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ABSTRACT

Artificial Intelligence (AI) based code completion tools such as Github Copilot have re-

cently gained tremendous popularity due to their ability to suggest arbitrary length snippets,

improving developer productivity dramatically. However, there is little public understanding

of what it takes to build such a tool. In this thesis, we explore the design space of building

such a tool. We study the importance of the two key components of such a tool: the Large

Language Model (LLM) that predicts the suggestions, and the system around it that feeds

it the right context and filters out the bad suggestions. We start by exploring the design of

Github Copilot to understand the state of the art, and describe the three key components

of Copilot: Prompt Engineering, Model Invocation and Feedback loop. We then study the

various factors that affect the quality of the suggestions generated by the LLM. We study

both (a) the impact of the context fed to the LLM, and (b) the impact of the LLM itself. For

the former, we study the impact including context from other files and code after the cursor

along with different methods of context collection and amount of collected context. For the

latter, we study the impact of the size of the LLM and the training procedure. Apart from

factors affecting the quality of suggestions, we also study the factors affecting the latency of

such code completion engines, as low latency is critical for building good code completion

engines.

We find that the context fed to the model makes a significant difference in the quality of

generated suggestions, and good context collection can improve the quality of suggestions

by 11-26% points (20-113% relative improvement) on the exact match metric for one line

suggestions. Models that can exploit the context after the cursor can further improve the

quality of suggestions by 6-14% points (12-16% relative improvement). Our experiments

show that increasing the prompt length beyond a point does not improve suggestion quality

significantly, and that 2048-4096 tokens are sufficient. We also find that the size of the

LLM has a much smaller impact on the quality of suggestions than other factors such as the

context fed to the model and the training procedure used. For example, we found that the

SantaCoder model (1.1B parameters) provided better suggestions than the 16B CodeGen-

Multi model despite being 16x smaller. This is because the SantaCoder model was trained

on a larger dataset and can also exploit the suffix context, unlike the CodeGen model.

Overall, we believe these findings will be useful for the community to understand the

design trade-offs involved in building such code completion tools.
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CHAPTER 1: INTRODUCTION

1.1 MOTIVATION

Recently there has been a dramatic rise of popularity of AI based code completion tools

such as Github Copilot [1], Codeium [2], Replit Ghostwriter [3] and Mutable.ai [4] to name a

few. Unlike traditional auto-complete tools that can provide only one-word completions [5]

in limited situations, this new generation of AI based code completion tools can provide

arbitrary snippets as suggestions, by considering the context of the code, including comments

written in natural language. While they don’t guarantee the correctness of the suggestions,

they can be very helpful in speeding up the development process. In fact, according to

Github, Copilot writes about 46% of the user’s code on average, and for some languages like

Java it can be as high as 61%[6]. Despite the popularity of these tools, there is still a lack

of understanding of how they work.

These tools are built on top of large language models (LLMs) trained on code, such as

OpenAI’s Codex [7]. Such models have been trained on terabytes of code data, and have

been shown to be able to generate code that can solve some programming problems on

benchmarks such as HumanEval [8] and APPS [9]. However, there is more to building a

code completion tool than just having a good LLM.

A naive code completion tool can be built by simply prompting the LLM with all the code

before the cursor in the current file, and then having the LLM predict the next several tokens

in the sequence. But, there is an obvious limitation to this approach – the LLM is not aware

of the full context of the code, and only knows about the code before the cursor. As a result,

its predictions will often involve ‘hallucinated’[10] references to variables and functions that

are not defined in the project. Thus, a sophisticated context collection pipeline is needed in

order to get meaningful suggestions from the LLM. This context can come not only from the

code before the cursor, but also from other files in the project. Furthermore, since majority

of the times, programmers are editing existing files, there is also context from the code after

the cursor. One could also exploit the cursor’s history to identify which parts the user is

most likely to be interested in!

However, the amount of context language models can work with is limited. For instance,

the 12B parameter Codex model (code-cushman-001) can only work with 2048 tokens at a

time. Therefore, it is important to understand how to effectively select relevant parts from

the context in a way that is useful for code completion. Even if models improve to deal

with larger contexts, we would still want to minimize unnecessary information going into
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the context, to keep model inference latency low, and also to not confuse the model with

irrelevant information. Thus, context collection remains an interesting problem for code

completion tools.

Besides context collection, there is also the challenge of serving good suggestions at low

latency due to the interactive nature of these tools. While larger language models can in

general provide better suggestions, they are also slower to serve predictions for. The latency

can be improved by serving these models by utilizing multiple GPUs, which increases the cost

of deployment. Thus, there is a three-way trade-off between the quality of the suggestions,

the latency of the tool and the cost of the infrastructure. Using smaller models can help

improve both the cost and latency, but how it impacts the quality of the suggestions is not

well understood.

Prior work has measured these models in terms of how many programming problems

they can solve on benchmarks such as HumanEval and APPS. However, the setting of code

completion is different from the setting of these benchmarks. First, code completion tools do

not have to provide full-function completions to be useful. Users can benefit by having the

tool suggest a few words or lines of code at a time. Second, code completion tools have the

opportunity to exploit the full context of the code in the project, which can span several files

and several thousands of lines of code. Thus, it is not clear how well a model’s performance

on benchmarks such as HumanEval and APPS translates to the code completion setting.

1.2 OVERVIEW OF RESEARCH QUESTIONS

Given such unknowns, the answer to the question “What does it take to build an AI-based

code completion tool?” is not clear. We try to answer this question in this thesis. We start

by dissecting the architecture of Github Copilot to understand the state of the art in this

field. We then explore the design trade-offs involved in building such a tool by asking the

following research questions:

• How important is context collection for the task of code completion?

• How do different context collection strategies impact the quality of the suggestions?

• Do longer prompts always lead to better suggestions?

• What is the impact of model size and training procedure on the quality of the sugges-

tions?
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• What kind of deployment infrastructure is needed to serve code completion tools at

low latency?

To guide our study, we build a new dataset fitting the code completion setting, called

the Code Completion Benchmark (CCB). We then use this dataset to answer the above

questions. We find that context collection can make a significant difference in the quality

of the suggestions. We also find that the quality of the suggestions does get impacted by

the model size, but other factors such as the training procedure, the amount of data used

for training and the amount of context used for prompting play a more important role.

If these factors are fixed, then bigger models do lead to better suggestions – but we only

observed marginal improvements in the quality of the suggestions in the models we studied.

This suggests that simply scaling up the models may not be the best way to improve the

quality of the suggestions. This is consistent with recent results from the machine learning

community which has shown that models need to be trained on much more data than the

typical amount used so far [11]. Since bigger models are both slower and more expensive to

serve, it is more prudent to train smaller models with better training procedures and more

data.

We also studied the impact of backend infrastructure on the latency of the tool. We found

that the latency of the tool can indeed be improved by using multiple GPUs, but there are

diminishing returns due to increased communication cost. We found that the for a fixed

model and deployment setting, inference latency is a function of two factors: the size of the

prompt, and the desired output length. Since having a sufficiently sized prompt is important

for the quality of the suggestions, the main controllable factor is the desired output length.

As the latency increases linearly with the output length, it is important to keep the output

length small for usability reasons. A natural way to do this is to bias towards providing

single-line completions more often. Longer suggestions can be provided in some situations,

but a balance between the length, reliability and latency of the suggestions is needed.

1.3 SUMMARY OF FINDINGS

We summarize the key findings of this thesis as follows:

Impact of Context:

• Context from other files in the project can improve the suggestions by 11-26% points

in the exact match at first line metric. Depending on the model and other components

of the prompt, this can be between 20-113% relative improvement over not using this

context.
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• The manner of collecting context from neighboring files is important. Using static

analysis for collecting context may be an attractive proxy for filtering out irrelevant

context, but our results show that using simple text matching across more files is more

effective. This is because static analysis is not perfect, and may miss a lot of useful

context.

• Models that can handle suffix, such as code-davinci-002 and SantaCoder, can benefit

from suffix context by 6-14% points in the exact match at first line metric. This is a

12-60% relative improvement over not using this context, depending on the model and

the presence of context from other files. This context appears to be less effective on

its own than context from other files.

• Increasing context size of models beyond 4096 tokens does not meaningfully improve

the quality of suggestions, at least with current models and prompting strategies. 2048

tokens is a good balance between quality of suggestions and inference cost.

Impact of Model:

• Small models can easily outperform larger models if trained better. Larger models

are not necessarily proportionally better than smaller models. For example, the 1.1B

SantaCoder model outperforms much larger CodeGen models, and is competitive with

Codex models if it is allowed suffix context while Codex models are not.

• Larger models, when trained and prompted identically to smaller models provide better

suggestions, but the difference is not necessarily large. We see this in both the CodeGen

and the Codex series. For example, the largest CodeGen model (16B) outperforms

the smallest CodeGen model (2B) only by 2-4% points depending on the language.

Similarly, the largest Codex model (175B) outperforms the smaller 12B Codex model

by 2-3% points when both are prompted identically.

• Finetuning models on specific languages negatively affects their performance on other

languages. For example, the Codegen-Mono models are obtained from the Codegen-

Multi models by finetuning on Python. This finetuning improves Python performance

but hurts performance on other languages. As one might expect, the larger models

are hurt less than the smaller models by this finetuning. E.g., the 16B Codegen-Mono

model is 2% worse than the 16B Codegen-Multi model on Go, while the 2B Codegen-

Mono model is 18% worse than the 2B Codegen-Multi model.

Impact of Backend Infrastructure:
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• Longer suggestions are slower to generate, and are more prone to errors. Thus, both

the latency and the reliability of the suggestions can be improved by biasing towards

providing short (e.g., single-line) suggestions more often. However, a balance between

the length, reliability and latency of the suggestions is needed.

The rest of the thesis is organized as follows:

• Chapter 2 provides background on AI based code completion tools and related work.

• Chapter 3 describes the architecture of Github Copilot.

• Chapter 4 describes the methodology behind the suggestion quality study.

• Chapter 5 describes the results of the suggestion quality study.

• Chapter 6 studies the impact of backend infrastructure on the latency of the tool.

• Chapter 7 concludes the thesis and discusses future work.
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CHAPTER 2: BACKROUND

In this chapter, we first describe Large Language Models, which are the foundation of the

new generation of AI based code completion tools. We then describe related work in the area

of code completion using LLMs, particularly work that uses LLMs effectively to generate

code completions.

2.1 LARGE LANGUAGE MODELS FOR CODE

Large Language Models are a class of machine learning models that are trained on large

amounts of text data. They are often able to generate text that is indistinguishable from

human written text. These models are trained using a technique called language modeling,

which is the task of predicting the next word in a sequence of words. These models tend to be

fairly large, having several billions of parameters, as it has been widely believed that scaling

up the model size is the key to improving the model’s performance. However, increasing the

model size has its own challenges, as it requires a lot of compute power both for training

and inference.

There has been a long line of work applying machine learning techniques to improve the

software development lifecycle. However, the recent explosion in machine learning applica-

tions for software development can be attributed to the OpenAI’s Codex model[7]. Codex is

an LLM trained on a large corpus of publicly available code. Originally, Codex was trained

on python code, but it has since been extended to support other languages, and now powers

Github Copilot. There are two main variants of Codex: (a) code-cushman-001 (b) code-

davinci-002. These models differ not only in their parameter size (12B and 175B parameters

respectively), but also in their context window (2048 tokens vs 8096 tokens).

Apart from Codex, many other generative models of code have been trained[12], including

many open-source models such as CodeGen models[13] and PolyCoder[14]. The evaluation

of most of these models has focused on (a) generating code from natural language comments,

and (b) generating full function completions. Popular benchmarks for generative code lan-

guage models include HumanEval[8] and the APPS dataset[9]. However, these benchmarks

do not focus on the task of code completion, but rather on the task of generating full func-

tions/programs from natural language comments. However, as discussed in the previous

chapter, code completion is a different task, and requires a different set of capabilities and

evaluation metrics.

LLMs that come closer to the task of code completion include InCoder[15], Santacoder[16]
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and the Davinci variant of Codex. These models can not only generate code given a prefix,

but can also take into account a suffix. By design, these models are more tailored to the task

of code completion, as most of the time developers are editing existing code, and not writing

new code from scratch. Even while writing new code, developers typically do not write code

in a top-down manner, allowing models that support suffix to exploit more context.

Such models that can do infilling[15, 17, 18, 19] are not drastically different from the

models that only deal with prefix. The only difference is that the training data of infilling

models comprises of examples that have both prefix and suffix encoded in the prompt. For

example, the sentence “The quick brown fox jumps over the lazy dog” could be encoded as

“[PREFIX]The quick[SUFFIX]lazy dog[MIDDLE]brown fox jumps over the”. Given enough

such training examples, the model can learn to fill in the middle of text sequences. Further-

more, training on such examples does not cause the model to lose its ability to generate text

from left to right.

2.2 PROMPT ENGINEERING FOR CODE COMPLETION

Prompt engineering [20] is the task of formulating a prompt that is suitable for the model to

generate useful completions. In particular, the prompt should be able to capture the context

of the code completion task, and should be able to convey the intent of the developer to

the model. This is a challenging task because of the restriction on the context window of

the model. Recent work on code completion using LLMs has recognized the importance

of prompt engineering, and has proposed several techniques to improve the quality of the

prompts.

Text-similarity based prompting: This approach involves generating the prompt by

finding the most similar code snippet(s) in the codebase to the code that the developer

is currently editing. The implementations typically generate sliding-window based snippets

from the codebase by utilising the recently accessed files or similar heuristics. These snippets

are then compared to the code under development by using text based similarity metrics

such as jaccard similarity. This approach is used by Github Copilot. Chatper 3 describes

this approach in detail. This is a very general approach, and can be used with any model

and any language.

Static Analysis based prompting: Some works have proposed to use static analysis

to generate prompts. For example, in [21], the authors analyze the codebase to generate a

graph of entities, such as files, global variables, classes and functions and the interactions

between them. The authors then use this graph to generate prompts. This approach requires

some amount of language-specific engineering in order to generate the graph. They reserve
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a fixed amount of prompt tokens for context from this graph, and the rest of the prompt

tokens are used to encode the code under development. Besides static analysis based prompt

generation, they also propose a modified context encoding scheme that allows encoding much

more context than a simple text-based encoding. In particular, they represent each entity

in the graph as an embedding vector, and use this vector in the prompt, by passing the

embedding layer.

Retrieval augmented prompting: In [22], the authors propose a retrieval based ap-

proach to prompt generation. They first slice the codebase into several snippets of fixed size,

and generate vector embeddings for each of the snippets. While generating a completion,

snippets most similar to the current code are fetched from the database, and are used to

generate the prompt. Since these snippets are only similar to the incomplete code, whereas

more relevant snippets would be those similar to the actual completion, they perform a

second round of retrieval to find snippets that are similar to the proposed completion. This

combination of retrieval-based generation and generation-based retrieval helps them gener-

ate better completions. However, this can introduce a significant amount of latency because

of two rounds of generation.

Learned prompt generation: In [23], the authors propose a learned prompt generation

approach. First, they use static analysis to identify various ‘prompt sources’, such as parent

class, imported files, siblings, child class, etc. In a way, this is similar to the approach

proposed in [21]. From each of these prompt sources, they decide what type of snippet is

to be extracted, e.g., all member declarations from a class, method names, method names

and bodies, etc. Since there are many such prompt sources, and each prompt source can

have multiple snippet types, the authors used a learned model to rank the prompt sources

and snippet types. The best ranked prompt source and snippet type are then used to

generate the prompt. To train this ranking model, they generate a dataset of large number of

prompts, and label them as successful or not based on whether the LLM used to generate the

completion was able to generate a correct completion. This approach is language agnostic,

and can be used with any LLM.
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CHAPTER 3: ANALYZING GITHUB COPILOT

In this chapter, we describe the architecture of Github Copilot, a state of the art code

completion tool. In particular, we largely focus on the client side of the system, and describe

how it works. In particular, we describe the following aspects of the client: (a) prompt

engineering, (b) model invocation, and (c) feedback loop. We obtained these details by

reverse engineering the VSCode extension of Github Copilot [24].

3.1 OVERVIEW

There are two main components of Github Copilot:

Client: An editor plugin (e.g., a VSCode extension) that (a) collects whatever a user

types, and context from the project, (b) and formulates a “prompt” for LLM in the backend.

Whatever the model returns, it then displays in the editor as a suggestion. The client also

sends feedback to the backend, which is used to both measure the effectiveness of Copilot,

and also to improve the model (if permitted by the user).

Model: A large language model derived from OpenAI’s Codex model. This model is

called ‘code-cushman-ml’ (and has similar variants), suggesting that this is a model derived

from the 12B parameter Codex model. However, the difference is that this model also

supports infilling, unlike the publicly available 12B parameter Codex model. Note that this

model is deployed on the cloud, and is not run locally on the user’s machine.

We now focus our attention on the client, and describe how it works.

3.2 PROMPT ENGINEERING

The client is responsible for collecting the context from the project, and formulating a

prompt for the model. Having a good prompt is important for the model to generate useful

suggestions, as otherwise, the model will be forced to guess variable names and function

names that may not be present in the project. On the other hand, the prompt cannot be

longer than what the model can handle (2048 tokens), and thus the client must balance what

information to include in the prompt.

Components of the prompt: Copilot’s prompt consists of two parts: (a) the prefix,

and (b) the suffix. The prefix is a combination of information from multiple sources, such

as (a) name of the current file, (b) relevant snippets from neighboring files and (c) the code

before the cursor. The suffix is the code after the cursor. As prompt size is limited, both
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prefix and suffix are truncated to fit within 1548 tokens. Copilot retains the remaining 548

tokens for the model to generate suggestions. Figure 3.1 shows an example of the prefix

portion of the prompt generated by Copilot.

Figure 3.1: An example of the prefix portion of a prompt generated by Copilot

Prompt generation pipeline: The prompt generation pipeline used by Copilot involves

several steps. First, the current file’s path and language are identified, along with the 20

most recently accessed files that are of the same language. A percentage of the prompt

tokens to be dedicated to the suffix is decided upfront, typically 15%. For computing the

prefix, Copilot identifies a set of “prompt elements” that can be included, such as path and
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language markers, snippets from recently accessed files, imported files, and the current file.

The elements are ranked based on their importance and relevance score, using techniques

such as Jaccard similarity to compare snippets’ relevance to the current file. The top elements

are then selected to fit within the remaining prompt size using a greedy approach. The suffix

part of the prompt is set to the code after the cursor and can start from right after the cursor,

or from the following function or block. It is truncated to fit within the remaining prompt

size. If the tokens dedicated to suffix cannot be fully utilized, then prefix is expanded to fill

up the remaining prompt size.

For extracting snippets from recently accessed files, Copilot has various strategies to decide

how to extract candidate snippets. The default strategy involves splitting the recently

accessed file into sliding windows of fixed sizes, and then computing the Jaccard similarity

between the current file and each window. Then, top K windows are selected, and added to

the list of prompt elements. Some strategies also involve using indentation to identify blocks

of code instead of unconstrained windows. It is unclear to what extent each strategy is used.

3.3 MODEL INVOCATION

There are many interesting aspects of how Copilot invokes the model. While Copilot has

two modes of invoking the model, one inline while typing, and the other on-demand. We

focus on the inline mode, as it is the most interesting and used aspect of Copilot.

Optimizing for low latency: Copilot requests for 1 suggestion by default, at temper-

ature 0. This is to ensure that the model returns a suggestion quickly. However, if the

user requests for more suggestions, Copilot requests for 2-3 suggestions, at temperature 0.2.

This is to ensure that the model returns more suggestions, but at the cost of latency. The

on-demand mode of Copilot requests for 10 suggestions at a time, thus trading off latency

for the number of suggestions.

Single-line vs Multi-line suggestions: Copilot suggests single-line code by default,

but when the cursor is at the start of an empty block, it offers multi-line suggestions. While

single-line suggestions are quicker and more accurate, Copilot offers multi-line suggestions

when the user is likely to insert a block of code, as they are more useful.

Cancelling requests: Copilot debounces the requests to the model, and cancels the

previous request if the user types more characters. This is important as model invocation is

expensive, and the user may type more characters before the model returns a response.

Caching: Copilot applies aggressive caching of the model responses. This is useful as

typing is a very iterative task and the user may move back and forth on the same line. Cached

responses help avoid redundant model invocations, while keeping the apparent latency low.
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Filtering out poor requests: Copilot has a client-side model that filters out requests

that it deems has low chances of resulting in useful suggestions. This model, called “Contex-

tual Filter” is a very small linear regression model based on features such as (a) the current

file’s language (b) whether the previous suggestion was accepted (c) duration since previous

decision (d) last character before the cursor, etc. For example, if the last character before

the cursor is a “.” (dot) or an opening parenthesis, the model is more likely to allow the

request to go through, than if the last character is a “;” (semicolon) or a closing parenthesis.

The output of this model is a score between 0 and 1, and Copilot only sends requests to the

model if the score is above a threshold (0.15 by default).[24]

Filtering out poor suggestions: Language Models have a common failure mode of

generating suggestions that are very repetitive [25]. Copilot applies a simple heuristic to the

generated text to detect such cases, and filters them out in the client.

3.4 FEEDBACK LOOP

An important part of Copilot’s design is the feedback loop that it has with the user.

Copilot collects telemetry data from the user, collecting statistics on the acceptance rate,

latency, frequency of cancelling the requests, among many other metrics. This data is used

to improve the model. This telemetry framework also helps the Copilot team to perform

A/B tests to evaluate the impact of various design decisions. For example, they can help

measure the effect of different prefix-computation strategies on metrics like the acceptance

rate. This helps them make informed decisions about the design of Copilot.

Measuring suggestion quality: An important part of the feedback look is to meaning-

fully measure the usefulness of the suggestions. While the simplest metric is the acceptance

rate, it is not a good metric for measuring the quality of the suggestions. That is because the

user may choose to accept the suggestion and perform a small edit, rather than typing the

entire suggestion. For example, if the suggestion is print(‘hello’), the user may choose

to accept the suggestion and then change it to print(‘hello world’). This is a common

behavior, and the acceptance rate does not capture this.

To measure the quality of the suggestions, Copilot instead periodically measures the edit

distance between the accepted suggestion and a window of code around the insertion point.

If the word-level edit distance (normalized to be between 0 and 1) is below a threshold

(0.5 by default), then the suggestion is considered to be ‘still in code’. This measurement

happens at exponentially increasing intervals of 15s, 30s, 2min, 5min and 10min. The wide

range of intervals is to ensure that the measurement is not too noisy.

Potential data for future training: Furthermore, if the user has not opted-out from
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sharing their code for product improvement, Copilot also collects a datapoint that could be

used for training the model. This datapoint is a pair of two things – a hypothetical prompt

that is generated for the inserted position, and the actual code that the user has inserted

(regardless of whether the user modified an accepted suggestion, or rejected the suggestion

and wrote their own code). This datapoint can be used for training, however, it is not clear

what further filtering mechanisms may be applied on this stream of data.
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CHAPTER 4: MEASURING COMPLETION QUALITY: METHODOLOGY

In this chapter and the following chapter, we focus on measuring the quality of code

completion, regardless of the latency. In this chapter, we first describe the experimental

setup and the research questions we are interested in. Next, we describe the dataset we

used for our evaluation. In the next chapter, we discuss the results and limitations of our

evaluation.

4.1 MOTIVATION

There are many factors that affect the quality of suggestions provided by the code com-

pletion engine, but they can be broadly classified into two categories: (a) model factors and

(b) prompting strategy factors. A good model is necessary for good suggestions, but it is

not sufficient. For example, the best possible model can still produce bad suggestions if the

prompt does not have sufficient information, forcing the model to hallucinate. Similarly, a

good prompting strategy can still produce bad suggestions if the model is not good enough.

Model factors include the size of the model and the quality of the training data. The

general wisdom is that bigger models are better, but there are many results from the ML

community that show that smaller models can beat bigger models. Similarly, the quality of

training data is important as well, not just the quantity. Prompting strategy factors revolve

around the decisions on what to include in the prompt. The simplest strategy is to include

everything before the cursor into the prompt. Clearly this is not the best strategy as there

are useful clues in imported files, recently accessed files and content after the cursor. But

which of them are important? It’s not clear.

It is interesting to note that understanding the effect of prompting strategy factors can help

guide model development as well. For instance, if we find that the quality of the suggestions

improves by adding certain type of information to the prompt, then we can finetune the

model to better utilize that information.

4.2 RESEARCH QUESTIONS

We are interested in answering the following questions about the quality of code comple-

tion:

• RQ1. Importance of different types of context: Context for code completion

can come from different sources, such as current file before the cursor, after the cursor,
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and even from other files in the project. How much information do these sources

provide? How does the quality of suggestions change by including these different types

of context?

• RQ2. Importance of prompt length: LLMs typically have a limited number of

tokens they can keep in memory (context length). Models with longer context length

can potentially provide better suggestions due to more available context. However,

beyond a point, additional context may not necessarily be helpful, and would only

increase the latency and inference cost. Understanding the optimal prompt length can

help guide model development.

• RQ3. Impact of model size: While the general wisdom is that bigger models are

better, is that really the case? Even if so, by how much? If there is not a significant

difference, then it may be better to use smaller models to reduce latency and inference

cost. And perhaps different training strategies can be used to improve the quality of

smaller models.

• RQ4. Impact of training procedure: How does the quality of suggestions change

with the quality of the training data? For example, the Codegen models from Salesforce

are of two varieties - (a) ‘multi’ and (b) ‘mono’. The multi models are trained on 6

different programming languages apart from 15% of Github data, while the mono

models obtained by further finetuning the multi models on a large amount of Python

data. Thus, the mono models have seen more overall data – does that improve, hurt

or not affect the quality of suggestions for other languages? Santacoder from BigCode

on the other hand has been trained on just 3 languages, how does it perform when

used for other languages?

Note that for RQ1, we are interested not only in how those factors affect the quality of

suggestions, but also how much information they provide. For example, if the ground truth

completion uses a function defined in another file, then the context from that file may be

very important. However, the that function’s usage is already part of the prompt, then the

context from that file may not be very important. Since prompt collection from other files

is not straightforward, it can be useful to know if the context from other files is important

or not.
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4.3 EXPERIMENTAL SETUP

To evaluate the quality of code completion, we need to simulate how a developer would

use the tool. Therefore, we assume the developer is writing code in an editor like VSCode,

and has potentially multiple files open that are relevant to the current task. This is not

perfect, because not all relevant files may be open, and there may be many irrelevant files

present as well. However, this is a reasonable approximation of how a developer would use

the tool.

Our experiments consist of various scenarios, where each scenario consists of the following:

• MainFile: A The file that the developer is currently editing.

• HiddenRange: A region in that file that the developer has not yet written.

• OpenedFiles: A set of files that the developer has opened in the editor.

Measurement procedure: The code complete tool is expected to help the developer

complete the code in the HiddenRange. We simulate this by triggering the code completion

tool at the start of the HiddenRange and collecting the suggestion. We then compare

the suggestions with the actual code that the developer would have written. We compare

the suggestions with the actual code using exact match, levenshtein distance at both key-

stroke level and word level to measure the usefulness of the suggestions. Note that many

completion tools provide single line suggestion as well as multi-line suggestions. Intuitively,

longer suggestions have a higher chance of being useful, but they are also more likely to

be incorrect. To quantify the usefulness of multi-line suggestions, we measure the score for

different lengths of the suggestions, i.e., we measure the score for the first line, the first two

lines, the first three lines, etc. up to 10 lines.

Prompt Collection Framework: Since the prompt generation strategy can be arbitrar-

ily complex and can invoke arbitrary editor APIs, we used VSCode’s UI-testing framework to

(a) automatically launch a VSCode instance with appropriate code completion tool installed

as an extension, (b) open the files in the scenario, (c) position the cursor at the start of the

HiddenRange, and (d) trigger the code completion tool. We then collected the prompts gen-

erated by the tool. These prompts can then be independently evaluated by themselves, as

well as be passed to various models to evaluate the quality of the suggestions. This approach

is very flexible and can be used to evaluate any code completion tool. Figure 4.1 shows the

prompt collection framework.
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TestDriver VSCode Code Completion Tool
(VSCode extension) Model

Open the repository in VSCode
(with the code completion tool preinstalled)

Open files in the scenario

Position cursor at start of HiddenRange

Trigger completion

Trigger code completion tool

Generate prompts

Collect prompts

Pass prompts to various models for evaluation

Evaluate quality of suggestions

TestDriver VSCode Code Completion Tool
(VSCode extension) Model

Figure 4.1: Prompt Collection Framework

4.4 DATASET

Collecting repositories: For our evaluation, we collected a dataset of 9.5K scenarios

from 5 popular programming languages: Java, Python, Go, Rust and Javascript. To collect

the dataset, we used the Github Search API to identify repositories between 100 and 200

stars (as a proxy for quality), sorted by the number of commits since 1st January 2023 in

order to get the most recently updated repositories. We then cloned the top 50 repositories

in this list for each language, totalling to 250 repositories. For each of these 50 repositories,

we identified the files that were modified since 1st January 2023 and limited ourselves to

extracting scenarios from these files. From each of these files, we extract no more than 5

scenarios to ensure that the dataset is diverse. We also limit the number of scenarios per

repository to 60, to further ensure diversity. This results in a total of 9.5K scenarios, with

roughly 2K scenarios for each language (with the exception of Javascript, which has 1.6K

scenarios).

Data contamination prevention: We emphasize that the reason to collect scenarios

from files that have been recently updated is to prevent the dataset from being contaminated

by the code that LLMs such as Codex may have memorized [26, 27]. All code models we

study in this work have been trained on code from before 2023, and therefore, this dataset

is a good proxy for code that the models have not seen before.
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Extracting scenarios: To extract a scenario from a file, we randomly mask out a region

of code and use the masked region as the HiddenRange. We control the length of the

HiddenRange to be between 1 line and 40 lines. Then, using a language server for the

respective language, we identify the symbols used in the HiddenRange, identify the files

they’re defined in, and mark those files as OpenedFiles. We do this because many tools only

consider snippets from open files, and opening these files can help the tool to identify relevant

snippets from those files. Using a language server here is important as it is a largely reliable

way of collecting the symbols and their definitions in a file. Note that the code completion

tool is free to ignore these files, and also free to use any other files in the repository.
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CHAPTER 5: MEASURING COMPLETION QUALITY: RESULTS

In this chapter we answer the research questions posed in Section 4.2 by studying the

impact of different prompting strategies, prompt lengths and models on the quality of the

suggestions. Before we dive into the results, we first discuss the subjects of our study.

5.1 SUBJECTS

There are two types of subjects in our study: (a) Prompting strategies (b) Models.

Prompting strategies: For studying different prompting strategies, we use the prompt

collection framework described in Section 4.3 to collect the prompts generated by Copilot.

Since a prompt can contain various components, such as context from other files, suffix, etc.,

we modify Copilot’s prompt generation logic to control the inclusion of these components.

This allows us to measure the impact of each of these components on the quality of the

suggestions. We then pass the prompts generated by Copilot to the models under study to

measure the quality of the suggestions. Table 5.1 lists the different prompting strategies we

use in our study.

We do not modify any other aspect of Copilot’s prompt generation strategy, such as the

number of candidates, the token budget for suffix when enabled (15%), etc.

Models: We evaluate the quality of the suggestions over a variety of models with different

model sizes, abilities and training datasets in order to understand the impact of these factors

on the quality of the suggestions. Table 5.2 lists the models we use in our study. We note

that while the training datasets for the models are different, most of them are trained on

all languages in our scenarios, with the exception of Santacoder which has not been trained

on Go and Rust. Furthermore, the models are all trained on code not later than June 2022,

reducing the likelihood of them having memorized code snippets from our test scenarios.

It is important to note that the models we use in our study are not the same as the models

used by Copilot in production. We use these models because they are publicly available and

have their model characteristics documented. We must emphasize that the suggestion quality

results on Copilot’s prompts are not indicative of the suggestion quality of the end-to-end

Copilot system in production.

Now we discuss the results of our evaluation. Note that all our results are focusing on

scenarios that have more than 5 characters in the first line of the HiddenRange. This is

because the primary metric we use is similarity at the first line, and therefore considering

scenarios that are too short would not be meaningful.
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Strategy Description
Prefix The prompt is the content before the cursor.
Prefix+NbrDef The prompt is the content before the cursor, and additional

context, but only from the neighboring files that define sym-
bols used in the HiddenRange.

Prefix+NbrAll The prompt is the content before the cursor, and additional
context, but from all files in the repository.

Prefix+Suffix The prompt is the content before the cursor, and the suffix of
the HiddenRange. Suffix occupies 15% tokens of the prompt.

Prefix+NbrDef+Suffix The prompt is the content before the cursor, the suffix of
the HiddenRange, and additional context, but only from the
neighboring files that define symbols used in the Hidden-
Range.

Prefix+NbrAll+Suffix The prompt is the content before the cursor, the suffix of the
HiddenRange, and additional context, but from all files in the
repository.

Long prompts We vary the length of the prompt. The actual context size
used by Copilot is 2048 tokens (1548 tokens for the prompt,
and rest 500 for the response). We experiment with context
sizes of 1024, 2048, 4096, 6144 and 8192 tokens (reserving 500
tokens for response).

Table 5.1: Prompt generation strategies used in our experiments

5.2 IMPACT OF CONTEXT SOURCES

In this section, we evaluate the impact of context from neighbouring files and from below

the cursor in the current file. Figure 5.1 shows the impact of these two sources on the quality

of the suggestions for the Santacoder and Codex Davinci models. Amongst the model we

study, only these models support handling suffix in the prompt.

5.2.1 Impact of suffix

The suffix context has a significant impact on the quality of the suggestions. For the

Davinci model, adding suffix information to the prompt improves the exact match score

of the first line of suggestions from 0.43 to 0.55 (28% relative improvement) in absence of

context from other files. For the santacoder model, the improvement is even more dramatic

– the same score goes from 0.23 to 0.37 (60% relative improvement!). These trends hold for

other metrics as well – mean exact match score over multiple lines of suggestion, character

level edit similarity and word level edit similarity. In the presence of context from other files

(NbrAll variant), the impact of suffix is reduced, but still significant. Davinci improves from
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Name Model Size
(#Params)

Training Data Context
Length

Handles
Suffix?

santacoder 1.1B Python, Java,
JavaScript

2048 tokens Yes

codegen-multi 2.7B
6.1B
16.1B

C/C++, Go,
Java, JavaScript,
Python

2048 tokens No

codegen-mono 2.7B
6.1B
16.1B

Same as Multi but
trained on Python
for longer

2048 tokens No

code-cushman-001 12B * 2048 tokens No
code-davinci-002 175B * 8192 tokens Yes

Table 5.2: Models used in our experiments
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Figure 5.1: Impact of context sources on the quality of suggestions.

0.57 to 0.66 (16% relative improvement) and santacoder improves from 0.49 to 0.55 (12%

relative improvement).

5.2.2 Impact of neighboring files

We explore two main variants when collecting context from neighboring files. In the first

variant, NbrDef, we exploit the OpenedFiles information from the dataset, to only look at

files that define symbols in the HiddenRange. For example, if the HiddenRange invokes a

function ‘getTweets()’, then we look for context in the file that defines this function. The

second variant, NbrAll looks for context in all the files in the repository. We note that the

second variant also dedicates a budget of prompt tokens for this context (we use 1000 tokens

by default). We try these two variants to see if focusing on definitions of used functions is
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Exact match @ first line

model Prefix only Prefix + NbrDef

Salesforce/codegen-16B-mono 0.34 0.36 (5.2%↑)
Salesforce/codegen-16B-multi 0.35 0.37 (5.4%↑)
Salesforce/codegen-6B-mono 0.30 0.32 (6.0%↑)
Salesforce/codegen-6B-multi 0.32 0.35 (6.7%↑)
Salesforce/codegen-2B-mono 0.29 0.30 (4.5%↑)
Salesforce/codegen-2B-multi 0.31 0.33 (5.4%↑)
bigcode/santacoder 0.26 0.27 (2.3%↑)
code-cushman-001 0.43 0.46 (7.4%↑)
code-davinci-002 0.46 0.48 (4.5%↑)

Table 5.3: Impact of including context from neighbouring files when NbrDef does pull context
from other files. Suffix is not included in the context.

sufficient to provide useful context. Both these variants slice candidate files into snippets of

fixed size and use Jaccard similarity between the current file and the snippets to select the

most relevant snippets.

The NbrDef variant: The first variant has a negligible-to-modest impact on the quality

of the suggestions. Part of the reason for this apparent lack of effectiveness is because only

about 43% of scenarios have one or more opened files . When there are zero opened files,

there is no context from neighboring files because the Copilot client relies on opened files

for extracting the context from other files. Furthermore, even if the neighboring files are

present, Copilot may not always decide to use them. For example, if content before the

cursor already cannot fit in the prompt budget, then snippets from other files are excluded.

To understand the impact of snippets from neighboring files when the snippets are in-

cluded in the prompt, we zoom into such scenarios. Despite doing so, we find the impact

of neighboring files to be rather modest. Table 5.3 shows that the models do benefit from

inclusion of neighboring files in the prompt, but the improvement is only 1-3% points in

the exact match at first line score. Depending upon the model, this corresponds to 2-7%

relative improvement over including only the context before the cursor. Note that in absence

of suffix, Santacoder often outputs commented code, despite being correct otherwise. As a

result, we addressed this common issue by removing the comments to get a more accurate

measure of the quality of the suggestions.

The NbrAll variant: The second variant has a dramatic impact on the quality of the

suggestions. For the Davinci model, the exact match score of the first line of suggestions

goes from 0.43 to 0.57 (33% relative improvement) in absence of suffix. For the santacoder
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model, the same score goes from 0.23 to 0.49 (113% relative improvement!). Similarly,

in presence of suffix, Davinci improves from 0.55 to 0.66 (20% relative improvement) and

santacoder improves from 0.37 to 0.55 (49% relative improvement). It is worth noting that

longer suggestions benefit significantly from the inclusion of neighboring files, as can be seen

from the slopes of the lines in Figure 5.1.

The difference between these two variants shows that only including the context from the

files that define the symbols in the HiddenRange is not sufficient to provide useful context,

despite the attractiveness of using static analysis to filter out apparently irrelevant files.

5.2.3 Amount of neighbor context:

Since including context from other files has a significant impact on the quality of the

suggestions, we explore the impact of the amount of such context included in the prompt. We

use the NbrAll variant and vary the number of tokens dedicated to such context. Figure 5.2

shows the impact of the amount of context from neighboring files on the quality of the

suggestions. We observe that the quality of the suggestions improves with the amount of

context from neighboring files, but since the prompt size is limited, dedicating more context

tokens to neighboring files reduces the amount of context from the current file. This trade-

off is reflected in the quality of the suggestions. However, dedicating upto 1000 tokens

to neighboring files does not negatively impact the quality of the suggestions. It is worth

noting that the impact of changing this is relatively small (2 and 4 points in EM score for

Davinci and santacoder respectively). This suggests that even a single useful snippet from a

neighboring file can be dramatically improve the quality of the suggestions over not having

any context.

5.3 IMPACT OF PROMPT LENGTH

We now analyze the impact of prompt length on the quality of the suggestions. For this

experiment, we use modified versions of the Copilot client to collect prompts of lengths 524,

1548, 3596, 5644 and 7692 tokens. These numbers correspond to context windows of sizes

1024, 2048, 4096, 6144 and 8192 tokens, where 500 tokens are set aside for the response.

Since the only model that can support context windows more than 2048 is code-davinci-002,

we limit our experiments to this model. Furthermore, we focus on scenarios from GoLang,

Java and Python for this experiment.

Table 5.4 shows the results of this experiment. We observe that the quality of the sug-

gestions improves as the prompt length increases till 6144 tokens, beyond which there is
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Figure 5.2: Impact of the amount of context from neighboring files on the quality of the
suggestions.

no improvement in the suggestion quality. Note that the table includes scenarios where

the having larger token budgets did actually result in the full budget being utilized. That

is, scenarios where the client was allowed to generate prompts of length 8192-500 tokens,

but the client generated the same prompt as when the budget was 6144-500 tokens – such

scenarios were removed to allow focusing on purely the impact of prompt length on the sug-

gestion quality. This happens when the client is unable to find more context to add to the

prompt. If we include such cases the trend remains the same (but we stop seeing meaingful

improvements beyond 4096 tokens). This clearly shows diminishing returns from increasing

the prompt length.

We performed this experiment with both the NbrDef and NbrAll variants of the prompt.

The diminishing returns from increasing the prompt length is observed in both cases, despite

the fact that the NbrAll variants packed many more snippets in the prompt. For example,

the 8192 context length prompts had, on an average 18 snippets from neighboring files, while

the 2048 context length prompts had, on an average, 3 snippets from neighboring files. These

results show that at least with current models and prompting techniques, there is no benefit

in increasing the prompt length beyond 4096 tokens, and there is only a marginal benefit

(4-10%) in increasing the prompt length beyond 2048 tokens which may not be worth the

higher latency.

5.4 ANALYZING PROMPTS

To understand why the context from neighboring files has such a modest impact, especially

in the presence of suffix, we inspect the prompts generated by the different variants. We use
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Prefix+NbrDef+Suff Prefix+NbrAll+Suff

First Line Full Suggestion First Line Full Suggestion

Context length EM ES EM ES EM ES EM ES

1024 0.50 0.71 0.25 0.50 0.54 0.73 0.27 0.49
2048 0.57 0.76 0.32 0.55 0.66 0.81 0.39 0.59
4096 0.61 0.78 0.34 0.55 0.69 0.83 0.43 0.62
6144 0.62 0.78 0.36 0.57 0.70 0.84 0.43 0.63
8192 0.62 0.78 0.35 0.55 0.70 0.84 0.43 0.63

Table 5.4: Impact of prompt length on the quality of the suggestions. EM = Exact Match,
ES = Edit Similarity.

the overlap of identifiers between the prompt and the scenario’s HiddenRange as a proxy

for the measure of information content of the prompt. For example, if the code in the

HiddenRange invokes a function ‘get counts at line()’, and if the prompt does not contain

this identifier, then the model will have a tough time getting this function call right. Of

course, if the prompt contains similar identifiers, or conveys the convention of using snake

case along with the functionality of the function, then the model may be able to get the

function call right. As a result, this is not a perfect proxy for the information content of the

prompt, but a good first approximation.

Table 5.5 shows the overlap ratios of identifiers between the prompt and the HiddenRange

for the different prompting variants. The overlap ratio is computed as the number of iden-

tifiers in the prompt that are also present in the HiddenRange, divided by the total number

of identifiers in the HiddenRange. For example, if the HiddenRange contains 10 identifiers,

and if the prompt contains 8 of them, then the overlap ratio is 0.8. We compute this ratio

for the prefix, suffix and the overall prompt (prefix + suffix). As can be seen in the table,

the overlap ratio is the lowest for the prefix-only variant. As additional context sources

are added (neighboring files and suffix), the ratio consistently increases. Furthermore, the

overlap ratio is consistently higher for NbrAll variants when context from neighboring files

is allowed. These observations help explain the better performance of the NbrAll variants.

Similarly, the overlap ratio consistently increases by increasing the prompt length, however

it quickly saturates after 4096 tokens. This again helps partially explain the saturating

performance of longer prompts.
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NbrDef variant NbrAll variant

Strategy Prefix Suffix Overall Prefix Suffix Overall

Prefix only 0.81 0.00 0.81 0.81 0.00 0.81
+Nbr 0.83 0.00 0.83 0.87 0.00 0.87
+Suffix 0.79 0.53 0.87 0.79 0.53 0.87
+Nbr+Suffix 0.81 0.52 0.88 0.86 0.48 0.90

(a) Overlap ratios for different context sources

NbrDef variant NbrAll variant

Prompt Length Prefix Suffix Overall Prefix Suffix Overall

1024 tokens 0.72 0.37 0.78 0.71 0.35 0.76
2048 tokens 0.81 0.52 0.88 0.86 0.48 0.90
4096 tokens 0.85 0.60 0.92 0.90 0.55 0.94
6144 tokens 0.85 0.62 0.92 0.90 0.58 0.95
8192 tokens 0.85 0.63 0.93 0.92 0.60 0.96

(b) Overlap ratios for different prompt lengths

Table 5.5: Overlap ratios of identifiers between the prompt and the HiddenRange. Data
shown for Python, other languages show similar trends.

5.5 IMPACT OF MODEL SIZE

We now analyze the impact of model size on the quality of the suggestions. For this

experiment, we use the standard 2048 context window and use the best possible prompting

strategy for each model. In practical terms, this means, we include the suffix portion when

the model has the ability to exploit it (code-davinci-002 and santacoder). For other models,

we only include the code before the cursor and context from other files to utilize the token

budget optimally.

Figure 5.3 shows the results of this experiment. We observe that the quality of the

suggestions improves as the model size increases. This is expected, since larger models have

more capacity to learn from the data. However, the impact of model size alone on the quality

of suggestions is not very dramatic. For instance, notice the difference between the quality

of suggestions from the codegen (multi) models. Despite increasing the size by 8x from 2B

param model to a 16B param model, the quality of suggestions only improves by 4% points

in exact match at first line score (13% relative). We see a similar trend for the codex models.

The Davinci model (175B params) is 14× larger than Cushman (12B params) but shows

only a 2% points improvement in exact match at first line score (4% relative) in absence of

suffix.
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On the other hand, factors other than the model size have a much more significant im-

pact. For example, by using the suffix portion of the prompt, davinci models can gain

9-12% point improvement in exact match at first line score (16-28% relative). Similarly,

the santacoder model can gain 6-14% point improvement (12-60% relative) in exact match

at first line score. In fact, the santacoder model, a 1.1B param model trained only on

Java, Javascript and Python can beat the 16B param Codegen-multi model which has been

trained significantly on more languages, when it is allowed to use suffix. Furthermore, all

models benefit dramatically when they are allowed to use neighboring files as context using

the NbrAll variant. Interestingly, using the NbrAll variant reduces the gap between all the

models significantly.

This shows that the model size alone is not sufficient to explain the quality of the sugges-

tions. Other factors such as the training data, the prompt generation strategy, the prompt

length, etc. play a very significant role in the quality of the suggestions.
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Figure 5.3: Impact of model size on the quality of the suggestions.
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Language Go Java Javascript Python Rust
Model

Salesforce/codegen-16B-multi 0.42 0.48 0.29 0.35 0.28
Salesforce/codegen-16B-mono 0.41 0.41 0.25 0.37 0.27
Salesforce/codegen-6B-multi 0.40 0.45 0.27 0.33 0.27
Salesforce/codegen-6B-mono 0.32 0.38 0.24 0.40 0.24
Salesforce/codegen-2B-multi 0.38 0.43 0.28 0.33 0.24
Salesforce/codegen-2B-mono 0.31 0.36 0.24 0.37 0.24

Table 5.6: Codegen Multi vs Mono models (Prefix + NbrDef + Suffix)

5.6 IMPACT OF TRAINING PROCEDURE

In this section, we discuss two interesting findings related to the model’s training proce-

dure. The codegen model series has two variants - (a) ‘multi’ and (b) ‘mono’. The mono

variants have been trained on top of the ‘multi’ models by feeding the models a large amount

of Python data. As a result, the mono models have seen significantly more data. However,

all the recent updates to their weights have been based on Python data. Thus, there is a

possibility that the mono models have reduced performance on other languages. We test this

hypothesis by comparing the mono and multi models on the same data. Table 5.6 shows the

results of this experiment. We observe that while the mono models have improved perfor-

mance in Python, there is a significant drop in performance on the other languages. In fact,

the 2B multi model is stronger than the 6B mono version with the exception of Python, and

in some cases like Java and Javascript, it is better than the 16B mono model as well. This

shows that finetuning a model on a specific kind of data towards the end of the training

procedure can have the model ‘forget’ some of the knowledge it has learned earlier. This

point should be kept in mind when training large models.

Another interesting finding is that the Santacoder model shows a dramatic improvement in

GoLang and Rust scenarios when the suffix is used (Figure 5.4a). This is surprising because

the model has not been explicitly trained on these languages. On inspecting some data using

BigCode’s Dataset Search1 tool, we found that there are Python, Javascript and Java files

that contain GoLang and Rust code snippets, often commented out, or via string literals in

code generator functions. This suggests that the model indeed has seen some Go and Rust

code, but not enough to learn the language proficiently. In presence of suffix, however, there

is a additional context available for the model to exploit, and sees similar performance boost

as it does on the other languages.

1https://huggingface.co/spaces/bigcode/santacoder-search
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If we look at SantaCoder’s performance on only JS, Java and Python scenarios (Fig-

ure 5.4b), it shows performance comparable to the no-suffix variants of both Codex models.

These findings show that the SantaCoder model is a surprisingly powerful model, and scaling

it up to more parameters would result in a very strong model.
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Figure 5.4: Controlling for SantaCoder’s training data (Prefix + NbrDef + Suffix)

5.7 TAKEAWAYS

Here is a summary of the main takeaways from our study of quality of suggestions from

large language models:

• The quality of prompts has a significant impact on the quality of suggestions. Prompts

having context from neighboring files are dramatically more effective than prompts

without such context.

• The manner of collecting context from neighboring files is important. Using static

analysis for collecting context may be an attractive proxy for filtering out irrelevant

context, but our results show that using simple text matching across more files is more

effective. This is because static analysis is not perfect, and may miss a lot of useful

context.

• Models with the ability to exploit suffix context have a significant edge over models

without this ability.

• Increasing context size of models beyond 4096 tokens does not meaningfully improve

the quality of suggestions, at least with current models and prompting strategies. 2048

tokens is a good balance between quality of suggestions and inference cost.
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• Small models can easily outperform larger models if trained better. Very large models

are not necessarily proportionally better than smaller models. For example, the cush-

man and davinci models perform nearly equally well when fed with the same prompt.

Similarly, the 1.1B SantaCoder model outperforms larger CodeGen models, and is

competitive with Codex models if it is allowed suffix context, and Codex models are

not.

• Finetuning models on specific languages negatively affects their performance on other

languages.
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CHAPTER 6: INFRASTRUCTURE STUDY

In this chapter, we ask the question, what kind of backend infrastructure is necessary to

have a fast and useful AI assistant? We start by discussing the factors that affect latency, and

then we present a study of the infrastructure requirements for the code generation models

we have been using. We conclude by discussing the implications of our findings.

6.1 FACTORS AFFECTING LATENCY

Since autocomplete systems are used interactively, the latency of the system is a critical

factor in the user experience. Human reaction time is about 200 milliseconds, so any latency

above this threshold will be noticeable to the user. In some situations, users may be willing

to tolerate higher latency in exchange for better suggestions (e.g., longer suggestions, or

better quality suggestions). However, in general, the latency of the system should be as low

as possible.

The latency of an AI based autocomplete system is largely dominated by the latency

of model inference. Factors such as prompt generation and network latency have negligible

impact on latency, assuming standard connectivity. We discuss the factors that affect latency

in more detail below. All the experiments in this section are performed on a single machine

with 8 A10 GPUs.

6.1.1 Inference Backend Choices

The inference backend is the software that runs the model. There are several options

for inference backends, including PyTorch, ONNX, TensorRT to name a few. There are

various tradeoffs involved in choosing an inference backend, however for the purposes of

efficient inference, the most important factors are the latency and memory footprint of the

backend. To demonstrate the impact of the inference backend, we compare the latency

of the same model running on PyTorch and Nvidia’s Triton Inference Server coupled with

the FasterTransformer backend [28]. The FasterTransformer backend is a highly optimized

inference backend for Transformers models.

Figure 6.1 compares the latency of a 2B and a 6B codegen model running on PyTorch and

the FasterTransformer backend, for different prompt lengths and output lengths. As can be

seen, the FasterTransformer backend is 1.2-3.5× faster than the Pytorch backend, depending

on the model size, prompt length and output length. It should be noted that even for the
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Figure 6.1: Latency comparison of PyTorch and FasterTransformer backends (NumGPUs=1,
BatchSize=1)

optimized FasterTransformer backend, the latency can be quite high for big inputs. Note

that these are the latencies for a single GPU, serving a single request at a time. In practice,

the latency can be improved by using multiple GPUs. We discuss this in more detail in a

later section.

6.1.2 Effect Of Sequence Length On Latency

As Figure 6.1 showed, the latency of the model is highly dependent on the length of the

input and output sequences. In this section, we discuss the effect of sequence length on

latency in more detail.

The inference of a transformer based model involves two stages: (a) context ingestion (b)

auto-regressive sampling. The first stage involves processing the prompt and caching the

intermediate results, which are repeatedly used in the second stage. In the auto-regressive

sampling stage, the model generates one token at a time by conditioning on the previous

tokens, and cannot be trivially parallelized. The latency of the auto-regressive sampling stage

is therefore proportional to the desired output length. The latency of the context ingestion

stage is proportional to the length of the prompt, and is a fixed cost that is incurred for

every request, regardless of the desired output length.

Figure 6.2 shows the breakdown of the latency of a 2B and a 6B codegen model for

different prompt lengths. The per-token latency in the autoregressive stage shows a mild

increase with the prompt length, but the latency in the context ingestion stage increases

linearly with the prompt length. Since having a long prompt (i.e., 1500 tokens or more) is
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Figure 6.2: Components of inference latency

important for the quality of the suggestions, the main controllable factor that affects latency

is the output length. Since longer outputs take longer to generate, the latency of the system

can be reduced by reducing the output length. In practice, this suggests a bias towards

one-line suggestions over multi-line suggestions. On some occasions, the user may be willing

to tolerate a longer latency in exchange for longer suggestions, and balancing this would be

an interesting problem to explore in future work.

6.1.3 Sharding

To provide low latency inference for models with billions of parameters, we need to shard

the model across multiple GPUs. For efficient inference, model weights are typically sharded

horizontally, i.e., each layer of the model is split across multiple GPUs. This form of par-

allelism, called Tensor Parallelism, allows large matrix multiplications to happen in parallel

across devices, at the cost of some communication between the devices. Figure 6.3 shows

the latency of a 2B and a 6B codegen model with different number of shards. Evidently,

adding more GPUs reduces the latency of the system. However, the latency does not im-

prove linearly with the number of GPUs, because the communication overhead increases

with the number of shards. This overhead is more pronounced for smaller models. E.g., for

the 2B model, the latency for producing 64 tokens reduces from 504ms to 440ms when going

from 4GPUs to 8GPUs (a 13% reduction). However, for the 6B model, the latency reduces

from 928ms to 713ms (a 23% reduction). Note that even though the infrastructure cost

doubles when going from 4GPUs to 8GPUs while the latency improvement is only 13-23%,

this improvement may be a worthwhile tradeoff for some applications, because the impact

of a small reduction in latency may still improve user experience significantly.
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Figure 6.4: Effect of sharding on latency components

Figure 6.4 shows the impact of sharding on the two stages of inference for the 6B Codegen

model. Sharding does not help much for short prompts in the context ingestion stage, but

helps significantly for long prompts. For the autoregressive sampling stage, sharding helps

significantly for all prompt lengths. As the overall latency of this stage is proportional to

the desired output length, sharding helps more as the output length increases. For example,

with 8GPUs, the latency for producing a token goes from 29ms (with 1 GPU) to 6ms. If 64

tokens are produced, the latency goes from 1856ms to 384ms, which is quite significant.

6.2 ESTIMATING INFRASTRUCTURE REQUIREMENTS

Having looked at the important factors that affect the latency of the system, we now

estimate the infrastructure requirements for an AI based code completion system. In the

earlier section, we observed that the latency of the system is highly dependent on both the
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prompt length and the output length. Since the prompt length is required to be long to

ensure high quality suggestions, the main controllable factor that affects the latency is the

output length. We use this observation to estimate the infrastructure requirements for a

code completion system.

We use the dataset of prompts collected by running the Copilot client on the set of

scenarios. Every prompt generated by Copilot comes with a list of corresponding ‘stop

tokens’, which are tokens that cause the autoregressive generation to stop. For example, if

the stop token is a newline, the model will stop generating tokens once it generates a newline.

We use the stop tokens, along with the expected completion code, in order to estimate the

output length of the model. We observed that only three sets of stop tokens were used: (a)

newline, (b) three newlines together and (c) {\ndef, \nclass, \nif, \n#}. Table 6.1 shows the

distribution of the number of tokens in the output for different completion trigger positions.

We use these numbers to estimate the infrastructure requirements for a code completion

system.

Completion Triggered

Percentile Not at Start of Function At Start of Function

Median (50%) 10 tokens 19 tokens
75% 22 tokens 74 tokens
90% 88 tokens 164 tokens
99% 250 tokens 250 tokens

Table 6.1: Number of tokens in output for different completion trigger positions

Using the above table, if we want to serve 50% of the responses in less than 200ms and

a 2B model is sufficient, then we can use 4 GPUs and meet these requirements. However,

a 6B model would need 8 GPUs to generate 10 tokens in around 200ms. Note that these

estimates are for running the models on A10 GPUs with FasterTransformer backend. With

better GPUs such as A100 variants, more efficient inference backends, aggressive quantization

techniques [29, 30, 31] and many other techniques for efficient inference [32] we can reduce

the infrastructure required to meet the latency requirements.
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CHAPTER 7: CONCLUSION AND FUTURE WORK

In this thesis, we explored the design space of building an AI based code completion

tool. We covered the design of Github Copilot, and studied the design trade-offs involved in

building such a tool. We found that the quality of the suggestions generated by the Large

Language Model (LLM) can be significantly improved by feeding it the right context. At

the same time, we found that feeding a larger amount of context to the LLM stops helping

after a point, and that context sizes in range 2048 to 4096 tokens may be sufficient. We also

found that the size of the LLM has a much smaller impact on the quality of suggestions than

other factors such as the context fed to the model and the training procedure used. This is

encouraging for the community, as it means that we may not need extremely high amount

of resources to build a strong code completion tool.

We also studied the factors affecting the latency of such code completion engines, discussed

the effect of various factors such as the inference backend, model size, context length, desired

output length, parallelism etc. Along with this, we also analyzed the prompts generated by

Copilot for over 9500 tests, and found that for an overwhelming majority of the cases, the

desired output length was short. This ensures that the latency for majority of the suggestions

will be quite low because for a fixed prompt length, the overall latency is linearly related

to the desired output length. This is an interesting detail that can be used to improve the

latency of code completion tools. However, at times users may desire longer suggestions, for

example at the start of a function, or similar code block. In such cases, the latency may

be high, but the user may be willing to wait longer as well. This is an interesting design

trade-off that can be explored in future work.

To perform this study, we built the first large scale dataset for code completion spanning 5

programming languages and over 9500 tests, along with an evaluation framework to evaluate

the quality of the suggestions generated by any real code completion tool. We built this

dataset because the existing benchmarks for LLMs for Code, such as HumanEval and APPS,

are not suitable for evaluating code completion tools. They focus on evaluating single-

function or whole-program generations based on natural language prompts. However, the

setting of code completion is quite different, as the prompts are not natural language, but

incomplete program files with several other files in the project. The desired output is also

different – single line completions and multi-line completions are both acceptable. We believe

that this dataset and the evaluation framework will be useful for the community to improve

the quality of code completion tools.

Beyond Code Completion: There is tremendous opportunity for utilizing Large Lan-
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guage Models in improving not just code completion, but all aspects of software development

The most exciting of all is the ability to interactively work with any software artifact. This

could be interactively writing a complex piece of code, or an interactive walkthrough of

a complicated codebase, or even an interactive debugger. There are already some efforts

underway to realize this vision, such as Github’s Copilot Chat[33] and Cursor[34]. These

tools provide a chat based interface in the editor. However, there are several challenges in

building such tools. Context collection is again a key challenge, as the model’s context size

is limited, whereas the codebase can be very large. Similarly, fast inference is also critical

for such tools, however the users may be willing to wait longer for the suggestions due to the

difference in the setting. Apart from these challenges that carry over from code completion,

there are also new challenges. For instance, reliability becomes a key challenge in such tools

because they provide longer suggestions, which are time consuming to verify. Code comple-

tion, on the other hand, mostly provides short one-line or single-function suggestions, which

can be easy to verify. Another interesting challenge is finding the right way of integrating

such tools into the existing development workflow. For example, should the LLM be able

to install new packages and run arbitrary commands on the system? Allowing these can

unlock new ways of developing software, but given the low reliability of LLMs and their

vulnerability to adversarial attacks (such as the prompt injection attack [35]), this can pose

serious security risks. We believe that these challenges are exciting opportunities for the

community to explore.
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[27] N. Carlini, F. Tramèr, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts,
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