to the same

applicability issue. For example, when applying Monkey on the app Nike Run Club, there are

multiple ways to enter a hard-to-escape functionality as depicted by the motivating example in

Section 4.2. If we block only one entry, Monkey can still find other ways to enter the functionality
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Table 4.5: Distinct crash statistics. Note that ‘#Cn’ is for total #
triggered unique crashes in Test Group n.

App Name
Ape Monkey WCTester

#C1 #C2 #C3 #C1 #C2 #C3 #C1 #C2 #C3

AccuWeather 2 4 9 0 5 4 0 2 4
AutoScout24 1 1 1 2 1 1 0 0 0
Duolingo 1 2 2 0 0 0 1 1 1
Flipboard 0 0 1 0 0 1 1 1 0
Merriam-Webster 2 3 3 0 5 7 0 0 0
Nike Run Club 1 1 1 6 3 5 0 0 1
OneNote 0 2 5 0 2 1 0 1 0
Quizlet 0 1 0 0 0 0 1 1 1
Spotify 1 1 1 0 0 0 0 0 0
TripAdvisor 3 5 5 0 1 1 1 1 1
trivago 1 1 2 0 1 2 2 1 2
Wattpad 2 2 2 0 0 0 2 3 2
WEBTOON 1 1 1 1 0 0 0 3 3
Wish 2 4 2 2 1 1 0 0 0
Youtube 0 0 0 0 0 0 1 1 2
Zedge 0 0 0 0 0 0 0 0 0
Total 17 28 35 11 19 23 9 15 17

(despite being more difficult) and waste time there.

There are also cases where code coverage decreases when we consider rank-3 exploration tarpit

regions. One reason is that lower-ranked regions might not capture real issues, but Vet tries to

“fix” them anyway, indeliberately interfering with normal functionalities. In the case of applying

WCTester on Spotify, the rank-3 region does not reveal any tool issue, according to our observation.

“Fixing” this region can cause Vet to restart the app when one major functionality shows up.

Consequently, WCTester is unable to explore that functionality to achieve more coverage in guided

runs.

4.5.4 RQ3. Missed Tool Issues

We show our analysis of tool issues that are not revealed by any exploration tarpit regions (i.e.,

false negatives) reported by Vet.

Methodology We propose using issue-specific detection tools to discover hidden tool issues

(in all the collected traces), which can provide an estimation of how likely any issue is missed.

Specifically, we summarize the characteristics of two issues from Section 4.5.2, App logout and

Unresponsive UIs, to design two approaches specifically targeting these two issues. The reason for

choosing the aforementioned issues is that (1) they have a substantial appearance among all issues
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that we have identified, and (2) their existence is relatively more straightforward to be determined

using our infrastructure. We do not adopt manual inspection due to the subjectivity and the

error-prone nature of manual judgments, especially given that we need to look at all the collected

traces entirely.

Our issue-specific detection approaches work as follows:

• App logout. We first manually look into the activity list of each app with ‘Login’ ticked in Table

4.2 and identify the subset of activities that are used for logging in to the app. Then, when we

analyze a given trace, we find the first and the last occurrence of any activity that belongs to

the aforementioned list. If there is any occurrence, and the time distance between the first and

the last occurrence is at least tmin, we regard that an issue of App logout is found in the trace.

• Unresponsive UIs. In our investigation, we find only one case that leads to Unresponsive UIs:

when an advertisement banner is clicked. Consequently, a new activity can be observed, where

the activity belongs to the Google AdMob SDK and has the same activity ID across different

apps. Thus, we simply look for continuous appearance (i.e., there is no other activity in between)

of the aforementioned activity ID on the given trace. Note that we require the appearance to be

continuous so as to exclude the cases where the tool (such as Ape) chooses to restart the app.

If the appearance lasts for at least tmin, we regard that an issue of Unresponsive UIs is found in

the trace.

In order for a detected issue to be considered covered by our general-purpose algorithms, we

require that at least one algorithm-identified exploration tarpit region covers at least 1/2 of the

time length within which the detected issue appears.

Results We apply the specialized approaches on all 144 collected traces. As a sanity check, we

find that all the manually-discovered App logout and Unresponsive UIs issues are covered by the

specialized approaches. We compare the results against identified regions from Vet’s general-

purpose algorithms and perform manual confirmation. We find only several cases where the Vet

algorithms do not yield accurate results, discussed as follows:

• On one trace from applying Monkey on Zedge, Vet misses one Unresponsive UIs issue by not

reporting any covered region. We find that the Excessive Local Exploration algorithm prioritizes

another region over any region covering this issue. However, we find that this issue is also present

in other traces from the same (tool, app) pair, and Vet identifies and addresses this issue.

• On each of two other traces from Ape on Duolingo and Monkey on Zedge, there are two instances

of the same Unresponsive UIs issue, and Vet reports only one of them. The inaccuracy is also

caused by the prioritization strategy of the Excessive Local Exploration algorithm. However,

since two instances point to the same issue on both traces, Vet is still effective.

68



• On one trace from Ape on Quizlet, Ape logs out about only 5 minutes after testing starts, but

Vet reports only 22 minutes of exploration tarpit. We find Quizlet’s UI design to be somewhat

unique: the app has a special entry to some of the main functionalities in its landing page that

is accessible without logging in. The entry is buried within a paragraph of texts, and the texts

are shown only after a specific combination of swiping. Ape is able to find this special entry in

this run, making Vet confused. Nevertheless, Vet is still able to find the correct trigger action

from other traces.

4.6 DISCUSSION AND LIMITATIONS

We are mainly focusing on making Vet useful in the context of automated UI testing. However,

it should be noted that Vet’s potential usage scenarios are beyond automated UI testing. One

usage case is for app UI quality assurance, where an app might have UI design issues with one or

more functionalities. As a result, human users may face difficulties locating their desired features.

When a human user runs into such situations, he/she will then likely search for the desired features

through repeated (and ineffective) exploration around a few functionalities, and the difficulties can

be reflected by the collected user behavior statistics. By subsequently utilizing Vet’s identification

of exploration tarpits, we can quickly know which functionalities likely have the aforementioned

UI design issues, potentially from numerous traces collected from end-users, and address these

issues in a more timely manner.

One question is whether Vet is capable of differentiating testing scenarios (1) that a tool is

supposed to handle but does not (i.e., tool issues), and (2) that a tool is not expected to handle (i.e.,

beyond tool capabilities, such as apps requiring special inputs). We would like to point out that

it is inherently difficult to differentiate these two types of scenarios due to lacking specifications

over tool capabilities. On the other hand, Vet can help users identify (and mitigate) the cases

beyond a tool’s capabilities, being already useful.

We acknowledge that Toller, the utility that monitors, captures, and manipulates UIs for

Vet, still has limitations. For example, the current implementation of Toller does not capture

text inputs. However, adding support for text capturing is achievable with engineering efforts.

Moreover, Toller’s limitations do not prevent Vet from being generalizable.

4.6.1 Comparison with Time-travel Testing

Recent work [70] proposes time-travel testing (referred to as TTT) to help Android UI testing

escape from ineffective AUT states including loops and dead ends. TTT uses checkpoint and

restore—checkpointing progressive states and restoring those states after loops and dead ends are

detected.
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Vet is different from TTT in terms of design goals. First, TTT aims to recover from ineffective

exploration, while Vet mainly focuses on prevention. Second, exploration tarpits in Vet are

more general than TTT’s lack-of-progress definitions. One example is logging out, where tools

assisted by Vet can still explore a fraction of app functionalities, such as registering and resetting

passwords. Loops and dead ends are not necessarily present when exploring an app with only a

few functionalities. Third, Vet aims to enhance existing test generation tools without the need

to understand their internal design or implementation, instead of building a new test generation

tool that excels at all apps.

The design of Vet brings a few advantages. First, as acknowledged by TTT [70], the state

recovery may lead to inconsistent app states when testing apps with external state dependencies

that are maintained at the server side. Note that controlling server-side states is challenging, e.g.,

many industrial apps use external services that the apps have no control of. Vet’s preventive

strategy avoids this limitation. Second, Vet’s preventive strategy does not incur overhead for

lack-of-progress detection or state recovery in guided runs. This strategy is specifically useful

when a tool repeatedly gets into exploration tarpits. Third, Vet does not require additional

device support for state recovery (such as RAM data restoring).

4.7 THREATS TO VALIDITY

A major external threat to the validity of our work is the environmental dependencies of our

subject apps. More specifically, many of the industrial apps in our experiments require networking

for main functionalities to be usable, and it is possible for such dependency to change the behaviors

of these apps despite our efforts to make our experiment environment consistent across different

runs. In order to reduce the influences of environmental dependencies in our experiments, we

repeat each experiment setting by three times and use aggregated metrics in our paper. We addi-

tionally control each tool’s internal randomness by setting a constant random seed for each app.

Nevertheless, this threat can be further reduced by involving more repetitions in our experiments.

A major internal threat to the validity of our work comes from the manual analysis of collected

traces. We need to manually determine whether the exploration tarpit regions reported by Vet

indeed reveal any tool issue. Consequently, related evaluation results can be influenced by sub-

jective judgments. However, it should be noted that any work involving manual judgments in the

evaluation is vulnerable to this threat.

4.8 SUMMARY

We have exploited the opportunities of improving Android UI testing via automatically identi-

fying and addressing exploration tarpits. Specifically, we have presented Vet, a general approach
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and supporting system for effectively identifying and addressing exploration tarpits. We have de-

signed specialized algorithms to support Vet’s concepts. Our evaluation results have shown that

Vet identifies exploration tarpits that cost up to 98.6% of testing time budget, revealing various

issues hindering testing efficacy. By trying to automatically fix the discovered issues, Vet helps

the Android UI test generation tools under evaluation with achieving up to 15.3% higher code

coverage relatively and triggering up to 2.1x distinct crashes.

71



CHAPTER 5: EPIT: FACILITATING PARALLELIZATION COORDINATION
WITH UI EXPLORATION SPACE PARTITIONING

5.1 OVERVIEW

Given the fast pace of app development and testing, app developers/testers can substantially

benefit from parallelizing running a test generation tool on the AUT. Specifically, running a

test generation tool on the AUT can be on multiple devices concurrently. 1 Compared with

applying the tool on a single device, using the same amount of machine time, the parallelization

allows comparable test effectiveness on the AUT using only a fraction of wait time, enabling the

developers/testers to substantially shorten the testing duration of the AUT. The parallelization is

especially desirable in the context of using testing clouds (offered by various industrial vendors [71,

72, 73, 74, 75]), where developers/testers have access to numerous cloud-hosted real devices and

emulators while paying for only the duration when the devices in the cloud testing services are

used (i.e., machine time) for testing their apps. This billing mode eliminates the need of investing

high monetary costs to purchase and maintain multiple devices used for parallelized testing.

To maximize the aforementioned benefits, there is a strong need of a new approach to coordinate

such parallelization for two main reasons. First, without coordination of parallelized test runs

(i.e., running a given test generation tool against the AUT on multiple devices concurrently and

independently), overlapped app explorations by the tool across devices tend to occur earlier during

testing, causing more wasted machine time and testing budgets. The observation is reflected by our

experimental results in Figure 5.4: the baseline suffers from slowed gain of new code coverage earlier

than our approach. Second, existing UI test generation tools [8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 31]

have been primarily focusing on the testing effectiveness of single test runs (i.e., running a given

test generation tool against the AUT on a single device). It is desirable to design a new approach

that can work seamlessly with these tools to the new context of parallelized testing, preferably in

a manner of being applicable to any test generation tool, e.g., by only automatically manipulating

the AUT.

To satisfy the preceding need, in this chapter, we propose Epit, a parallel testing approach

that automatically manipulates the AUT to guide a UI test generation tool used during testing.

Aiming to improve the overall test effectiveness or reduce the amount of needed machine time

for comparable test effectiveness, Epit automatically partitions the AUT’s UI exploration space

and conceptually transforms the AUT into different variants that are suitable to be tested inde-

pendently by the tool on different devices. Figure 5.1 shows an example of an app where we can

divide the app into a main-functionality variant and an account-logistics variant that expose two

very different sets of UIs and functionalities.

1In our work, we consider the situations where running a test generation tool with deterministic tool behaviors
against the AUT on each of these devices exercises the same testing behaviors.
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To realize Epit, partitioning the AUT’s UI exploration space is challenging for three main rea-

sons. First, loosely coupled UI subspaces often do not have explicit boundaries (e.g., specific UI

elements that control the transitions among these UI subspaces) that can be recognized automat-

ically despite being necessary for effective partition. Second, mistakenly partitioning two closely

related UIs will likely make exploration less effective for the corresponding functionality. An ex-

ample is the password input screen and the result feedback screen (by disabling the confirmation

button) when exercising “Change password” as shown in Figure 5.1. Third, while it is possible for

developers/testers to manually specify partition boundaries, the efforts are limited to a per-app

basis and prone to functionality changes by app version iterations (note that most popular apps

release multiple updates every month [76]), resulting in high manual efforts.

To tackle the challenge of partitioning UI spaces, Epit distributedly conducts our novel on-the-

fly trace analysis during the testing process to find AUT UI subspaces with UIs that are strongly

cohesive while being loosely coupled to other UIs. It is generally easier for the test generation

tool to transition within a strongly cohesive UI subspace compared with transitioning between

two loosely coupled UI subspaces, suggesting that the functionalities of two loosely coupled UI

subspaces are not heavily dependent on each other. In particular, Epit conducts two algorithms

(with details described later) to identify the AUT’s UI subspaces on each test device on the fly,

and then notifies all other devices to avoid entering the subspace by blocking the corresponding

entrypoint (the action leading to the subspace), forcing different devices to discover and explore

different loosely coupled UI subspaces.

To find loosely coupled UI subspaces, our on-the-fly trace analysis includes two algorithms:

Exploration Space Partition and Skewed Local Exploration. First, Exploration Space Partition

checks for the cases where, after some specific action, the fraction of AUT UI subspace explored by

the tool is disjoint with most of the AUT UIs observed earlier. Second, Skewed Local Exploration

captures the cases where, after some specific action, the tool enters a small AUT UI subspace,

stays there for a substantial amount of time, and visits UIs in a highly skewed pattern (i.e., most

visits are on only a few UIs). Both algorithms capture the aforementioned characteristics of loosely

coupled UI subspaces. For the example shown in Figure 5.1, some time after the tool chooses to

explore the account tab by clicking the account icon highlighted in Figure 5.1(a) on one device,

Epit’s trace analyzer reports that the tool has started exploring a different UI subspace around

Figure 5.1(b) as opposed to Figure 5.1(a). The analyzer also reports that clicking the account icon

causes the transition. Consequently, Epit instructs all the other devices to disable the account

icon when Figure 5.1(a) shows up to force exploring other functionalities.

We evaluate Epit by experimenting on three state-of-the-art tools (namely Monkey [7], Ape [15],

and WCTester [32, 33]) and 16 popular industrial apps (as shown in Table 5.1) from recent

work [23]. We find that on average Epit helps Monkey, Ape, and WCTester reach comparable

code coverage using 85%, 32%, and 85% less machine time w.r.t. the baseline. When giving the

same amount of machine time, we find that on average Epit helps Monkey, Ape, and WCTester
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achieve 24.9%, 3.4%, and 16.2% more cumulative code coverage relative to the baseline, plus 2.9×,
1.1×, and 1.3× distinct crashes. When measuring the degree of overlapped explorations, we find

that on average Epit helps Monkey, Ape, and WCTester reduce the numbers of occurrences of

distinct UIs by 71.1%, 44.8%, and 62.8%, respectively. These results indicate Epit’s high value

in terms of improving the test effectiveness or reducing the cost of testing by reducing overlapped

explorations.

In summary, this chapter makes the following main contributions:

• An approach to improve the overall effectiveness of parallelized UI testing of running a test

generation tool based on our novel on-the-fly trace analysis;

• A practical system applicable to any existing Android UI test generation tool on any app;

• A comprehensive evaluation of Epit, showing that Epit helps existing test generation tools

substantially reduce overlapped explorations and achieve comparable code coverage using up to

85% less machine time than the baseline.

5.2 MOTIVATING EXAMPLE

In this section, we explain loosely coupled UI subspaces in Android apps with an illustrative

example.

Figure 5.1 presents the account tab in the app “Quizlet”. As the app’s main functionalities, the

app aims to help users learn through specialized assistance and flashcards, which can be accessed

from the home screen shown in Figure 5.1(a). The app requires users to register accounts and

stay logged in to access its services. Meanwhile, the app allows users to personalize their accounts,

such as changing the profile photo or the account password, in the account tab as shown in Figure

5.1(b) (note that our account information is blacked out in the screenshot for anonymization).

Changing these settings will generally not affect how users find or interact with the app’s main

functionalities. Users can activate the account tab by clicking the account icon in the bottom

right corner of the home screen as shown in Figure 5.1(a).

In this example, the subspace of UIs accessed when testing the app’s main functionalities is

loosely coupled with the subspace corresponding to UIs accessible in the account tab. Due to the

fact that the test generation tool needs specific sequences of actions to go back to the home screen

and switch to the account tab when exploring the app’s main functionalities (such as flashcards),

it is generally more difficult to transition between the main-functionality UI subspace and the

account-tab UI subspace compared with transitioning within one UI subspace, suggesting that the

functionalities of these two UI subspaces are not heavily dependent on each other. Such patterns

of transitions can be recognized by our on-the-fly trace analysis algorithms. Consequently, when

we conduct parallelized UI testing for the aforementioned app, we can manipulate the entry of the
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(a) (b)

Figure 5.1: A motivating example: Account tab in the app “Quizlet”.

account tab (e.g., by disabling clicking the account icon) to control which part of functionalities

can be exercised on two devices and let them exercise different functionalities.

5.3 THE EPIT APPROACH

In this section, we present the design details of Epit.

5.3.1 Mechanism Overview

We first present a high-level overview of Epit’s mechanism. Within a parallel run conducted

by Epit, multiple partial runs are performed by applying the given UI test generation tool on

the App Under Test (AUT) for certain amounts of time without interruption. Epit aims to

identify loosely coupled UI subspaces by monitoring each partial run and control access to these

UI subspaces by manipulating the entrypoints (specific UI actions that cause transitions to these

UI subspaces) in all partial runs. Note that our assumptions are that the original test generation

tool in one partial run does not have mechanism to communicate with the tool in another partial

run, and that the tool’s exploration strategy is driven by randomness from the tool or the AUT
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Device A Device B

After Entrypoint Exchange

Before Entrypoint Exchange

Device A Device B

Figure 5.2: Sharing UI subspace entrypoint information across devices. Note that
gray circles indicate UI screens, which formulate loosely coupled UI subspaces.
Arrows show possible transitions among UI screens, where colored arrows (green or
red) represent entrypoints to loosely coupled UI subspaces. A green arrow indicates
that the transition is allowed, while a red arrow indicates that the entrypoint is
blocked and the tool is not supposed to enter the corresponding UI subspace (with
a red background). Solid colored arrows show that the tool has already explored the
corresponding UI subspaces (with green backgrounds) through the entrypoints.
Dotted colored arrows indicate that the tool has not passed the corresponding
entrypoints.

(true in most situations).

Figure 5.2 illustrates a case when there are two partial runs being performed concurrently on

two devices on an AUT with three loosely coupled UI subspaces. At the beginning of the parallel

run, no loosely coupled UI subspace has been identified yet, and the test generation tool is allowed

to explore any UI subspace of the AUT in each partial run. Then, as indicated by the upper half of

Figure 5.2, the tool gets into subspace 1 on device A and subspace 2 on device B and explores the

UIs within the subspaces. After some time, through monitoring and on-the-fly trace analysis, Epit

acknowledges that subspace 1 and 2 have already been exercised on device A and B, respectively.

Epit also figures out the entrypoints to subspace 1 and 2 with help from trace analysis algorithms.

Then, Epit instructs the test monitors on device A and B to block entrypoints to subspace 2 and

1, respectively. In the end, as shown by the lower half of Figure 5.2, the tool is unable to explore

subspace 2 and 1 on device A and B, forcing itself to explore other globally unvisited parts of

AUT UIs (e.g., subspace 3). The aforementioned process is continuously performed throughout

the parallel run, and different partial runs are expected to cover various sets of AUT functionalities.
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Algorithm 5.1: FindPartition: Find the exploration space partition point inside a
given list of UIs

Input: List of UIs S, list of timestamps of UIs T , the minimum time length after
partition lmin

Output: Index of the found partition point, or nil
N, pout, scoremin ← |S|,−1, 1
foreach p ∈ N − 1 downto 0 do

if T [p] ⩽ T [N − 1]− lmin then
pmax ← p
break

end

end
sample size← |Set(S[pmax + 1 : N ])|
foreach p ∈ 1 to pmax do

overlap size← 0
foreach s ∈ Set(S[0 : p]) do

overlap size← overlap size+CountIn(s, S[p : N ])
end

overlap score← overlap size
N−p

purity score← Sigmoid( |Set(S[p:N ])|
sample size

− 1)
score← overlap score+ 2 ∗ purity score− 1
if score < scoremin then

scoremin ← score
pout ← p

end

end
if |Set(S[0 : pout])| > |Set(S[pout : N ])| then

return pout
else

return nil
end

5.3.2 On-the-fly Trace Analysis

We present the details of two on-the-fly trace analysis algorithms adapted from [23] to capture

loosely coupled UI subspaces. A trace is defined as a sequence of UIs interleaving with actions

on them. Each algorithm can be divided into two parts: (1) a partition/trapping point finder

(Algorithm 5.1 and 5.2) that works on a given list of UIs and tells which UI indicates the begin-

ning of Exploration Space Partition/Skewed Local Exploration, which indicates the existence of

a newly-found loosely coupled UI subspace, and (2) an on-the-fly detection wrapper (Algorithm

5.3) that invokes the finder upon receiving newly-observed UIs and confirms and reports the parti-

tion/trapping point along the way. Epit is then able to infer the entrypoint from the trace based

on the partition/trapping point.

FindPartition (Algorithm 5.1), reused from [23], aims to find the proper partition point such
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Algorithm 5.2: FindTrapped: Find the exploration space trapping point inside a
given list of UIs

Input: List of UIs S, list of timestamps of UIs T , the minimum time length after
trapping lmin

Output: Index of the found trapping point, or nil
N ← |S|
pout, scoremin ← −1, 1
R←Merge(S) // R : S 7→ P s.t. P ⊆ S
foreach p ∈ 0 to N − 1 do

S ′ ←Map(S[p : N ], R)
freq ← []
foreach s ∈ Set(S ′) do

freq ← freq :: CountIn(s, S ′)
end
SortDescendingly(freq)
skewness← 1
foreach i ∈ 1 to |freq| − 1 do

skewness← skewness+ 1

log(
freq[i−1]
freq[i]

)+1
∗ 1

i

end

score← |S′|
T [N−1]−T [p]

∗ skewness
if score < scoremin then

scoremin ← score
pout ← p

end

end
if T [N − 1]− T [pout] ⩾ lmin then

return pout
else

return nil
end

that the observed UI subspaces at two sides are barely relevant (line 10-14) and overlapped ex-

plorations becomes substantial afterwards (line 2-8 and 15). The goal aligns with our desired

characteristics of loosely coupled UI subspaces. A sanity check on whether the observed UI sub-

space becomes smaller after partition (line 22) helps Epit choose larger UI subspaces to further

decompose, given that it usually helps to keep parallel tasks evenly distributed.

FindTrapped (Algorithm 5.2), enhanced from the Excessive Local Exploration algorithm

from [23], aims to find the proper trapping point, after which the tool is observed to get stuck

within a small UI subspace while visiting UIs in a highly skewed pattern for a long time (line

15). The goal also aligns with our desired characteristics of loosely coupled UI subspaces. The

skewness is characterized by the relative frequency of each UI being observed (line 6-14). We

favor the situations where very few UIs are visited much more often than others. We also reuse

the Merge algorithm and UI hierarchy abstraction strategy from [23] to address the issue of UI
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Algorithm 5.3: StreamFindPartition/Trapped: Find and confirm the exploration
space partition/trapping point given a stream of UIs, intended for on-the-fly detection

Input: A newly-seen UI s, represented by its abstract UI hierarchy
Output: UI of the partition/trapping point, or nil if no such point is found and confirmed
State: List of seen UIs S, list of timestamps of UIs T , last confirmed point plast,
timestamp of last plast value change tp
Const: Wait time length before starting to find lwait, wait time length before confirming
plast as a partition/trapping point lconf
t← CurrentTimestamp()
S, T ← S :: s, T :: t
if t− T [0] ⩾ lwait then

p← FindPartition(S, lwait) // Or FindTrapped(S, lwait)
if p ! = plast then

plast, tp ← p, t
else if p ! = nil ∧ t− tp ⩾ lconf then

return S[p]
end

end
return nil

variants (line 3).

StreamFindPartition/Trapped (Algorithm 5.3) accomplishes on-the-fly detection by con-

tinuously invoking FindPartition/FindTrapped and checking whether the detection proce-

dure produces consistent output for a given amount of time (tconf). The intuition is that if the

detection procedure does not provide a confident output due to targeted patterns not matching

the inputs, the output is likely to change given more inputs.

5.3.3 System Design

Figure 5.3 depicts the overall system design of Epit. Specifically,

Trace analyzer monitors the traces collected on each device using the Toller framework [22]

(which monitors and reports immediately any action along with the context AUT UI) and invokes

on-the-fly detection algorithms to identify entrypoints to UI subspaces that the test generation

tool has already explored on the current device. Aiming to balance the detection accuracy and

efficiency, we run two instances of each detection algorithm using two groups of parameters:

G1 = {lwait = lconf = 5 minutes}, and G2 = {lwait = 1 minute, lconf = 0.5 minutes}. Outputs of the

two groups of algorithms are treated differently as explained later.

Test coordinator, upon receiving the entrypoints reported by trace analyzers, decides whether

to distribute the information to all devices (to block these entrypoints) and whether to allocate

or de-allocate devices. Specifically,

• Entrypoints reported by G1 are broadcasted to all devices immediately. The strategy aims to
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Figure 5.3: Overall system design of Epit

alleviate the situation where the test generation tool is unable to escape from the UI subspace

captured by the algorithms. Additionally, for each entrypoint reported by Exploration Space

Partition, Epit will de-allocate the source device after 10 minutes and allocate a new device

(after re-initializing the testing environment and applying existing entrypoint blocking infor-

mation) and start a new partial run for the remaining test time budget. For each entrypoint

reported by Skewed Local Exploration, Epit will restart the AUT on the source device.

• Each entrypoint reported by G2 is not broadcasted immediately but rather held for confirmation.

The strategy aims to improve the accuracy of faster detection. Once there is another report on

the same entrypoint (from any device), the entrypoint will be broadcasted. No other actions

will be taken.

Dynamic entrypoint enforcement constantly monitors the current screen contents on each device

and takes actions to block entrypoints broadcasted by the test coordinator. More specifically, Epit

relies on Toller for notifications of screen updates. Upon each screen update, a UI hierarchy

is taken, from which Epit identifies UI elements that match any blocked entrypoint. Epit then

instructs Toller to disable these UI elements before the test generation tool has chances to

action on them.

Epit supports device allocation constrained by either machine time (corresponding to the

amount of computing power used) or wait time (time elapsed after all partial runs are finished).

More specifically,

• Algorithm 5.4 shows how device allocation and de-allocation are handled in a machine-time

constrained parallel run. The user needs to set lm, lp, and dmax (line 2). The test coordinator will
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Algorithm 5.4: Handling device allocation and de-allocation for machine-time con-
strained parallel runs

State: Used machine time lu, number of running devices dr
Const: Total amount of machine time available lm, maximum test time budget for each
partial run lp, maximum amount of devices allowed to run concurrently dmax

Procedure CheckAllocateNewDevice()
if lu < lm ∧ dr < dmax then

test time← min(lm − lu, lp)
lu, dr ← lu + test time, dr + 1
AllocateDeviceForPartialRun(test time)

end

Procedure OnDeallocateDevice(remain test time)
lu, dr ← lu − remain test time, dr − 1
CheckAllocateNewDevice()

initially launch one device to conduct one partial run by calling CheckAllocateNewDevice.

When there is a new entrypoint available for broadcasting, CheckAllocateNewDevice will

also be called. When a device gets de-allocated (by either timing out or being stopped by

Exploration Space Partition), OnDeallocateDevice is called to report any machine time

that has not been consumed. When all device have been de-allocated, the parallel run is

finished.

• In a wait-time constrained parallel run, the user needs to set the number of devices to run

concurrently dmax as well as the test time budget for each device lp. Then the test coordinator

will simply launch dmax devices to perform partial runs concurrently, each with timeout of lp.

Exploration Space Partition may request device re-allocations during the parallel run, but the

total amount of test time on each device will remain constant.

As can be seen, a machine-time constrained parallel run requires more wait time to complete

compared with a wait-time constrained parallel run with the same amount of lp and machine

time. However, machine-time constrained parallel runs should generally help tools further re-

duce overlapped explorations and achieve better overall test effectiveness, thanks to the reduced

probabilities of two partial runs getting into the same UI subspaces (which is unavoidable when

partial runs are executed concurrently given the delayed feedback of trace analysis). We provide

the option for developers/testers to choose how to balance between wait time and overall test

effectiveness.

5.4 EVALUATION

Our evaluation answers the following research questions:
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• RQ1: Can Epit help reduce machine time needed to achieve comparable code coverage with

the baseline?

• RQ2: Can Epit help improve the effectiveness of existing tools with parallel testing, measured

by cumulative code coverage and unique numbers of crashes?

• RQ3: Can Epit help reduce overlapped explorations across partial runs, compared with the

baseline?

• RQ4: How much wait time does Epit need to conduct machine-time constrained parallel runs?

5.4.1 Evaluation Setup

UI test generation tools and subject apps. Three state-of-the-art Android UI test gen-

eration tools are involved in our evaluation: Monkey [7], Ape [15], and WCTester [32, 33]. We

use 16 popular industrial-quality Android apps from the Google Play Store [21] (see Table 5.1 for

details). These apps are from a previous study [20] that compares the effectiveness of multiple

tools over the most popular apps from different categories on Google Play. We choose only apps

that work properly on our testing infrastructure, specifically: (1) they need to run on our x64

Android emulators (especially when they have native libraries), and (2) Toller is able to obtain

UI hierarchies in most of the functionalities of these apps. Additionally, we skip apps that (1)

have very limited sets of functionalities, or (2) require logging in for access to most features but

we are unable to obtain a consistently usable test account.

Test platform. All experiments are conducted on the official Android x64 emulators running

Android 6.0 on a server with Xeon E5-2650 v4 processors. Each emulator is allocated with 4 CPU

cores, 2 GB RAM, and 2 GB internal storage. Emulator data are stored on an in-memory disk

for minimal mutual influences caused by disk I/O bottlenecks. Hardware graphics acceleration

is also enabled to ensure the responsiveness of emulators. We manually write auto-login scripts

for apps with “Login” ticked in Table 5.1. Each of these scripts is executed only once before the

corresponding app starts to be tested in each partial run.

Coverage and crash collection. We collect the method coverage as code coverage achieved

by each partial run, using the MiniTrace [55] tool from Ape. By modifying DalvikVM/ART, the

tool does not require app instrumentation, avoiding unexpected issues from modifying industrial

apps in our experiments. Note that we exclude methods that are already covered after setting up

the test environment but before the test generation tool starts to work in each partial run. As

for crashes, we consider only those originated from apps’ bytecode. Code locations in stack traces

are used to identify unique crashes. We obtain stack traces by monitoring Android Logcat [48]

messages. We also use Toller to remove apps’ UncaughtExceptionHandlers to ensure that all

stack traces are exposed to Logcat instead of being suppressed by apps’ own crash handlers.
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Table 5.1: Overview of industrial apps used for evaluation. Note
that ‘#Install’ denotes the approximate number of downloads.
‘Login’ indicates whether the app requires logging in to access
most features.

App Name Version Category #Install Login
AccuWeather 7.4.1-5 Weather 50m+ ✗

AutoScout24 9.8.6 Auto & Vehicles 10m+ ✗

Duolingo 3.75.1 Education 100m+ ✗

Flipboard 4.1.1 News & Magazines 500m+ ✓

Merriam-Webster 4.1.2 Books & Reference 10m+ ✗

Nike Run Club 2.14.1 Health & Fitness 10m+ ✓

OneNote 16.0.9126 Business 100m+ ✓

Quizlet 6.6.2 Education 10m+ ✓

Spotify 8.4.48 Music & Audio 100m+ ✓

TripAdvisor 25.6.1 Food & Drink 100m+ ✗

trivago 4.9.4 Travel & Local 10m+ ✗

Wattpad 6.82.0 Books & Reference 100m+ ✓

WEBTOON 2.4.3 Comics 10m+ ✗

Wish 22.5.0 Shopping 100m+ ✓

YouTube 15.35.42 Video Player & Editor 1b+ ✗

Zedge 7.34.4 Personalization 100m+ ✗

Parallel run settings. We conduct three parallel runs on each combination of test generation

tools and apps with three settings: baseline, Epit with constrained machine time, and Epit with

constrained wait time. We set lp = 1 hour and dmax = 5 in all settings, and lm = lp × dmax = 5

machine hours when running Epit with constrained machine time. For each baseline run, we

simply start dmax test devices at once and let the test generation tool explore the AUT for lp

without interruption or interference. As can be seen, each parallel run is allocated with five

machine hours.

5.4.2 RQ1. Reduction of needed machine time

For this RQ, we study how Epit can benefit parallelized UI testing by investigating how many

computing resources (measure in machine time) Epit can help save if we hope to reach the same

test effectiveness as the baseline. We use the cumulative code coverage (averaged across all apps)

as the test effectiveness metric and aim to find out how the metric changes along with elapsed

machine time, on all three test generation tools in both machine-time and wait-time constrained

parallel runs.
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Figure 5.4: Trend of average cumulative code coverage by elapsed machine time
during parallel runs. Note that each data point shows how many methods have been
covered on average across all apps by the respective tool, after the corresponding
amount of machine time has elapsed in each parallel run. A method is regarded as
being covered by the tool in a parallel run if the method is covered in any partial
run. “Epit-MT” and “Epit-WT” refer to machine-time/wait-time constrained
parallel runs conducted by Epit. To show the machine time saved by Epit, in each
sub-figure we add a horizontal line that crosses the end of baseline’s curve and
intersects with other two curves. Each intersection point is marked with an ‘X’ as
well as the corresponding machine time reading.
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Table 5.2: Cumulative code coverage statistics. Note that for the corresponding
tool ∆ = (#Epit−#Baseline)÷#Baseline× 100%.

App Name
Baseline Epit (machine time) Epit (wait time)

monkey ape wctester monkey ape wctester monkey ape wctester
AccuWeather 13064 27102 30296 27836 26854 16593 26919 27261 22163
AutoScout24 34518 40230 35637 39861 40473 37865 39509 39622 36796
Duolingo 11908 15264 14512 14601 15131 14542 14577 15169 14212
Flipboard 6113 11822 6781 7760 11041 9199 7755 11504 8135
Merriam-Webster 8319 9696 9378 10525 10914 10508 8683 9311 8614
Nike Run Club 21089 27135 17004 21582 26696 21607 36347 26689 39872
OneNote 6854 6847 6520 7696 6848 6165 7509 7111 6841
Quizlet 40294 44466 35085 46454 45943 38631 44882 46724 33462
Spotify 20163 18249 14377 21274 21928 18542 22553 19207 16940
TripAdvisor 16469 27981 25407 22504 29678 28647 24433 30780 26052
trivago 19980 20397 19988 20487 20350 20335 20088 20509 20093
Wattpad 15021 21857 14419 16490 22152 18352 22193 21895 14345
WEBTOON 25448 27603 22434 31566 30104 28514 27930 28009 27224
Wish 20690 27021 12725 22268 30152 21685 24827 33536 20806
Youtube 26050 28574 27557 33875 29706 29072 33975 29431 26707
Zedge 33449 38652 27098 37892 38256 50785 36661 38188 38303
Average 19964 24556 19951 23917 25389 23190 24928 25309 22535
∆ - - - 19.8% 3.4% 16.2% 24.9% 3.1% 13.0%

Figure 5.4 shows the trend of average cumulative code coverage by elapsed machine time during

parallel runs, where data points are available every five machine minutes. From the figure, we

find that Epit-conducted parallel runs use substantially less machine time to achieve comparable

average code coverage with the baseline runs, with 82%, 30%, 82% fewer, and 85%, 32%, 75%

fewer machine time needed by Monkey, Ape, WCTester in machine-time and wait-time constrained

parallel runs, respectively. When these numbers are translated into costs, developers/testers can

save up to 85% of prices they pay for testing their mobile apps. Considering that computing

resources are still expensive for mobile testing (e.g., AWS Device Farm charges $0.17 per device

minute for real devices [71]), involving Epit in parallelized UI testing can bring about substantial

economical benefits.

5.4.3 RQ2. Test effectiveness improvement

This RQ aims to find out whether Epit is able to help test generation tools achieve better test

effectiveness given the same amount of machine time. We compare the cumulative code coverage

and numbers of distinct crashes of all parallel runs on each combination of test generation tools

and apps. For each parallel run, its cumulative code coverage / distinct crashes are calculated as

the union of distinct methods covered / crashes triggered in each partial run.

Table 5.2 shows the statistics of cumulative code coverage on all tools. As can be seen, Epit-

conducted parallel runs generally achieve higher code coverage compared with the baseline runs,

with 19.8%, 3.4%, 16.2% more, and 24.9%, 3.1%, 13.0% more methods covered by Monkey, Ape,
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Table 5.3: Distinct crash statistics.

App Name
Baseline Epit (machine time) Epit (wait time)

monkey ape wctester monkey ape wctester monkey ape wctester

AccuWeather 0 1 0 3 1 1 2 2 0
AutoScout24 0 0 0 0 0 0 0 0 0
Duolingo 0 4 1 0 4 1 0 1 1
Flipboard 0 1 2 2 0 2 0 0 1
Merriam-Webster 0 1 0 6 3 1 5 1 0
Nike Run Club 4 0 1 4 1 1 2 1 0
OneNote 0 0 0 3 0 0 0 0 0
Quizlet 4 3 0 6 2 0 3 2 0
Spotify 0 0 0 0 0 0 0 0 0
TripAdvisor 0 3 3 0 2 0 0 4 2
trivago 1 0 0 2 0 0 1 0 0
Wattpad 0 0 1 0 0 3 3 0 1
WEBTOON 1 1 0 0 1 0 2 1 0
Wish 0 0 0 3 0 0 0 0 0
Youtube 0 0 2 0 2 3 1 1 4
Zedge 0 0 0 0 0 1 0 0 0

Total 10 14 10 29 16 13 19 13 9

WCTester on average in machine-time and wait-time constrained parallel runs, respectively. Mean-

while, Table 5.3 shows the statistics of distinct crashes on all tools. While machine-time con-

strained parallel runs achieve more crashes than the baseline runs on all tools (2.9×, 1.1×, 1.3×
by Monkey, Ape, WCTester, respectively), wait-time constrained parallel runs have difficulties

outperforming the baseline runs on Ape and WCTester despite being able to do so on Monkey.

The different outcomes of two time-constraining strategies are expected as discussed in Section

5.3.3. Essentially, machine-time constrained parallel runs trade wait time for better test effective-

ness. Section 5.4.5 discusses how much extra wait time is needed by the machine-time constrained

parallel runs. Another observation is that Epit helps Monkey achieve even higher code coverage

in wait-time constrained parallel runs compared with machine-time constrained parallel runs. A

possible explanation is that Monkey encounters many more crashes in machine-time constrained

parallel runs (as shown in Table 5.3), making it more difficult for the tool to explore deeper AUT

functionalities.

5.4.4 RQ3. Reduction of overlapped explorations

This RQ aims to find out whether Epit is capable of reducing overlapped explorations of

AUT functionalities within parallel runs. To show the degree of overlapped explorations within

a parallel run, we propose a new metric by measuring the average number of occurrences of

distinct UIs observed during testing across all partial runs. We represent UIs by their abstract UI

hierarchies (using the strategy from [23]) to avoid being overly sensitive to screen content changes.
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Table 5.4: UI overlap statistics, measured by the average number of
occurrences of distinct UIs. Note that for the corresponding tool
∆ = (#Baseline−#Epit)÷#Baseline× 100%.

App Name
Baseline Epit (machine time) Epit (wait time)

monkey ape wctester monkey ape wctester monkey ape wctester

AccuWeather 31.3 15.7 13.7 2.9 7.7 15.9 2.8 5.4 20.7
AutoScout24 18.6 7.4 18.3 8.8 6.2 15.5 6.5 6.9 12.5
Duolingo 35.6 27.2 21.6 21.3 17.1 20.3 21.9 18.9 22.0
Flipboard 16.2 14.6 8.8 6.4 9.9 9.0 6.0 10.8 8.0
Merriam-Webster 14.2 51.5 16.4 6.9 44.4 35.9 7.2 32.0 36.4
Nike Run Club 36.9 20.6 135.7 6.7 16.9 21.7 8.8 14.6 19.8
OneNote 19.7 106.1 29.6 7.6 21.5 35.2 12.4 23.5 32.2
Quizlet 13.3 8.0 17.3 6.8 7.8 12.5 5.9 6.6 16.3
Spotify 17.8 14.9 27.2 7.3 10.9 13.2 7.5 9.9 14.1
TripAdvisor 62.6 6.9 6.9 7.2 7.2 8.8 11.3 6.9 7.6
trivago 13.4 8.6 11.8 4.0 6.1 10.7 4.7 6.1 14.1
Wattpad 10.1 5.0 7.1 6.5 4.8 6.0 8.0 4.7 6.9
WEBTOON 37.9 14.2 14.8 13.9 11.0 15.4 14.4 12.7 15.1
Wish 21.0 22.0 11.3 6.3 9.3 9.6 6.4 8.5 8.7
Youtube 7.2 4.8 4.3 3.4 4.3 4.0 4.0 4.2 3.9
Zedge 87.7 21.6 320.4 11.9 18.2 14.0 18.7 21.0 62.3

Average 27.7 21.8 41.6 8.0 12.7 15.5 9.2 12.0 18.8
∆ - - - 71.1% 41.7% 62.8% 66.9% 44.8% 54.8%

Table 5.4 shows the statistics of overlapped UIs for three parallel runs on each combination of

test generation tools and apps. As can be seen, Epit-conducted parallel runs have substantially

smaller UI overlaps on average compared with the baseline runs, with 71.1%, 41.7%, 62.8% fewer,

and 66.9%, 44.8%, 54.8% fewer per-UI occurrences by Monkey, Ape, WCTester in machine-time

and wait-time constrained parallel runs, respectively.

One finding is that machine-time constrained parallel runs have smaller UI overlaps compared

with wait-time constrained parallel runs on Monkey and WCTester (as expected given the discus-

sions in Section 5.3.3) while having slightly larger UI overlaps on Ape. The unexpected difference

is mainly caused by a dictionary app “Merriam-Webster”, on which Ape explores distinct UIs for

many more times in the machine-time constrained parallel run. We investigate the test logs and

find that the app’s functionalities exercised by Ape are rather concentrated (as indicated by the

high UI occurrence numbers compared with other apps), and our algorithms are confused when

determining the UI subspace boundaries. For instance, after more than one machine hour spent in

the machine-time constrained parallel run, the Exploration Space Partition algorithm determines

that the word search box should be disabled, making it more difficult to reach the word definition

screen, contributing to UI overlapping afterwards. However, it should be noted that Epit still

helps Ape improve the test effectiveness on this app, for example by discovering and blocking

entrypoints to the ads screen and keeping Ape focused on the app’s main functionalities.
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5.4.5 RQ4. Needed wait time of machine-time constrained parallel runs

As discussed in Section 5.3.3, machine-time constrained parallel runs provide an option to re-

balance between wait time and overall test effectiveness. While previous RQs show that machine-

time constrained parallel runs generally achieve better overall test effectiveness compared with

wait-time constrained parallel runs, it is necessary to know how much wait time is actually needed

by machine-time constrained parallel runs. We answer this RQ by showing the distribution of wait

time of each machine-time constrained parallel run on different apps by each test generation tool.
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Figure 5.5: Distribution of needed wait time for machine-time constrained parallel
runs by Epit

Figure 5.5 shows the aforementioned distribution using box plots. Note that each wait-time

constrained parallel run uses 60 minutes of wait time, and machine-time constrained parallel runs

are expected to use more (up to 300 minutes in the worst case, when all partial runs execute

sequentially). As can be seen, the amount of needed wait time varies for different tools, with

Monkey and WCTester sharing a similar median number (96 and 97 minutes to be exact), while

Ape runs generally last longer (with a median of 117 minutes). The results suggest that it often

takes more time for Epit’s detection algorithms to confirm entrypoints in Ape runs, likely caused

by Ape’s strategy to prioritize unvisited UIs globally (recall that Epit’s detection algorithms with

shorter confirmation periods need to report the same entrypoint twice before actions can be taken,

as discussed in Section 5.3.3). Ultimately, we think it will be up to developers/testers to decide

whether the trade-off between wait time and overall test effectiveness is sufficiently valuable.
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5.5 DISCUSSION AND LIMITATIONS

Implications of dynamic analysis. Due to the fact that we rely on dynamic analysis on

UI traces to find loosely coupled UI subspaces, it is possible that Epit does not find all possible

loosely coupled UI subspaces that can be exercised effectively by parallel testing. However, we

insist on dynamic analysis instead of conducting static analysis to obtain the loosely coupled UI

subspaces on industrial apps for two main reasons. First, static analysis has scalability issues on

industrial-quality apps as used in our evaluation; the large code base of industrial apps (millions

of lines of code) makes existing static analysis tend to fail on them and most industrial apps adopt

obfuscation techniques [77] against static analysis. Second, even if we can find some loosely coupled

UI subspaces by static analysis, it can be very challenging to find the feasible input sequences to

get to these subspaces (e.g., submitting a payment), and consequently these statically detected UI

subspaces do not contribute to the improvement of parallel testing effectiveness.

Another issue of dynamic analysis is that, in some edge cases, Epit’s on-the-fly detection

algorithms might incorrectly mark loosely coupled UI subspaces. Specifically, test generation

tools occasionally have internal issues that cause the tools to get stuck at certain screens, likely

due to implementation defects. At most time, the tool can overpass this issue after restarting or

leaving these screens. However, in this case, the on-the-fly detection algorithm may incorrectly

determine that the tool is exploring a strongly cohesive UI subspace. We argue that Epit is still

useful in these cases, in the sense that Epit can proactively help tools avoid UIs/functionalities

that trigger their defects.

Multiple entrypoints to an identical UI subspace. Our entrypoint blocking mechanism

conservatively blocks the entrypoint (i.e., the UI widget) that previously led to the UI subspace

that we want to block access to, if it appears in the current test run. It is possible for our entrypoint

blocking mechanism to be ineffective if there are multiple entrypoints to the identical UI subspace

that we hope to block access to.

This limitation can be alleviated by developing a mechanism for escaping from a given UI

subspace, but the escaping mechanism heavily depends on the structure of the UI subspace. First,

escaping the given UI subspace may require substantial efforts to restore the state of apps. Second,

different entrypoints suggest that there are different contexts to exercise the given UI subspace,

and the semantics of actions (e.g., which page to jump back to after signing up for an account)

could change. It may be context-sensitive whether entering a given UI subspace from different

entrypoints exercises different functionalities. We plan to study on the existence and influence of

multiple entrypoints and model on whether allowing different entrypoints contribute to the testing

effectiveness.

Uneven partitioning of UI space. Given the incompleteness of the identified loosely coupled

UI subspaces from dynamic analysis, it is possible for Epit to partition an AUT’s UI space un-

evenly for different devices. This issue can be addressed using recursive partitioning. Specifically,
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when we find new loosely coupled UI subspaces whose entrypoints have been indirectly blocked

by other previously identified entrypoints, we can temporarily unblock these previously identified

entrypoints so that other devices will have chances to further explore the UI subspaces inadver-

tently blocked by these entrypoints. However, it needs non-trivial design to determine whether

an entrypoint relies on another, as well as how long a previously identified entrypoint should be

unblocked to avoid more overlapped explorations.

Relationship with FastBot. FastBot [78] works by first transferring GUI information and

actions of an AUT to a directed graphical model. The tool then applies reinforcement learning

techniques to generate test inputs that maximize the state coverage of the model. As claimed in

its paper, FastBot supports testing on multiple devices in parallel. However, the parallel testing

conducted by FastBot heavily relies on the reinforcement learning algorithm and cannot be applied

to an arbitrary tool as Epit does. In addition, the parallel testing capability of FastBot is not

publicly available for reproducing due to lack of implementation details. Consequently, we do not

involve FastBot in our evaluation.

5.6 THREATS TO VALIDITY

There might be both internal and external threats to the validity of our work.

The main external threat comes from the environmental dependencies of our subject apps. To

be specific, part of our subject apps require network access to maintain the main functionalities.

Even though we try to ensure the consistency of our experimental environment during the exper-

iment process, such network dependencies still have uncertainty and may affect the performance

of the relevant apps in the experiment. Towards minimizing the effects of such environmental

dependencies, we make each parallel run include five partial runs and use aggregated metrics.

The major internal threat to our work would be the potential faults from both the implementa-

tion of Toller’s and the setup of all Android test generation tools involved in our experiments,

which may affect our experiment results. Moreover, the scripts for table and figure generation may

include incorrectness and affect our results. To mitigate these internal threats to the validity of

our work, we output the relevant logs and the used metrics for each experiment. Furthermore, to

ensure that the generated results match our observations, we apply manual inspection to analyze

the sample of the experiment logs.

5.7 SUMMARY

In this chapter, we have looked into the opportunities of improving the overall testing effec-

tiveness or reducing testing costs in the context of parallelized UI testing. Specifically, we have

presented Epit, a parallel testing approach that automatically manipulates the AUT to guide the
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UI test generation tool used during testing. Based on two algorithms, namely Exploration Space

Partition and Skewed Local Exploration, Epit conducts on-the-fly trace analysis during the testing

process to find loosely coupled AUT UI subspaces and coordinate the devices to explore these UI

subspaces. Conceptually, Epit transforms the AUT into different variants suitable to be tested

independently by the tool on different devices. To evaluate Epit, we have applied it on 16 popular

industrial apps with three state-of-the-art tools for automated Android UI test generation. Our

evaluation results have shown that Epit helps these tools reach comparable code coverage using

up to 85% less machine time than the baseline, and Epit helps reduce overlapped explorations by

up to 71.1%.
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CHAPTER 6: RELATED WORK

Automated UI Testing for Android. This dissertation describes work on enhancing existing

automated mobile UI test generation tools. A number of automated UI test generation tools have

been published over the years of development. One of the earliest efforts is Monkey [7], a tool

from Google and shipped with nearly every Android device, originally intended for stress testing

of app UIs. While receiving almost no feedback from the target app, Monkey still manages to

achieve relatively good test effectiveness with its high event generation/execution efficiency and

wide range of supported UI event types. Many sophisticated automatic Android UI test generation

tools have been developed after Monkey, mainly focusing on novel exploration algorithms. Such

tools can be generally divided into three categories based on their exploration algorithms:

Randomness/evolution based [8, 9, 10]. For instance, Sapienz [8] is an evolutionary-testing-based

test generation tool for Android UI testing. It leverages a genetic algorithm [42] to evolve generated

seed input sequences to search for the optimized test suites containing short input sequences while

maximizing code coverage and fault revelation.

UI model based [11, 12, 13, 14, 15, 32, 33, 70, 78]. A UI model is essentially a UI transition

graph associated with information useful for exploration planning. The model is mainly useful for

determining which AUT UIs have been explored so far as well as planning on UI input sequences

to reach a specific target. To put UI modelling into action, SwiftHand [11] designs an active

learning algorithm that minimizes app restarts while exploring the AUT and builds a deterministic

UI model that approximates the AUT’s UI transitions. Stoat [13] instead aims to construct a

stochastic model of UI transitions from the AUT, mainly using dynamic analysis. The tool first

constructs an initial model through random crawling. The tool then iteratively mutates and

refines the model by generating and experimenting with UI input sequences sampled from the

model on the AUT, while aiming to achieve high code/model coverage and exhibit diverse UI

input sequences. FastBot [78] also aims to construct a UI model using dynamic analysis, but

the tool uses reinforcement learning techniques to generate UI input sequences that maximize the

state coverage of the model.

Systematic exploration based [16, 17, 18]. ACTEve [18] uses concolic testing to generate UI input

sequences for efficient coverage of AUT code while addressing the issue of path explosion by pruning

subsumption among different UI input sequences. A3E [16] includes a systematic test generation

tool (i.e., A3E-Depth-First) that performs a depth-first search strategy during exploration. Such

a search strategy mimics user actions and aims to thoroughly cover AUT functionalities. Another

strategy named Targeted Exploration is also proposed for fast, direct exploration of activities (as

opposed to the general-purpose exploration that aims for higher code coverage or fault detection)

in A3E. The strategy is based on high-level control flow graphs capturing activity transitions and

constructed by performing static dataflow analysis on AUTs’ bytecode.
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There are also other perspectives on enhancing the exploration algorithms. Mao et al. [41]

propose combining pre-defined human-generated input sequences (i.e., motif genes) with Sapienz’s

random exploration strategy to provide local exercise for different types of UI widgets. Sun et

al. [79] propose modifying Android system settings during testing to find related defects in AUTs

that cannot be triggered previously. He et al. [80] propose enhancing a tool’s text input generation

capability with constraint solving on pre-defined categories of textual hints from AUT UIs, allowing

the tool to reach deeper AUT functionalities.

While existing work has been focusing on improving code coverage and triggering more crashes,

there is also exploration on detecting non-crashing logic defects in AUTs. Su et al. [81] propose

Genie, a fully automated approach for functional fuzzing of Android apps. Inspired by metamor-

phic testing, Genie leverages the pre-defined yet commonly-held rules to check whether the AUT

behavior is consistent across generated UI inputs that are not supposed to cause the AUT to

break the rules. The approach achieves a reasonable true positive rate of 40.9% in the evaluation

involving 12 real-world Android apps.

UI Capture and Replay for Android. UI capture and replay is closely related to automated

UI testing. Our work Toller also directly benefits many Android UI capture and replay tools

that often require UI Hierarchy Capturing and UI Event Execution. Existing Android UI capture

and replay tools can be categorized into two groups based on their level of understanding of AUT

UIs:

Raw input based [82, 83, 84, 85, 86, 87]. This group of tools do not attempt to understand the

structures of AUT UIs. Instead, these tools faithfully record the raw inputs (e.g., coordinates of

clicking) from the test device and try to replay these inputs later, making them inherently fragile

to nondeterminism and changing environments [24]. RERAN [85] is a relatively simple yet highly

efficient tool of this group. Running on a computer, the tool solely relies on ADB shell commands

(e.g., getevent) to record and replay input events on a rooted device. Culebra [87], by providing

a remote control interface for the test device and letting users action on this interface, eliminates

the requirement of the test device being rooted. However, the highly inefficient implementation

prevents the tool from being practically usable [24]. appetizer-toolkit [82], on the other hand, solves

the issue of root access and inefficiency with its proprietary design and implementation. The tool

is additionally capable of handling changing environments in certain conditions (e.g., replaying on

a different device with the same screen aspect ratio). There are also efforts [88, 89] to replay user

inputs from videos so that the capturing process can be least intrusive. The effectiveness of these

techniques is still limited by the capabilities and performance of deep learning.

UI element based [53, 84, 90, 91, 92, 93, 94]. This group of tools understand the structures of

AUT UIs and perform UI element-level matching during replaying to cope with nondeterminism

and changing environments, at the expense of efficiency and compatibility with more apps [24].

SARA and RANDR [93, 94] are state-of-the-art tools of this group. During recording, SARA relies
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on its self-replay technique for good user experiences, essentially first recording raw inputs from the

user and then converting the raw inputs into UI element-aware input sequences by automatically

replaying on the same device. On the other hand, RANDR obtains UI element-aware inputs

directly by instrumenting the AUT and asking the user to action on the instrumented AUT. Both

tools feature the cross-device replaying capability.

Infrastructure Support for Android Testing. There has been work trying to improve in-

frastructure support for the purpose of efficient testing, similar to what Toller (as described in

this dissertation) aims to achieve. Hu et al. [95] propose work that aims to quickly find potential

sequences of error-triggering UI inputs through direct invocations of UI event handlers, achieved

by instrumenting the target apps. Song et al. [96] also propose a similar idea. Toller’s UI Event

Execution support achieves similar goals. It should be noted that Toller aims to provide infras-

tructure support for any tool in need of either UI Hierarchy Capturing or UI Event Execution.

Additionally, Toller does not require app instrumentation, which often breaks functionalities,

especially on industrial apps.

Non-intrusive UI Testing. While it is usually convenient, accurate, and efficient to obtain UI

information from and inject UI actions on the test device using system APIs (such as Android

UIAutomator [29] and our work Toller), sometimes developers/testers do not have access to such

interfaces, for instance, when testing IoT devices. Besides, developers/testers may hope to make

their testing system applicable to different device platforms (e.g., Android and iOS). Performing

UI testing in a non-intrusive way (i.e., using exactly the same interfaces as human users) is very

helpful in such cases. There have been various efforts in this direction:

Computer Vision (CV) for UI testing. UI test generation tools might sometimes have access to

only screenshots of test devices, where involving CV techniques is necessary. There exists a range

of work leveraging CV techniques in software testing [97, 98, 99, 100, 101, 102]. Sikuli [97, 103]

proposes a visual approach that enables developers/testers to write test scripts that use images

to describe UI elements, making it easier to facilitate test automation. JAutomate [98] proposes

a visual capture-and-replay technique by combining image recognition with capture and replay

functionality. Choudhary et al. [99] and He et al. [100, 101] use computer vision techniques for

cross-browser compatibility testing. White et al. [104] build a deep-learning model for widget

detection from screenshots to automatically test open-source Java-based desktop applications.

Robotic testing. Robotic arms [105, 106, 107, 108] can be used to mimic how humans interact

with physical devices in the situations where there is no programmatic interface to inject UI actions.

Dhanapal et al. [105] use robotic arms for hardware functionality and performance testing of smart

devices. Qian et al. [107] build a robotic testing system for IoT devices using the capture-and-

replay technique to generate visual test scripts from videos.
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Trace and Log Analysis. Our work (Vet and Epit) involves trace analysis. Existing work

leverages trace and log analysis for various purposes, including: (1) Anomaly detection [109,

110, 111, 112]. LogRobust [109] converts unstable logs (e.g., those containing previously unseen

log events or sequences) into sequential semantic vectors and feeds them to an attention-based

Bi-LSTM model, which captures the context in the log sequences and learns the importance of

different log events automatically; (2) Cause locating [113, 114, 115, 116, 117]. Kairux [113] assists

locating the root cause of faults in sophisticated distributed systems by automatically comparing

the traces from both failure and non-failure executions, where the first step at which the failure

execution deviates from the non-failure execution with the longest common sequence prefix is

regarded as exhibiting the root cause; (3) Failure reproduction [118]. Pensieve [118] reproduces

failures by generating event chains of the failure through trace analysis. Specifically, Pensieve

first captures the partial trace of events that occur during the fault execution process. The tool

then iteratively analyzes and detects dependent events that may be relevant to the failure; (4)

Performance-issue detection [119, 120]. Lprof [119] non-intrusively reconstructs the execution flow

of each request from runtime logs to help developers understand performance issues of a distributed

application, achieved by using static program analysis to automatically infer how the log should

be parsed to extract useful information. Note that Vet and Epit focus on UI traces, which are

generally different from logs and traces produced by or intended for troubleshooting program code.

Parallel Testing. Our work Epit is related to parallel testing in the sense of conceptually

producing multiple variants of the target program (i.e., customizing the AUT by manipulating the

UI entries) for the test generation tool to work on. Existing software parallel testing work focuses

on different components in the testing process. Mateo et al. [121] present a study of parallel

mutation testing, where mutants and tests are executed in parallel processors to reduce the total

time needed to perform mutation analysis. Jones et al. [122] introduce parallel debugging to help

developers efficiently cope with multiple faults in a program, achieved by proposing an automated

technique that partitions the set of failing test cases into clusters that target different faults.

Staats et al. [123] propose a technique named Simple Static Partitioning to effectively partition

the tasks of exploring different program paths for multiple computing nodes for efficient symbolic

execution, achieved by performing a shallow symbolic execution on the target program in the

upfront to compute the pre-condition for each node to follow. Bucur et al. [124] propose Cloud9, a

platform for scalable parallelization of symbolic execution on large computing clusters. Note that

existing parallel testing techniques that involve program analysis, mainly designed for traditional

programs, will likely face added difficulties when applied to rich-GUI software programs as what

we focus on. The main reason is that the control and data dependencies among application UIs

are usually hidden deeply within program logic and states that control the UIs. Consequently,

reasoning over the underlying program for information about UIs will likely be exponentially more

expensive compared with doing so on traditional programs.
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK

Given the prosperity of mobile apps and the ever-growing complexity and fast pace of app

feature development, there are unprecedented challenges on making these mobile apps robust and

reliable. Automated UI testing, by mimicking how human users interact with apps through the

UIs to detect reliability and usability issues with little human intervention, is gaining popularity

as a complementary approach to manual and scripted testing. However, despite over a decade

of research mainly focusing on designing novel exploration algorithms, it is still challenging for

mobile UI test generation tools to achieve satisfactory effectiveness, especially on industrial apps

with rich features and large code bases (Chapter 2).

In the context of existing work’s heavy focus on designing novel exploration algorithms, this

dissertation presented three parts of research that explore the possibilities for existing automated

UI test generation tools to be empowered with external automated support. These parts of work

enhance different components in the workflow of automated Android UI test generation tools: (1)

Infrastructure support (Chapter 3), which enables a tool’s exploration algorithm to obtain states

from and execute actions on the test device, allows the tool to iterate faster and cover more App

Under Test (AUT) functionalities within limited time; (2) Exploration guidance (Chapter 4), based

on our observation that a tool’s exploration algorithm or implementation might have applicability

issues on a specific AUT in certain conditions; (3) Parallelization coordination (Chapter 5), for a

tool and a specific AUT on multiple test devices, improves the overall test effectiveness or reduce

testing costs by reducing overlapped explorations.

For infrastructure support, this dissertation presented Toller, a tool consisting of efficient

mechanism for two types of UI operations (UI Hierarchy Capturing and UI Event Execution)

through infrastructure enhancements to the Android operating system. Toller injects itself

into the same virtual machine as the app under test, giving Toller direct access to the app’s

runtime memory. Toller is thus able to directly (1) access UI data structures, and thus capture

contents on the screen without the overhead of invoking the Android framework services or remote

procedure calls (RPCs), and (2) invoke UI event handlers without needing to execute the UI

events. Compared with the often-used UIAutomator [29], Toller reduces average time usage of

UI Hierarchy Capturing and UI Event Execution operations by up to 97% and 95%, respectively.

We integrate Toller with existing state-of-the-art Android UI test generation tools and achieve

the range of 11.8% to 70.1% relative code coverage improvement on average. We also find that

Toller-enhanced tools are able to trigger 1.4x to 3.6x distinct crashes compared with their

original versions without Toller enhancement.

For exploration guidance, this dissertation presentedVet, a general approach and its supporting

system to automatically identify and resolve exploration tarpits for the given specific Android UI

test generation tool on the given specific AUT. Vet runs the tool on the AUT for some time and
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records UI traces, based on which Vet identifies exploration tarpits by recognizing their patterns

in the UI traces. Vet then pinpoints the actions (e.g., clicking logout) or the screens that lead

to or exhibit exploration tarpits. In subsequent test runs, Vet guides the test generation tool to

prevent or recover from exploration tarpits. From our evaluation with state-of-the-art Android UI

test generation tools on popular industrial apps, Vet identifies exploration tarpits that cost up to

98.6% testing time budget. These exploration tarpits reveal not only limitations in UI exploration

strategies but also defects in tool implementations. Vet automatically addresses the identified

exploration tarpits, enabling each evaluated tool to achieve higher code coverage and improve

crash-triggering capabilities.

For parallelization coordination, this dissertation presented Epit, a parallel testing approach

that automatically manipulates the AUT to guide the UI test generation tool used during testing,

to improve the overall test effectiveness or reduce testing costs. Epit conducts our novel on-the-fly

trace analysis during the testing process to find loosely coupled AUT UI subspaces desirable for

partitioning. By controlling access to these UI subspaces during testing, Epit conceptually trans-

forms the AUT into different variants suitable to be tested independently by the tool on different

devices. Our evaluation results show that Epit helps state-of-the-art tools reach comparable code

coverage using up to 85% less machine time than the baseline. In addition, Epit helps reduce the

overlapped explorations by up to 71.1%.

7.1 FUTURE WORK

In this section, I discuss several potential directions to further stretch the work from this dis-

sertation.

Involving domain knowledge from general large language models (LLMs) in auto-

mated UI testing. Domain knowledge can be very helpful for automated UI testing in certain

cases. For example, generating text inputs that satisfy the AUT’s validation rules can help the UI

test generation tool unlock more AUT functionalities. There have been efforts [41, 80, 125] trying

to involve domain knowledge in automated UI testing, achieved either manually or by building

specialized models, limiting the generalizability and scope of application. With recent substantial

progress on LLMs such as GPT-3 [126] and Codex [127], it is interesting to see whether a general

LLM can be used to provide domain knowledge for UI test generation tools in a unified and elegant

way. For instance, we can construct textual hints from AUT UIs and provide these hints as code

comments for Codex to synthesize realistic text inputs or even generators of such text inputs.

Reproducibility of crashes triggered by automated UI test generation tools. Repro-

ducing AUT crashes makes it easier for developers/testers to diagnose and troubleshoot their
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apps. However, as researchers and practitioners have been focusing on the test effectiveness of au-

tomated UI test generation tools, it generally remains unknown how easily the crashes triggered by

these tools can be reproduced. Our experience with existing tools suggests that reproducing such

crashes is likely a challenging problem, mainly due to the need of replaying long UI input sequences

generated by tools. Specifically, as long as one action in the sequence is incorrectly replayed, the

corresponding crash might not be reproducible. Furthermore, input sequence replayability can

be complicated by the widely existing nondeterminism in complex industrial apps (e.g., due to

network access). Given that existing capture and replay tools are mainly intended for relatively

short and slow-paced human-generated input sequences, these tools will likely fall short on the new

demand of replaying tool-generated input sequences. Potential solutions for this challenge include

pruning/minimizing the crash-triggering input sequences [1] and targeted searching for the crash

(with the known crash-triggering input sequence as reference, e.g., by reusing sub-sequences).

Controlling the testing environment to amplify automated UI testing. In the real world,

an AUT’s behavior is usually not solely decided by the UI inputs. The AUT often needs to interact

with the testing environment (such as the test device operating system and remote servers), which

can also change the AUT’s behavior and reveal AUT defects that are not triggerable using only

UI inputs. Based on this insight, test amplification [128, 129, 130] has been proposed and applied

on scripted Android UI testing to extend existing test cases’ coverage on AUT code and find

more defects. It would be interesting to see how test amplification can help with automated UI

testing. While Su et al. [79] have explored augmenting Android system settings during automated

UI testing to find relevant AUT defects, there are other environmental factors to consider. For

example, controlling the AUT’s networking (both states and contents) through mocking can be

very helpful, given that most popular mobile apps nowadays require network access to provide

services. Existing work on cloud API testing [131, 132, 133, 134] might provide useful techniques

for this direction.

Transferring testing-related domain knowledge to other apps in automated UI testing.

Existing work has been focusing on testing individual apps. In the real world, automated UI

testing is sometimes conducted on many different apps in a centralized manner, e.g., by testing

service providers. Meanwhile, industrial apps (especially those of the same category) often share

UI designs for similar functionalities, e.g., account management. It would be interesting to see

whether such similarities can help automated UI test generation tools get adapted more quickly

to new AUTs based on the history of testing, achieved by transferring testing-related domain

knowledge. One perspective is on the knowledge of exploration tarpits. For instance, after we

learn from testing one app that clicking “logout” early in the test will likely lead to an exploration

tarpit, we can avoid doing so on other apps without having to go through the process of trace

collection and analysis, saving substantial amount of time.
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