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ABSTRACT

Cloud infrastructure systems like Kubernetes, Borg, and Twine are the foundation of the

modern cloud computing world. These systems are architected as a fleet of controllers. Con-

trollers manage large-scale cluster resources and all applications running atop them, making

their reliability paramount. Bugs in controllers can affect all the upper layer applications

and lead to severe consequences, such as service outages, data loss, and security issues. En-

suring the reliability of controllers is notoriously hard as controllers perform sophisticated

management tasks while running within complex and dynamic environments.

This dissertation focuses on improving the reliability of cloud infrastructure systems using

formal verification and testing techniques: Formal verification enables a path toward fully

verified cloud infrastructure systems by incrementally replacing existing controllers with

verified ones, and continuous and extensive testing improves controller reliability before

there are verified replacements.

We first present state-centric reasoning, a general approach to reasoning about the behav-

iors of controllers. The key idea is to reason about the cluster state shared by controllers,

instead of each controller’s internal state. State-centric reasoning represents a controller’s

behavior as the cluster state’s evolution—a uniform representation for diverse controllers.

The uniform representation enables formal verification and efficient testing for controllers.

As the first step to formally verify controllers, we present eventually stable reconciliation

(ESR), a general formal specification for controller correctness. The key idea of ESR is

to capture state reconciliation, the essential functionality of controllers, using a liveness

property that describes how the cluster state should evolve. We formalize ESR as a concise

formula in TLA. ESR is powerful enough to preclude a broad range of controller bugs and

is realistic with appropriate assumptions on the environment.

To close the gap between formal specifications (e.g., ESR) and controller implementa-

tion code, we present Anvil, the first framework that allows developers to build formally

verified, practical controller implementations. Anvil emphasizes verifying both liveness and

safety properties for implementation code. To achieve this goal, Anvil combines Hoare-style

reasoning for imperative code and TLA-style reasoning for state machines. To reduce the

manual proof burden, Anvil provides verification support, including reusable models and

lemmas. With Anvil, we have built the first verified Kubernetes controllers for managing

critical distributed applications. The verified controllers achieve feature parity and compet-

itive performance compared to their unverified, mature references.
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Formal verification offers strong correctness guarantees, but we still need to test existing

controllers continuously and extensively before there are verified replacements. Testing can

also catch bugs that originate from the interaction between verified and unverified systems.

However, previous work does not offer a generally applicable, comprehensive, and efficient

testing approach for diverse controllers. To address this problem, we present Sieve, the

first automatic reliability testing tool for controllers. Sieve’s key idea is state perturbation:

Sieve perturbs the controller’s view of the cluster state in ways it is expected to tolerate,

and then compares the cluster state’s evolution with and without perturbations to detect

triggered bugs. We evaluated Sieve on ten popular open-source controllers of various kinds.

Sieve found 46 new bugs in total, among which 35 have been confirmed (22 fixed) after we

reported them.

This dissertation marks a first step toward building fully verified cloud infrastructure

systems. We conclude by outlining future directions to advance this vision.
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CHAPTER 1: INTRODUCTION

Modern cloud computing world depends crucially on cloud infrastructure systems, such as

Kubernetes [1], Borg [2], and Twine [3]. These systems manage large-scale cluster resources

and lifecycles of all applications running atop them, including provisioning, upgrades, au-

toscaling, and reconfigurations. Cloud infrastructure systems have been widely used as the

control plane of modern clusters, datacenters, and clouds. For example, Kubernetes has

become the cluster management solution for over 50,000 companies globally [4].

Cloud infrastructure systems are the bottom layer of the modern cloud computing world,

and their reliability is paramount. Bugs in cloud infrastructure systems can affect all the

upper layer applications and lead to disastrous consequences, such as service outages, data

loss, resource leak, and security issues. For example, a bug in Kubernetes that violates a

cluster identity guarantee (i.e., each pod in the cluster should have a unique name) impacts

all the applications deployed on Kubernetes [5, 6]. Historic failure reports show that even

mature cloud infrastructure systems constantly fail, and some failures have caused produc-

tion incidents with catastrophic consequences [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

Reliability of cloud infrastructure systems is notoriously hard. First, cloud infrastruc-

ture systems perform complex tasks such as resource allocation and application lifecycle

management without having well-defined protocols or algorithms to reference. As a result,

developers of cloud infrastructure systems tend to implement system-specific best effort

heuristics without having a principled approach to reason about correctness. This also poses

challenges for maintaining and evolving the implementation as it is hard to ensure that a

code change preserves the original functionality. For example, the logic for managing storage

volumes in Kubernetes is intentionally written in the very verbose “space shuttle style” to

ensure each branch is explicitly accounted for, and developers are highly discouraged from

simplifying the code [19]. Despite the effort, bugs were still reported in the code [20, 21, 22].

Second, cloud infrastructure systems run within complex and dynamic environments and

face reliability challenges such as concurrency and failures. For example, concurrent system

components might have races on their shared state and might crash at any point (due to

kernel or hardware failures). In addition, cloud infrastructure systems lack programming

support for reliability, such as transaction with atomicity and isolation guarantees. It is

very challenging for developers to anticipate all corner cases at testing time to rule out bugs.

The current practice for improving the reliability of cloud infrastructure systems is in-

sufficient. Developers have written numerous unit, integration, and end-to-end test cases.

Chaos engineering tools [23, 24, 25, 26] have also been applied to test cloud infrastructure
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systems in failure scenarios. However, these tests rely on ad-hoc heuristics or random search

to find bugs. They only cover a small portion of the entire execution space and cannot pro-

vide any strong correctness guarantee. In addition, manual testing and imprecise techniques

like chaos engineering cannot reliably reproduce bugs with nondeterministic triggers (e.g.,

concurrency bugs), making failure diagnosis hard.

As cloud infrastructure systems have become the foundation of the cloud computing world,

their reliability has become an emerging and pressing problem. This dissertation focuses on

improving the reliability of cloud infrastructure systems in a principled way using verification

and testing techniques.

1.1 PROBLEMS AND CHALLENGES

1.1.1 How to specify correctness of cloud infrastructure systems?

Formal specifications are mathematic formulas that define system correctness, and having

a specification is the first step to verify system correctness. Formal specifications serve as

an informative interface between different layers of systems and an unambiguous contract

between system developers and users. However, cloud infrastructure systems, just like many

other systems, do not have formal specifications.

Designing a good formal specification is a challenging task. First, the specification should

capture the essential functionality of cloud infrastructure systems. Proving that the system

meets the specification should preclude serious bugs that happen in real world.

Second, the specification should be general. Cloud infrastructure systems consist of a

fleet of small components called controllers, and each controller manages one type of clus-

ter resources or applications. The specification should be generally applicable to different

controllers with diverse functionality.

Third, the specification should be realistic so it is possible to build a system that im-

plements the specification. As an example, consider a specification stating that a fault-

tolerant consensus protocol always eventually achieves consensus when running in any ar-

bitrary environment—it is impossible to design such a consensus protocol (FLP impossibil-

ity) [27]. To make the specification realistic, we need to specify appropriate assumptions on

the environment.

Finally, the specification should be concise enough for manual inspection. The value of

formal verification lies not in providing an absolute guarantee of correctness, but in reduc-

ing the amount of code developers need to inspect—from thousands of lines of complex
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implementation to a concise specification, often just tens of lines. Specification bugs can

undermine the verification effort [28, 29].

Given these challenges, this dissertation tries to answer the question: What should be the

formal specification for cloud infrastructure systems?

1.1.2 How to build provably correct cloud infrastructure systems?

Formal verification offers very strong correctness guarantee that a system is mathematically

proved to meet a specification for all possible system executions, including all possible inputs,

event orderings, and failures. However, to achieve this guarantee, developers often have to

manually write machine checked proof.

There has been a lot of progress in building formally verified systems, including operating

systems [30, 31], compilers [32], file and storage systems [33, 34, 35, 36, 37, 38, 39, 40], and

distributed systems [41, 42, 43]. For example, IronFleet [41] verified that a Paxos-based

replicated state machine system offers linearizability, and a lease-based sharded key-value

store behaves simply like a hash table.

Despite all the progress, writing proofs for system code still remains a highly challenging

task, especially for cloud infrastructure systems. Recent research [37, 39, 42, 44] reports that

the proof-to-code ratios are often larger than ten, meaning that for each line of implementa-

tion code, one needs to write ten or more lines of proof to verify the implementation. Cloud

infrastructure systems have complex implementations with millions of lines of code, so mod-

ularization is the key to making verification possible. Since cloud infrastructure systems’

core logics are modularized as controllers, we envision a practical verification approach that

gradually verifies the entire cloud infrastructure system by incrementally replacing existing

controllers with verified ones.

However, verifying controllers still poses many challenges. Controllers are complex, feature-

rich real-world systems that do not have pen-and-paper proofs that we can reference. This

problem is exacerbated by the fact that these controllers run in a complex and dynamic envi-

ronment, where they must handle unexpected faults, asynchrony, conflicts when interacting

with other systems.

This dissertation explores how to build practical and formally verified controllers with

manageable proof effort.
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1.1.3 How to test existing cloud infrastructure systems comprehensively and efficiently?

Formal verification provides strong correctness guarantees, but we still need to test existing

controllers continuously and extensively before there are verified replacements. In addition,

verifying the controller code does not provide an end-to-end correctness guarantee for the

entire system stack because lower layer systems, such as operating systems and compilers,

are not verified yet. Testing helps discover bugs that originate from unverified code or the

boundary between the verified and unverified.

Previous research has made great progress in testing distributed systems [45, 46, 47, 48, 49,

50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], but they do not offer a generally applicable,

comprehensive, and efficient testing approach for diverse controllers. For example, existing

fault-injection tools [45, 46, 47, 48, 49, 50, 51, 52] and concurrency-testing tools [53, 54, 55, 56]

often (1) rely on an expert’s hypotheses about vulnerable regions in the code under test,

which makes it hard to apply to an ecosystem of diverse controllers, or (2) perform random

testing, which makes it hard to test controllers comprehensively. Implementation-level model

checking [57, 58, 59, 60, 61, 62] techniques can exhaustively explore a system’s execution

space in a principled way, but they suffer from the state explosion problem.

Testing controllers is a challenging task. First, controller bugs tend to have sophisticated

triggering conditions. For example, a bug only happens when the order of a specific pair

of events flips, or when a failure happens right between a pair of events. The testing tool

should precisely capture diverse types of triggering conditions to detect bugs, and reliably

replay triggering conditions to reproduce bugs. Second, controller bugs can lead to silent

failures which are hard to observe by simply monitoring process status or logs. The testing

tool should have oracles that catch even silent failures caused by controller bugs. Third,

controllers have diverse implementations and features. To be generally applicable, the testing

tool should not assume too much about controllers’ implementation details.

Given these challenges, this dissertation explores how to develop a generally applicable,

comprehensive, and efficient testing tool for controllers.

1.2 THESIS STATEMENT

Modeling controller behaviors as the cluster state’s evolution enables (1) formal verifica-

tion for building practical, provably correct controllers, and (2) testing for detecting serious,

previously unknown controller bugs in an automatic, comprehensive, and efficient fashion.
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1.3 CONTRIBUTIONS

To answer the questions in Section 1.1, this dissertation makes contributions to verification

and testing techniques for cloud infrastructure systems. We first present state-centric rea-

soning, an approach for reasoning about controllers of cloud infrastructure systems. This

reasoning approach models behaviors of diverse controllers in a uniform representation and

enables verification and testing techniques that are generally applicable to diverse controllers.

Based on state-centric reasoning, we present the first general controller correctness specifi-

cation to address the problems from Section 1.1.1, the first framework for building practical

and formally verified controllers to address the problems from Section 1.1.2, and the first

automatic reliability testing tool for controllers to address the problems from Section 1.1.3.

1.3.1 State-centric Reasoning for Cloud Infrastructure Systems (Chapter 2)

We present state-centric reasoning, an approach for reasoning about behaviors of diverse

controllers without knowing their implementation details. The key idea is to model each

controller’s behavior as a sequence of cluster states, instead of the controller’s internal state.

State-centric reasoning is designed based on the state reconciliation principle followed by

modern cloud infrastructure systems: Controllers implement the cluster management logic

with a Reconcile() function that continuously monitors the actual cluster state and the

desired state description and continuously updates the cluster state toward matching the

desired state. State-centric reasoning leverages an important opportunity in this design:

The cluster state is represented as a set of highly introspectable objects that share a uniform

schema, and there is a clean separation between controllers and the state objects. The

state objects affect and reflect controllers’ behaviors, providing a vantage point to reason

about controller correctness. This design makes state-centric reasoning generally applicable

to diverse controllers.

State-centric reasoning models each controller’s behavior as the cluster state’s evolution,

instead of the controller’s internal state. This modeling allows state-centric reasoning to

represent correct or buggy controller behaviors without revealing the controller’s implemen-

tation details. We use a real-world example to illustrate how state-centric reasoning works.

The power of state-centric reasoning lies not only in reasoning but also in guiding the

design of verification and testing techniques. State-centric reasoning enables (1) formal

verification for controllers because asserting the cluster state’s evolution is the natural way

to formalize controller correctness, and (2) efficient and effective testing as it narrows down

the testing space by focusing on events that affect the state reconciliation process.
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1.3.2 Eventually Stable Reconciliation: Specifying Controller Correctness (Chapter 3)

The first step to formally verify a system is to define its formal specification. We present

eventually stable reconciliation (ESR), the first general formal specification of controller cor-

rectness. ESR is designed based on state-centric reasoning: ESR captures the essential

functionality that controllers should provide by defining a set of correct cluster state se-

quences. Proving that a controller implementation meets the ESR specification shows that

all possible behaviors of the controller are in the set.

The key insight behind ESR is to formalize controller correctness as a liveness property,

instead of safety. Informally speaking, a liveness property states that something good even-

tually happens, while a safety property states that something bad never happens. Although

most previous work [30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43] focuses on specifying and

verifying safety properties for other systems, we find that liveness naturally captures con-

troller correctness in a general and concise form: A controller should eventually make the

cluster state match a desired state. To be realistic, ESR also encodes a premise that the de-

sired state eventually becomes stable, otherwise the controller might keep chasing a moving

target. We formalize this liveness property in Temporal Logic of Actions (TLA) [63].

ESR precludes a broad range of controller bugs caused by factors like inopportune failures

and conflicts with other controllers. Our analysis shows that ESR precludes 69% of all the

bugs detected by state-of-the-art controller testing tools [64, 65].

Summary: ESR is the first general formal specification for controllers of cloud infras-

tructure systems, and it enables formal verification for cloud infrastructure systems. ESR

precludes a broad range of bugs with diverse root causes and serious consequences, including

the majority of the bugs detected by state-of-the-art controller testing tools.

1.3.3 Anvil: Building Formally Verified Controllers (Chapter 4)

A practical path toward fully verified cloud infrastructure systems is to replace existing,

unverified controllers with verified controllers incrementally. To achieve this goal, we present

Anvil, the first framework for implementing practical and formally verified controllers. Anvil

allows developers to implement controllers in the Rust programming language and verify

liveness and safety properties for the implementations. The verified controllers can be readily

deployed in real-world cloud infrastructure systems.

Anvil emphasizes verifying both liveness and safety properties for practical implementa-

tions. Liveness verification is often harder than safety verification: Proving liveness often

requires temporal logic reasoning for the entire system executions while proving safety invari-
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ants only requires induction on system transitions. To enable liveness verification for system

implementations, Anvil’s key idea is to combine Hoare-style [66] and TLA-style [63] verifica-

tion. To verify liveness for a controller, developers structure their controller implementation

as a state machine, prove that the controller implementation conforms to an abstract con-

troller model using Hoare-style verification, and then prove liveness of the controller model

using TLA-style verification.

Another common challenge in proving liveness is that the proof depends on subtle fairness

assumptions, including assumptions about possible faults. Overly strong assumptions (e.g.,

the controller can crash at most once) lead to weak correctness guarantees, and overly

weak assumptions (e.g., the controller can keep crashing forever) make liveness verification

untenable. Anvil employs an assumption that covers a broad range of fault scenarios—an

arbitrary finite number of faults can happen, but eventually faults stop happening. This

assumption is similar in spirit to partial synchrony [67] but for faults.

To reduce manual proof effort, Anvil provides verification support, including a reusable

model for controller environments and lemmas encoding common reasoning patterns. To

verify a controller, one must consider the controller’s interactions with the environment in

which it runs. Anvil models this environment, including the shared cluster state, asyn-

chronous network, other controllers, and a realistic fault model. The environment model

also encodes assumptions on fair scheduling and faults. Anvil abstracts general liveness

reasoning patterns in the environment into reusable lemmas to reduce proof effort.

Since ESR is a general specification, Anvil provides a general proof strategy for ESR that

developers can follow. The key idea of the proof strategy is to divide the proof into two

parts: Developers first prove that the environment eventually becomes stable (under the

fairness assumptions), and then they prove that the controller makes progress toward the

desired state starting from any possible cluster state in the stable environment.

Anvil leverages state-of-the-art automatic verifier. Specifically, Anvil is built on top of

Verus [68, 69], an SMT-based deductive verification tool for Rust. Verus does not support

temporal logic reasoning, so Anvil provides a TLA embedding on top of first-order logic to

enable TLA-style temporal reasoning.

We also present case studies of using Anvil to implement and verify three practical Ku-

bernetes controllers for managing ZooKeeper, RabbitMQ, and FluentBit. These controllers

can readily be deployed in real-world Kubernetes platforms; they provide feature parity with

respect to existing mature, widely used (but unverified) controllers. We have verified that

the three controllers implement the ESR specification using Anvil. We have also verified a

safety property specific to the RabbitMQ controller: the controller never performs unsafe

scaling operations. The verification effort is manageable, with the proof-to-code ratio rang-
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ing from 4.5 to 7.4 across the controllers. The verification process exposed deep bugs in both

our early implementations and unverified reference controllers.

Our evaluation shows that the verified controllers achieve competitive performance com-

pared to unverified ones, and applying the state-of-the-art controller testing tools finds no

bugs in the verified code.

Summary: Anvil is the first framework for building practical and formally verified con-

troller implementations. With Anvil, we have built the first formally verified Kubernetes

controllers. Anvil enables a practical path toward fully verified cloud infrastructure systems

by replacing existing controllers with verified ones incrementally.

1.3.4 Sieve: Automatic Reliability Testing for Controllers (Chapter 5)

While Anvil allows developers to build verified new controllers, existing controllers still de-

pend on manually written, ad-hoc test cases. We present Sieve, an automatic reliability test-

ing tool that is generally applicable to controllers. Sieve’s testing is guided by state-centric

reasoning, and it achieves comprehensiveness, efficiency, usability, and reproducibility.

The key idea of Sieve is state perturbation, a testing approach that focuses on perturbing

how a controller advances the cluster state’s evolution. The insight is that a controller’s

action depends on its view of the cluster state. State perturbation tests a controller by

perturbing the controller’s view of the cluster state in ways it is expected to tolerate. It then

compares the cluster state’s evolution with and without perturbations to detect liveness and

safety issues.

Sieve leverages an important opportunity in cloud infrastructure systems: Controllers

interact with the cluster state objects via state-centric interfaces that perform semantically

simple operations on the cluster state (e.g., reads and writes) and deliver notifications about

cluster-state changes; the state objects that flow through the interfaces typically have a

uniform schema. Thus, state-centric interfaces are an ideal vantage point to observe and

perturb a controller’s view of the cluster state. This makes Sieve generally applicable to

diverse controllers.

Sieve performs comprehensive testing to detect different types of bugs. Sieve currently

uses three different state perturbation patterns through injecting crashes, delays, and recon-

figurations. These are circumstances that reliable controllers are expected to tolerate. For

each pattern, Sieve automatically generates test plans that cover all possible perturbations

during an execution of the controller under a given test workload.

Sieve automatically flags buggy behaviors using differential test oracles that compare the

cluster state’s evolutions with and without perturbations. The differential oracles allow Sieve
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to catch liveness and safety violations, including silent failures. The differential oracles are

often more effective than searching for errors in logs and more comprehensive than human-

written assertions.

Sieve’s testing is efficient. Compared to techniques like implementation-level model check-

ing that exhaustively manipulates message ordering and timing of failures, Sieve reduces the

testing space by focusing only on the events that affect a controller’s view of the cluster

state. Sieve also avoids redundant and futile state perturbations to maximize test efficiency.

Sieve is highly usable. It does not require (1) formal specifications of the controller,

(2) hypotheses about vulnerable regions in the code where bugs may lie, or (3) highly

specialized test inputs. It does not rely on expert written assertions either. Sieve requires

only a manifest for building the controller image and basic test workloads. Sieve’s testing

is then fully automatic. This degree of usability is key to making reliability testing broadly

accessible to the rapidly increasing number of controllers.

Sieve reliably reproduces triggered bugs by replaying the state perturbation. For each

state perturbation, Sieve generates a test plan that encodes what events to inject and when

to inject to implement this state perturbation. Developers can replay the state perturbation

by simply rerunning the corresponding test plan. For example, if a bug was triggered by

injecting a crash right between two controller updates, Sieve can reproduce this bug by

rerunning the same workload and injecting a crash between the same pair of events.

We evaluated Sieve on ten popular open-source controllers of various kinds, from either

commercial vendors or official projects. Sieve found 46 new bugs in total, among which 35

have been confirmed (22 fixed) after we reported them. Notably, these are deep semantic

bugs that Sieve detected without any expert guidance. The bugs have severe consequences,

including application outages, security vulnerabilities, resource leaks, and data loss. Sieve

is highly efficient—all controllers could be tested in under seven hours on a cluster of 11

machines, representing a typical nightly test. Sieve also has a very low false-positive rate of

3.5%, making its testing results trustworthy.

Summary: Sieve is the first automatic reliability testing tool for controllers. Sieve is de-

signed to be generally applicable by testing at the right level—perturbing how the controller

advances the cluster state’s evolution. Sieve has improved the reliability of ten popular

Kubernetes controllers by finding 46 serious new bugs, among which 22 have been fixed.

1.4 OUTLINE

The structure of this dissertation is as follows. Chapter 2 presents state-centric reasoning

with background information about cloud infrastructure systems and controllers. Chapter 3
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presents eventually stable reconciliation (ESR), the controller correctness formal specifica-

tion. Chapter 4 presents Anvil, the framework for building and verifying controllers. Chap-

ter 5 presents Sieve, the automatic reliability testing tool for controllers. Chapter 6 discusses

related work on verification and testing. Chapter 7 concludes this dissertation and discusses

future work. Appendix A gives a detailed example of how to verify liveness using Anvil.

The materials in some chapters have been published as conference papers. The materi-

als in Chapter 3 and Chapter 4 have been presented in the 18th USENIX Symposium on

Operating Systems Design and Implementation (OSDI’24) [70]. The materials in Chapter 5

have been presented in the 16th USENIX Symposium on Operating Systems Design and

Implementation (OSDI’22) [64].
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CHAPTER 2: STATE-CENTRIC REASONING FOR CONTROLLERS

Modern cloud infrastructure systems like Kubernetes [71], Borg [2], Twine [3], Omega [72],

and vSphere [73] break down cluster-management logic into a fleet of microservices, called

controllers [74]. For example, in Kubernetes, all the cluster-management logic is encoded

in different controllers. Today, thousands of controllers are implemented by commercial

vendors and open-source communities to extend Kubernetes with new capabilities [75, 76,

77, 78]. Controllers manage everything from application lifecycles (e.g., provisioning, up-

grades, autoscaling) to stateful services, storage, networking, and integrations with cloud

providers [79, 80, 81, 82, 83]. All controllers perform critical operations, making their relia-

bility paramount.

To develop verification and testing techniques for controllers, our first step is to develop

a general approach to reason about controllers’ behaviors. We present state-centric reason-

ing, which represents a controller’s behavior as the cluster state’s evolution driven by the

controller. State-centric reasoning provides a uniform representation of diverse controllers’

behaviors without knowing their internals. This is achieved by leveraging an important op-

portunity in cloud infrastructure systems: There is a clean separation between controllers and

the cluster state, and the cluster state is represented as highly introspectable objects. This

reasoning capability enables verification and testing techniques that are generally applicable

to diverse controllers and opens up opportunities to build fully verified cloud infrastructure

systems in a practical manner.

The contribution of this chapter is state-centric reasoning, a general approach

for reasoning about behaviors of controllers in cloud infrastructure systems. In

this chapter, we first introduce the architecture and reliability challenges of cloud infrastruc-

ture systems, and then we present state-centric reasoning.

2.1 BACKGROUND

Cloud infrastructure systems are architected as a fleet of controllers. The controllers im-

plement all logic for managing cluster resources, services, and applications. All controllers

follow the same behavior pattern called state reconciliation, where controllers repeatedly

attempt to reconcile between the current cluster state and some desired state. The cluster

state is represented as mere structured data (e.g., JSON objects).

Cloud infrastructure systems rely on a clean separation between the cluster state and

the controllers [74]. The structured data that represents the cluster state is stored in some
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logically centralized, highly-consistent datastore. The cluster state is exposed to controllers

by an ensemble of API servers with state-centric interfaces that perform semantically simple

operations on the cluster state (e.g., reads and writes).

We use Kubernetes as a representative example to present the basics of cloud infras-

tructure systems’ architecture and the state-reconciliation principle. Figure 2.1 illustrates

Kubernetes’ architecture.

Statefulset
Controller

ZooKeeper
Controller

Scheduler
(Controller)

Deployment
Controller

GC
Controller...

...

API Server API Server API Server

etcd etcd etcd

RabbitMQ
Controller

Spark
Controller

PyTorch
Controller

Figure 2.1: Overview of Kubernetes.

In Kubernetes, the cluster state is represented by shared data objects in etcd. Every entity

in the cluster has a corresponding object in the cluster state, including pods, volumes, nodes,

and groups of applications. These state objects are exposed by REST-based API servers

and are stored in a logically centralized data store like etcd [84].

All Kubernetes’ cluster-management logic is encoded in controllers. Controllers follow

the state reconciliation principle: Each controller runs a control loop that continuously

reconciles the cluster’s current state to the desired state [85, 86]. At each loop iteration, a

reconciliation procedure checks whether the current cluster state matches the desired state;

if not, it performs corrective operations to move the cluster toward the desired state (e.g.,

launching new replicas in an ensemble of servers when existing replicas fail). The operations

query or update the cluster state. The desired cluster state is described declaratively and

can be dynamically updated during the lifecycle of a running controller. The reconciliation

procedure is typically implemented in a Reconcile() function, which is invoked whenever

the desired state description (or its relevant cluster states) is changed.

Figure 2.2 shows a simple example of Reconcile(). The Reconcile() is invoked with

a name pointing to the corresponding desired state description. During Reconcile(), the

controller first gets the state object that encodes the desired state description, and then

checks the current state of running pods. If the desired state requires more pods than

currently exist, the controller will enter a loop to create new pods until the number matches.
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1 func Reconcile(dname string ...) (err error) {

2 desiredState , err := Get(dname)

3 if err != nil { return err }

4 pods , err := List("pods")

5 if err != nil { return err }

6 diff := desiredState.replicas - len(pods)

7 if diff > 0 {

8 for i := range diff {

9 pod := make_new_pod (...)

10 if err := Create(pod); err != nil {

11 return err

12 }

13 }

14 } else if diff < 0 {

15 for i := range -diff {

16 if err := Delete(pods[i]); err != nil {

17 return err

18 }

19 }

20 }

21 }

Figure 2.2: A simplified example of Reconcile(). This controller’s goal is to keep the
number of running pods the same as replicas from the desired state description. The
controller interacts with state objects via Get, List, Create, Delete, and other APIs.

If the desired state requires fewer pods, the controller will delete pods iteratively. After the

Reconcile() finishes, the number of actual running pods should match the desired state,

assuming that no other processes creates or deletes pods. If the desired state or the running

pods change again, Reconcile() will be invoked again to bring the cluster state to the (new)

desired state.

This design makes Kubernetes extensible without requiring changes to its client library or

interface—supporting a new system or feature is thus simply a matter of adding a custom

controller and a corresponding set of custom object types to the cluster state. The design

also allows controllers to be loosely coupled, which improves resilience: Controllers can

independently fail and new controller instances can continue reconciliation.

Kubernetes’ extensibility has led to the emergence of a thriving ecosystem of thousands

of custom controllers that have been developed by commercial vendors and open-source

communities [75, 76, 77, 79, 81, 82, 83]. For example, OpenShift, an enterprise Kubernetes

platform from Red Hat, provides 160+ controllers that extend Kubernetes [87]. AmazonWeb

Service (AWS) provides 50+ controllers to manage AWS services using Kubernetes [88, 89].
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Most cloud systems today have controllers to manage them atop Kubernetes. Even for

the same cloud system, multiple controllers are developed to support different operation

practices and deployment environments. Many critical cloud systems such as Istio [90],

Crossplane [91], and StreamOps [92] are also implemented as controllers.

However, many real-world production incidents [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18] show that developing correct and reliable controllers is challenging to achieve [93].

Popular, mature controllers misbehave when subjected to node crashes, network delays, and

misoperations, causing system failures, service outages, data loss, etc.

To build a reliable controller, a developer faces the fundamental challenge of anticipating

all possible cluster states that the controller needs to handle and safely reconciling to the

required desired states from any of these points. There is a pressing need for verification

and testing techniques that preclude controller bugs during the development phase.

2.2 REASONING ABOUT THE CLUSTER STATE’S EVOLUTION

A key challenge of verifying or testing cloud infrastructure systems is how to reason about the

behaviors of diverse controllers that manage different resources and applications. To address

this challenge, we develop state-centric reasoning, which provides a uniform representation

of state-reconciliation behaviors for diverse controllers.

State-centric reasoning leverages an important opportunity in cloud infrastructure sys-

tems: There is a clean separation between controllers and the objects that represent the

cluster state. Although controllers have complex implementations and diverse features, the

state objects share a uniform schema and enjoy high consistency provided by the underlying

datastore (e.g., etcd). This provides us a vantage point to reason about the behaviors of

diverse controllers without knowing their implementation details.

State centric reasoning represents a behavior of a controller as a sequence of cluster states,

instead of the controller’s internal state. State-centric reasoning focuses on how controllers

advance the cluster state and abstracts away low-level controller implementation details. By

observing the cluster state’s evolution, we can differentiate correct controller behaviors from

buggy behaviors.

As an example, Figure 2.3 shows one of many bug patterns of controllers [14, 64, 65, 93,

95]. The bug prevents the Cassandra cluster from auto-scaling and leaks storage resources

(decommissioned volumes in gray are never deleted). This is because the controller lacks

crash safety—it fails to recover from an intermediate state due to a crash between deleting

a Cassandra pod and updating the Finalizing phase. With state-centric reasoning, the

correct behavior of the controller is represented as a sequence of cluster states starting with
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Phase: “Ongoing”
Pods: [              ]
Vols:  [              ]

Phase: “Ongoing”
Pods: [              ]
Vols:  [              ]

Controller Code Snippet (simplified)

switch Get(Phase){
case “Ongoing”:
if NotFound(   ) {
return Error(“Pod not found”)

}
...
Delete(   )
...
Update(Phase, “Finalizing”)
...

case “Finalizing”:
...
Delete(   )
...
Update(Phase, “Done”) 

} 
/* cassandracluster/pod_operation.go */

Correct run Faulty run

Phase: “Done”
Pods: [             ]
Vols:  [             ]

Controller crash 
and restart

Delete   
Finalizing
Delete   
Done

Delete

Phase: “Ongoing”
Pods: [             ]
Vols:  [             ]

“Pod not found”

Cluster State (Controller’s View)

Figure 2.3: A bug in a Kubernetes controller for managing Cassandra [94]. The
right side shows the buggy Reconcile() code, while the left side illustrates both correct and
buggy executions of Reconcile() using state-centric reasoning.

two pods and two storage volumes and ending with one pod and one storage volume. The

buggy behavior in the faulty run is represented as a sequence ending with an intermediate

cluster state where the pod has been deleted but the volume still exists.

State-centric reasoning enables formal verification for controllers. The first step to formally

verify a system is to formally specify its correctness guarantee. Based on state-centric

reasoning, we design eventually stable reconciliation (ESR), a general formal specification

for controller correctness (Chapter 3). ESR is made general by making assertions about

the cluster state’s evolution instead of controller implementation details. ESR precludes a

broad range of controller bugs including the bug in Figure 2.3. We then develop Anvil,

a framework for verifying controller implementations by reasoning about how controllers

advance the cluster state (Chapter 4).

State-centric reasoning also enables efficient and effective testing for controllers. State-

centric reasoning narrows down testing space by focusing on events that affect cluster state’s

evolution and provides a general testing oracle by comparing different cluster state evolu-

tions. For example, the bug in Figure 2.3 was discovered by Sieve, a testing tool we developed

based on state-centric reasoning (Chapter 5). Sieve analyzes the cluster state’s evolution in

the correct run of the Cassandra controller and then produces a faulty run where the con-

troller starts its reconciliation process with an intermediate state (after a crash and restart).

Sieve catches the triggered bug by comparing the end cluster states of the two runs. Sieve’s
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testing is fully automatic with developer-provided testing workloads and does not require

knowledge of controller-specific implementation details.

We present the verification and testing techniques designed based on state-centric reason-

ing in the following chapters.
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CHAPTER 3: SPECIFYING CORRECTNESS FOR CONTROLLERS

Formal verification is a promising approach for guaranteeing correctness. To formally verify

a program, developers need to write a formal specification that defines the correct executions

of the program and a proof showing that the program meets the specification. This chapter

focuses on the formal specification for controllers, and the next chapter presents how to

prove that a controller meets the specification.

Designing a formal specification is challenging. First, the specification should capture

the essential functionality of the system. Proving that the implementation meets the spec-

ification should preclude a broad range of bugs with serious consequences. Second, the

specification should be generally applicable to diverse controllers for managing different re-

sources and applications. Third, the specification should be realistic and practical. It should

be possible for developers to write a system implementation that meets the specification. To

be realistic, the specification should come with reasonable assumptions about the environ-

ment. Finally, the specification is a contract between system developers and users and there

could be bugs in it, so we should make the specification simple and concise.

Controllers reconcile the cluster state to match the desired state. While the details vary

between controllers, and some controllers may have additional correctness guarantees, we

formalize a general property called eventually stable reconciliation (ESR) that captures this

ubiquitous pattern. ESR captures two key properties of any controller’s state reconciliation

behavior: (1) progress: given a desired state description, the controller must eventually make

the cluster state match that desired state (unless the desired state changes), and (2) stability:

if the controller successfully brought the cluster to the desired state, it must keep the cluster

in that state (unless the desired state changes).

ESR captures the essential functionality that controllers should provide, and it precludes

a broad range of bugs caused by factors like inopportune failures and conflicts with other

controllers. ESR is general and does not require controller-specific implementation details

because it is designed based on state-centric reasoning and makes assertions about the cluster

state’s evolution, instead of a controller’s internal state. ESR is also realistic and captures

the necessary premise to reach the desired state. We formalize ESR as a concise formula in

TLA (temporal logic of actions) [63], a linear-time temporal logic.

The contribution of this chapter is eventually stable reconciliation (ESR), the

first general specification for controller correctness.
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3.1 BACKGROUND ON TEMPORAL LOGIC OF ACTIONS (TLA)

To make our specification general, we do not wish to commit to any particular bound on

the time or number of operations the controller takes to bring the cluster to the desired

state. So, we want to talk about guaranteed eventualities. Such unbounded eventualities are

naturally described using temporal logics [96]. We use TLA (temporal logic of actions) [63],

a linear-time temporal logic well-suited to our needs.

TLA is a way of describing how state evolves over time. The semantics of TLA is about

system executions, where an execution is an infinite sequence of states, including the current

state and future states.

In temporal logics, each formula is interpreted as an assertion about executions. Each

temporal formula is built up from elementary formulas using boolean operators (e.g., ∧, ∨)
and temporal operators (e.g., □, ♢). The temporal operators □ (always) and ♢ (eventually)

are used in temporal logics to reason about future states. For example, if a formula F states

that “Pod P exists in the current cluster state,” then □F states that “Pod P exists in the

current cluster state and all future cluster states,” and ♢F states that “Pod P exists in the

current cluster state or some future cluster state.” Temporal logics such as TLA also allow

nesting of temporal operators; for example, ♢□F means that eventually we get to a point

such that from that point onwards, F always holds.

We say that a temporal formula F is satisfied by an execution if F evaluates to true on

this execution. A temporal formula F is said to be valid, written |= F , if and only if F is

satisfied by all possible executions. Similarly, F2 |= F1 means that F1 is satisfied by any

execution that satisfies F2. We often write model |= spec to say that the spec is satisfied by

all possible executions of the model.

3.2 EVENTUALLY STABLE RECONCILIATION (ESR)

We formalize ESR as a TLA formula that should hold for all traces of the system’s execution,

where the system includes both the controller and its environment, under all possibilities

for asynchrony, concurrency, and faults (e.g., controller crashes). We use d to denote a

state description, desire(d) to denote whether d is the current description of the desired

state, match(d) to denote whether the current cluster state matches the description d. Our

definition of ESR is given by the following formula:

∀d.□
(
□desire(d) ⇒ ♢□match(d)

)
. (3.1)
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Figure 3.1: Executions that violate or satisfy ESR.

Informally, ESR asserts that if at some point the desired state stops changing, then the

cluster will eventually reach a state that matches it, and stay that way forever.

ESR captures the key correctness properties shared by virtually all controllers: progress

and stability. We elaborate on this with a detailed dissection of eq. (3.1). The innermost

conclusion of the formula is ♢□match(d), which states that eventually (♢) the controller

matches the desired state (progress), and from then on, it always (□) keeps the cluster

state at the desired state (stability). In front of this expression, □desire(d) is a realistic

and necessary premise for the controller to match the desired state—if the desired state

description keeps changing forever, the controller will keep chasing a moving target forever,

and nothing can be guaranteed as we do not wish to assume a bound on how long state

reconciliation takes. The outer □ in eq. (3.1) says that □desire(d) ⇒ ♢□match(d) always
holds, meaning that the controller continuously reconciles the cluster state regardless of its

past execution. Finally, ∀d states that the controller reconciles all desired state descriptions.

Figure 3.1 illustrates the ESR definition in some examples, some that satisfy the definition

and others that do not: (a) violates progress because the cluster state never matches d, (b)

violates stability because the cluster state first matches d but then deviates from d, (c)

satisfies ESR because the cluster state eventually matches and always matches d2, and (d)

vacuously satisfies ESR because the desired state never stops changing, so □desire(d) does

not hold for any fixed d.

The verification goal for each controller is to prove that the controller satisfies ESR—

all possible executions of the controller satisfy ESR. We use model to describe all possible
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executions of the controller that runs in an environment with asynchrony, concurrency and

faults. We use ⇝ (leads-to) notation to simplify the presentation of the ESR property,

where P ⇝ Q means □(P ⇒ ♢Q). Then the statement that the controller satisfies ESR is

formalized as:

model |= ∀d.□desire(d)⇝ □match(d). (3.2)

3.3 PRACTICAL IMPLICATIONS OF ESR

Strictly speaking, ESR (eq. (3.1)) only guarantees one successful state reconciliation—the

one that happens after the desired state stops changing forever. However, in practice the

controller has no way of knowing if the desired state will change in the future or not. There-

fore, we can expect that a controller that satisfies ESR will bring the cluster to match the

desired state (and keep it like that) for any desired state that remains unchanged for long

enough. ESR achieves this without getting into the gory details of defining exactly how long

is long enough. Note further that because of the outermost □ in eq. (3.1), a controller that

satisfies ESR will deliver multiple successful state reconciliations, assuming that the desired

state goes through a series of slow changes.

Our analysis shows that ESR can ensure the absence of a broad range of controller bugs [64,

65, 95]. For example, Sieve (Chapter 5) detected 28 bugs across ten popular controllers that

the controller never matches the desired state due to inopportune failures and concurrency

issues, which consist of 61% of all the bugs detected by Sieve. All such bugs are precluded

by ESR. ESR also precludes 75% of all the bugs detected by Acto [65], a testing tool

developed by us for custom application controllers by mutating desired state descriptions.

Prior work [95] also reported failure patterns where the cluster state, after matching a

desired state, then deviates due to conflicting interactions with other controllers. Such bugs,

as stability violations, are also precluded by ESR.
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CHAPTER 4: BUILDING FORMALLY VERIFIED CONTROLLERS

To close the gap between formal specifications and practical controller implementations, we

present Anvil, a framework for implementing practical controllers and formally verifying

the implementations. We have developed and verified practical Kubernetes controllers for

managing critical systems using Anvil. Anvil emphasizes verifying both liveness (e.g., ESR)

and safety properties for system implementation code. The key idea of Anvil is to combine

Hoare-style [66] and TLA-style [63] verification to first connect a controller implementation

to an abstract state machine model, and then prove that all possible executions of the model

satisfy liveness or safety properties.

A common challenge in proving liveness properties is that the proof depends on subtle fair-

ness assumptions, including assumptions about possible faults. Overly strong assumptions

(e.g., the controller can crash at most once) lead to weak correctness guarantees, and overly

weak assumptions (e.g., the controller can keep crashing forever) make liveness verification

untenable. Anvil employs an assumption that covers a broad range of fault scenarios—an

arbitrary finite number of faults can happen, but eventually faults stop happening. This

assumption is similar in spirit to partial synchrony [67] but for faults.

To verify a controller implementation, one must consider the controller’s interactions with

the environment in which it runs. Anvil models this environment, including the shared clus-

ter state, asynchronous network, other controllers, and a realistic fault model (Section 4.2.3).

The environment model also encodes assumptions on fair scheduling and faults. Anvil ab-

stracts general liveness reasoning patterns in the environment into reusable lemmas to reduce

proof effort (Section 4.2.4).

With the reusable models and lemmas provided by Anvil, developers can prove that the

controller makes progress from any cluster state towards potential desired states in the

presence of asynchrony, faults, and conflicts with other controllers. We present a proof

strategy to disentangle the challenges of proving ESR (Section 4.3), which divides the proof

into two lemmas: (1) starting from any possible state resulting from potential interleaving of

previous execution and faults, the controller progresses towards the desired state in a stable

environment, and (2) the environment eventually becomes stable. Both lemmas can be

proven using the temporal proof rules that Anvil provides (under the fairness assumptions).

We have applied this proof strategy to verify three controllers using Anvil.

We implemented Anvil for verifying Kubernetes controllers on top of Verus [68, 69], an

SMT-based deductive verification tool for Rust. With Verus, developers can implement con-

trollers in Rust and formally verify their implementations. Verus does not support temporal
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logic reasoning, so Anvil provides a TLA embedding on top of first-order logic (Section 4.2.2)

to enable TLA-style temporal reasoning.

We used Anvil to implement in Rust three practical Kubernetes controllers for manag-

ing ZooKeeper, RabbitMQ, and FluentBit (Section 4.4). These controllers can readily be

deployed in real-world Kubernetes platforms; they provide feature parity and competitive

performance w.r.t. existing mature, widely used (but unverified) controllers. The verification

effort is manageable, with the proof-to-code ratio ranging from 4.5 to 7.4 across the con-

trollers. The verification process exposed deep bugs in both our early implementations and

unverified reference controllers. Although Anvil is primarily designed for liveness verifica-

tion, it also supports safety verification; we prove a safety property specific to the RabbitMQ

controller: the controller never performs unsafe scaling operations.

In this chapter, we first present how to write controller implementations using Anvil.

Then we present Anvil’s verification support and how to prove ESR using Anvil. Finally we

present case studies of building verified controllers using Anvil and evaluation.

Anvil’s TLA-style verification support for proving liveness properties is applicable to any

system. We demonstrate how to write TLA-style liveness proof using a small yet represen-

tative example in Appendix A.

Summary. This chapter makes the following contributions:

• We present Anvil, a framework for developing practical controllers and formally verifying

that the controller implementations satisfy correctness properties such as ESR.

• We have built three representative and practical Kubernetes controllers and verified their

correctness using Anvil.

• We present an evaluation of the end-to-end correctness and performance of the three

verified controllers.

• We have made Anvil and the verified controllers publicly available at https://github.

com/anvil-verifier/anvil.

4.1 IMPLEMENTING CONTROLLERS USING ANVIL

In Anvil, developers implement a controller using a state machine; this style is common

practice in unverified controllers as well [97, 98], and in Anvil it enables TLA-style verifica-

tion. Figure 4.1 shows a snippet of the Anvil Controller API specified using a Rust trait: it

involves defining the initial state and the transitions of a state machine. Anvil’s reconcile()

uses the state machine as shown in Figure 4.2: it starts from the initial state and invokes

step() iteratively until all steps are done or if any step encounters an error. Each iteration
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1 pub trait Controller {

2 type D; // desired cluster state description

3 type S; // local state in the state machine

4

5 /// Returns the initial local state (in the state

6 /// machine) of every reconcile ()

7 fn initial_state () -> S;

8

9 /// Returns S: next local state in state machine

10 /// Req: external request (e.g. to Kubernetes)

11 /// # Arguments

12 /// * d: the desired cluster -state description

13 /// * r: response to the request from last step

14 /// * s: current local state in state machine

15 fn step(d: &D, r: Resp , s: S) -> (S, Req);

16

17 /// Returns true if all steps are done

18 fn done(s: &S) -> bool;

19

20 /// Returns true for error states

21 fn error(s: &S) -> bool;

22 } // other advanced APIs are omitted

Figure 4.1: Anvil’s basic Controller API. To implement a controller, developers imple-
ment the Controller trait.

of step() returns the next state in the state machine, together with an external request.

The external request is typically a REST call to Kubernetes APIs, but can also be extended

to non-Kubernetes APIs (Section 4.4.1). The response to the external request is passed as

an argument to the next iteration of step(). Note that the API enforces no more than

one external request per step(), making the state-machine transition atomic with respect

to cluster-state changes. Anvil’s reconcile() interfaces a trusted Kubernetes client library

(kube-rs [99]) which invokes reconcile() upon changes, handles its output, and requeues

the next invocation.

Figure 4.3 shows the step() implementation of a controller that manages ZooKeeper [100,

101] on Kubernetes. The step() function takes the desired state description of the ZooKeeper

cluster (d), the response (r) to the request from last step (if any), and the current local state

(s), and deterministically returns the next local state and the external request. The state

machine starts from the CheckService state, where it returns a request to read the service

object [102] from the Kubernetes API (service get req) and the next state to transition to

ReconcileService. The reconcile method (Figure 4.2) fetches the service object using the
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1 pub fn reconcile <C>(d: C::D) -> Result <Action , Error >

2 where C: Controller {

3 let mut s = C:: initial_state ();

4 let mut resp = None;

5 loop { // exercise the state machine

6 if C:: error(&s) {

7 return Err(ErrorNeedsRequeue);

8 } else if C::done(&s) {

9 return Ok(requeue(timeout));

10 }

11 let (next_s , req) = C::step(&d, resp , s);

12 resp = send_external_request ::<C>(req);

13 s = next_s;

14 }

15 } // details like validity checks are omitted

Figure 4.2: Anvil code that assembles reconcile() using the Controller API in
Figure 4.1.

Kubernetes API, and moves on to the next iteration of step(), bringing the state machine

to ReconcileService branch. The controller proceeds to create or update the service based

on the response of service get req. In this way, the controller progressively reconciles each

cluster-state object and eventually matches the desired state declared by ZKD.

4.2 ANVIL’S VERIFICATION SUPPORT

Anvil is built on top of Verus [68, 69], an SMT-based deductive verification tool for Rust

backed by Z3 [103], in similar spirit to Dafny [104]; it offers a Hoare-logic [66] framework

for reasoning modularly about imperative code in Rust. To enable TLA reasoning, Anvil

requires developers to implement their controllers as state machines.

Figure 4.4 shows the workflow of using Anvil to verify a controller. The developer first

provides A a controller model (an abstract state machine) and then proves two theorems:

B the Controller trait implementation (Figure 4.3) conforms to the controller model and

C the controller model, together with a model of the environment (e.g., the network, other

controllers, faults), satisfies specifications like ESR (eq. (3.2)).

Writing the controller model and verifying the implementation conforms to the model are

straightforward. The controller model is an abstract state machine with the same structure

as the implementation state machine. To prove conformance, developers prove that each

step in the implementation corresponds to exactly one step in the model using standard
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1 fn step(d: &ZKD , r: Resp , s: ZKS) -> (ZKS , Req) {

2 match s {

3 CheckService => { // if the service exists

4 let service_get_req = KubeGet { ... }

5 return (ReconcileService , service_get_req);

6 }

7 ReconcileService => {

8 /// create/update the service based on response r

9 if r.is_ok() {

10 let service_update_req = ...;

11 return (CheckConfigMap , service_update_req);

12 } else if r.is_not_found () {

13 let service_create_req = ...;

14 return (CheckConfigMap , service_create_req);

15 } else {

16 return (Error , Noop); // restart reconcile ()

17 }

18 }

19 CheckConfigMap => { ... }

20 ReconcileConfigMap => { ... }

21 CheckStatefulSet => { ... }

22 ReconcileStatefulSet => { ... }

23 ...

24 } // more step branches are omitted

25 }

Figure 4.3: A simplified implementation of step() using Anvil for creating a
ZooKeeper cluster. Proof-related code is omitted.

Floyd-Hoare style reasoning (Section 4.2.1). Note: the controller model is written in Verus’

specification language to enable verification.

Verifying the model entails ESR is more challenging: developers need to apply temporal

logic reasoning on the interaction between the controller and its environment (including

faults) at the model level to prove ESR. To reduce developers’ burden on specification

and proof, Anvil provides (1) a TLA embedding (Section 4.2.2) that defines temporal logic

operators on top of first-order logic to enable specification and proof in temporal logic (Verus

does not support temporal logic), (2) a model of the controller environment (Section 4.2.3),

including components that a controller interacts with, faults that a controller must tolerate,

and reasonable assumptions on fair scheduling and faults that controller liveness depends

on, and (3) reusable lemmas (Section 4.2.4) that encode temporal proof rules and liveness

and safety properties of the interactions between a controller and the environment; these

lemmas can be directly assembled into developers’ ESR proofs.
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Figure 4.4: An overview of Anvil’s workflow.

Assumptions. Anvil relies on the following assumptions: (1) The TLA embedding cor-

rectly defines TLA concepts [63]. (2) The controller environment model correctly describes

the interactions between the controller and its environment. (3) The specification of the

unverified APIs for querying and updating the cluster state correctly describes the behav-

ior of these APIs. (4) The verifier (Verus and Z3), the Rust compiler, and the underlying

operating system are correct.

4.2.1 Controller Model

To verify controller correctness, developers first write a controller model and prove the con-

troller implementation conforms to this model, similar to prior work [38, 41]. The controller

model is a mathematical, state-machine representation of the imperative controller imple-

mentation, which abstracts the data types in the implementation and enables TLA-style

verification. Given the proof of implementation-model conformance, the model is not as-

sumed to be correct in Anvil’s overall verification guarantee.

Anvil provides an API for developers to write the controller model, shown in Figure 4.5.

This API defines a state machine and is similar to the Controller API in Figure 4.1, ex-

cept that all the methods and variables are written in ghost code [68, 104]. Ghost code is

auxiliary code that describes properties of programs and is used for verification only—the

code is erased before compilation and thus poses no runtime overhead. Concretely, in the

controller model, all the methods are Verus’ spec functions which are purely functional,
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and all the variables are ghost types that represent an abstract view of the variables in the

implementation, e.g., a heap-allocated Rust Vec is represented as a mathematical sequence

(Verus’ Seq).

1 pub trait ControllerModel {

2 type DV; // view of the desired state description

3 type SV; // view of local state in the state machine

4 spec fn m_initial_state () -> SV;

5 spec fn m_step(d: DV , r: RespV , s: SV) -> (SV , ReqV);

6 spec fn m_done(s: SV) -> bool;

7 spec fn m_error(s: SV) -> bool;

8 } // other advanced APIs are omitted

Figure 4.5: Anvil’s ControllerModel API. Developers use the API to write the controller
model (an abstract state machine). It mirrors the implementation trait (Figure 4.1) but is
written in ghost code.

Given a controller implementation, writing the controller model is straightforward. Given

a step() implementation in the Controller API (Figure 4.1), developers write a corresponding

m step() using the ControllerModel API (Figure 4.5). If the implementation’s step() returns

a Kubernetes-API request, m step() correspondingly returns a ghost-type request (ReqV)

that queries the Kubernetes API model (Section 4.2.3). The other trait methods are largely

identical to their counterparts in the implementation except for the data types.

For each implementation data type defined by developers, such as the types for the desired

state description and the state machine’s local state (e.g., D and S in Figure 4.1), developers

need to define a corresponding ghost type (e.g., DV and SV), typically by replacing implemen-

tation data types with corresponding ghost types. For example, if D has a field of Rust Vec

type, DV will have a field of Verus Seq type. Developers also need to define a view() function

that converts an implementation object to the corresponding ghost-type object.

Implementation-model conformance. Developers need to prove that the implementa-

tion state machine has the same initial state, transitions and termination conditions as the

model state machine through view(). Figure 4.6 shows the theorem to prove conformance

for the ZooKeeper controller’s step() in Figure 4.3. This theorem states that the model’s

m step() produces the same output (in ghost types), given the same input (in ghost types)

of the implementation’s step().

The key challenge in enabling and automating the conformance proof is to reason about

data types defined in external, unverified libraries. For example, the controller implemen-

tation needs to use data types that define Kubernetes state objects from the kube-rs [99]

library, but Verus cannot directly reason about definitions from unverified libraries. So,
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1 fn step(d: &ZKD , r: Resp , s: ZKS) -> (res: (ZKS , Req))

2 ensures res@ == ZKControllerModel :: m_step(d@ , r@ , s@)

3 { ... } // implementation body is omitted

Figure 4.6: The conformance theorem written as a postcondition of step. The step
function is executable (part of the controller implementation). The symbol @ is a shorthand
for .view() in Verus, which converts an implementation type into a ghost type.

Anvil defines wrappers that translate every Kubernetes state-object type to its correspond-

ing ghost type. These wrappers are straightforward to implement and are trusted; Anvil

includes unit tests that cover all the trusted wrapper methods.

The controller implementation uses the wrapper types instead of raw types from kube-rs,

and the model uses the corresponding ghost types. For verification, Verus automatically

tracks the wrapper’s view (view()) through the postconditions of the wrapper methods used

in the controller implementation. Verus compares the object’s view to the ghost object

used in the controller model to check the conformance proof; e.g., to prove the theorem in

Figure 4.6, Verus compares the returned request’s view and its counterpart in the model.

With this design, the conformance proof is done by standard Floyd-Hoare style reason-

ing [66] and is largely automated by Verus. Most of the manual proof effort is the requirement

to ask Verus to prove two objects are equal if they have the same properties, e.g., to prove

a Vec’s view (in the implementation) and the corresponding Seq (in the model) are equal.

4.2.2 TLA Embedding

To enable liveness reasoning on top of Verus, Anvil develops a TLA embedding that models

important concepts in TLA. Anvil follows IronFleet [41] and models three major concepts as

follows: (1) an execution is an infinite sequence of system states encoded as a mapping from

natural numbers to states, (2) a temporal predicate is a boolean predicate on executions,

and (3) a temporal operator (e.g., ♢, □ and ⇝) is a function that transforms one temporal

predicate into another. Every temporal operator is defined using only first-order quantifiers

on executions. Suppose P is a temporal predicate and ex is an execution, eventually(P)

(resp. always(P)) is a temporal predicate that holds true of ex if P is true on some (resp.

all) suffixes of ex, that is, at some (resp. all) future time.

With the TLA embedding, developers can specify the theorem that the controller satisfies

ESR (eq. (3.2)) as in Figure 4.7. The definition of desire is typically reused among con-

trollers but can also be extended if more premises are required for liveness. The definition of

match varies across controllers; e.g., the match(d) for the ZooKeeper controller in Figure 4.3
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checks if the service, config map and stateful set exist in the data store and match the desired

state description d (Figure 4.8).

1 // model |= ∀d.□desire(d)⇝ □match(d)
2 model.entails(

3 forall (|d: DV|

4 always(desire(d)).leads_to(always(match(d)))

5 ))

Figure 4.7: The ESR theorem specified using the TLA embedding.

1 spec fn match(d: ZKDV) -> TemporalPredicate {

2 lift(|s: ClusterState| { // lift a state predicate

3 let store = s.state_object_data_store;

4 store.contains(service_name(d))

5 && store.contains(config_map_name(d))

6 && store.contains(stateful_set_name(d))

7 && store[stateful_set_name(d)]. replicas == d.size

8 && ... // more statements are omitted

9 })

10 }

Figure 4.8: The definition of the ZooKeeper controller’s match. The temporal predi-
cate, when applied to an execution, checks the first state to see if the state objects exist in
store and match d. ZKDV is the view of the ZooKeeper desired state description (ZKD).

In the style of specifying systems [105], Anvil diligently abstracts away executions: devel-

opers model components at the levels of state and action (transition between states), then

complete liveness proofs with temporal operators. Essentially, Anvil encourages developers

to express concepts as state predicates over individual states or action predicates over indi-

vidual transitions. Developers can convert a state predicate to a temporal predicate using

a lift function [105]: an execution satisfies the lifted predicate if its first state satisfies

the state predicate; lifting an action predicate likewise applies the predicate to the first two

states of an execution. For example, the temporal predicate match(d) is defined by lifting

a state predicate as shown in Figure 4.8. In this way, developers focus on reasoning about

individual states and actions when proving invariants and lift them to temporal predicates

when applying temporal proof rules (Section 4.2.4). This differs from IronFleet which inter-

acts directly with instantiated executions throughout the liveness proof. We present Anvil’s

temporal reasoning style in Section 4.3.2 and a more detailed example in Appendix A.
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4.2.3 Modeling Controller Environment

To reason about interactions between a controller and its environment, Anvil models the con-

troller environment. The goal is to describe the external behavior of different components in

the environment and capture the factors that affect a controller’s correctness, including asyn-

chrony, concurrency and faults. To this end, Anvil models the environment as a compound

state machine, consisting of individual state machines that depict the behavior of different

components, such as the network and the API server, as well as faults. The environment

model also comes with reasonable assumptions on fair scheduling and faults that liveness

depends on.

Modeling Environment Components

Anvil models the environment as a compound state machine with each inner individual state

machine modeling one component that a controller interacts with, including:

• an asynchronous network that delivers messages among components with no ordering

guarantees;

• the cluster-state data store and the API server; the cluster state is stored in the logically

centralized data store (e.g., etcd [84]) and exposed by the API server which handles the

controller’s query or update requests;

• other controllers in the environment that might interact with the to-be-verified controller;

and

• clients that request desired cluster states; clients can update the desired cluster state at

any time.

Anvil embeds the controller model in the compound state machine to reason through the

interaction between the controller and its environment. The compound state machine, in

each step, chooses one individual state machine and invokes one step of that state machine.

All the steps are atomic regarding how the cluster state advances (e.g., the API server only

handles one request to update the cluster state in each step).

The compound state machine model naturally captures asynchrony and concurrency chal-

lenges for controllers. For example, time-of-check to time-of-use (TOCTOU) issues can

happen when the cluster state has changed since the last time the controller queried it, but

the controller issues an update based on its stale view of the cluster state.

A model of Kubernetes environment. Anvil models the Kubernetes cluster-state data

store as a map that stores state objects. Anvil models Kubernetes API servers’ mechanisms
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for validating and coordinating controller requests, including its multi-version concurrency

control mechanism wherein each object is versioned. Requests from the controllers must be

validated with a version check to take effect.

Anvil models Kubernetes built-in controllers that interact with other controllers, including

(1) the garbage collector [106] which deletes a state object if all of its listed owners have

been deleted, (2) the StatefulSet controller [107] which manages stateful applications, and

(3) the DaemonSet controller [108] which manages daemons processes (e.g., for monitoring).

Modeling Faults

Anvil models common faults that happen in modern clusters as actions in the compound

state machine; the compound state machine in each step chooses to either let one component

take one step or let one fault happen. Anvil models two types of faults: (1) controller crash:

the controller can crash and reboot an arbitrary number of times. Each crash makes the

controller stay offline for an arbitrary number of steps before it is rebooted. After a crash,

the controller loses its internal (in-memory) state and has to start over from the beginning

of its reconciliation procedure. (2) request failures: any request sent by the controller can

fail at any point due to network timeouts or the API server being busy.

Specifying Liveness Assumptions

Liveness verification needs careful assumptions. In a concurrent, asynchronous system, fair-

ness assumptions are needed to prove that something eventually happens as it relies on the

system and its environment getting a chance to take certain actions—a property that is

expected to hold in practice but must be nonetheless explicitly incorporated in our formal

assumptions. This problem is especially pronounced for controller liveness: a controller’s

reconciliation (1) relies on other components’ actions to complete, and (2) can be inter-

rupted by faults or conflicting actions from other controllers. Anvil makes assumptions that

the environment eventually allows the controller to make progress.

Weak fairness assumptions on actions. Applying the weak fairness [63] assumption is

effective to make the liveness property hold, without assuming any specific fair scheduling.

A weak fairness assumption states that if an action A remains “enabled” (i.e., the action can

possibly occur), the action eventually occurs: □enabled(A)⇝ A. The predicate enabled(A)

is true, if for S (the first state of the execution), there exists a next state S ′ such that

A(S, S ′) is true; that is, it is possible for A to occur and transition to S ′.
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We include fairness assumptions in the model by assuming weak fairness on the actions

of the controller and other components in the environment.

Assumptions on faults. Controller liveness also needs assumptions on faults. If the

compound state machine chooses to reboot the controller in every step, the controller will

never get a chance to finish reconciliation. However, overly strong assumptions like “the

controller crashes only once” lead to weak correctness guarantees. To strike a balance,

we assume that faults can happen an arbitrary finite number of times but eventually stop

happening, in the spirit of partial synchrony [67].

To incorporate this assumption, we add a “disable-fault” action for each type of fault to

the compound state machine. We then add the weak fairness assumption to disable-fault

actions. That is, the disable-fault action eventually happens, after which the corresponding

type of fault no longer happens.

Assumptions on other controllers. Controllers share the cluster state and thus can

conflict with each other. A controller’s liveness relies on conflicts being eventually resolved,

which mandates assumptions on other controllers. In Kubernetes as an example, the built-in

StatefulSet controller can compete with the target controller forever. Suppose the controller

uses a stateful set to manage a stateful application and updates the stateful set to match

the desired state description. At the same time, the StatefulSet controller continuously

updates the stateful set to publish the current status of each running node. When the two

controllers are updating the same object concurrently, only one can succeed [109]. Thus,

the environment model can adversarially keep letting the target controller lose the race and

never reach the desired state.

Anvil assumes that the StatefulSet controller eventually stops updating the stateful set

until the target controller updates the stateful set again. Similar to the fault assumption,

we add to our model an action (with weak fairness) that disables the built-in StatefulSet

controller’s updates on a stateful set; the target controller’s successful update to this stateful

set will enable the StatefulSet controller again. Anvil makes the same assumption on how

the built-in DaemonSet controller updates daemon sets.

4.2.4 Reusable Lemmas

Proving ESR requires applying temporal proof rules to reason about the controller’s interac-

tion with the environment. This is challenging in two ways: (1) temporal reasoning does not

have good automation because SMT solvers like Z3 lack decision procedures for temporal

operators, and (2) the interaction between the controller and the environment is complex
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1 proof fn leads_to_transitive(

2 model , P, Q, R: TemporalPredicate

3 )

4 requires

5 model.entails(P.leads_to(Q)),

6 model.entails(Q.leads_to(R))

7 ensures model.entails(P.leads_to(R))

8 { ... } // proof body is omitted

Figure 4.9: The leads-to transitivity lemma.

and is subject to asynchrony and faults. To reduce developers’ proof effort, Anvil provides

a library of reusable lemmas that encode (1) commonly used temporal proof rules and (2)

generic reasoning patterns in the controller environment.

Temporal Reasoning Lemmas

Anvil provides temporal reasoning lemmas that encode commonly used proof rules to im-

prove temporal reasoning automation. These lemmas are useful for proving liveness for any

controller. One example is the leads-to transitivity lemma (Figure 4.9). It shows that if

P ⇝ Q and Q⇝ R, then P ⇝ R, all under the same assumption model. The proof of this

lemma involves using the temporal logic definitions, reasoning about an arbitrary time in an

execution where P holds, and showing there exists a corresponding time where R eventually

holds (using an intermediate time when Q holds, as guaranteed by the preconditions). In

return, the developer can easily invoke the lemma without reference to execution or specific

indices (these are hidden in the temporal logic lemmas). The leads-to transitivity lemma

is frequently used for chaining leads-to formulas to deduce ESR: in our controllers used as

case studies, the lemma is used over 50 times. So far, Anvil includes statements and proofs

of 70+ such lemmas, representing a broad range of temporal reasoning patterns.

Environment Reasoning Lemmas

Environment reasoning lemmas prove liveness and safety properties of the interaction be-

tween a controller and the environment. We have developed 60 such lemmas. These lemmas

are generic to all controllers, and developers can assemble the lemmas into their proofs. We

present a representative lemma derived from Anvil’s Kubernetes environment model.

Example lemma on the garbage collector (GC). Developers need to reason about

their controller’s interaction with the built-in GC (Section 4.2.3). The GC’s job is to delete
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orphan objects whose owner [110] no longer exists: e.g., a stateful set owns a set of pods,

thus deleting the stateful set orphans these pods. The GC can conflict with the controller:

(1) after the controller updates the owner of an orphan object, the GC deletes the object

due to its stale view [111], and (2) the controller attempts to update an object that was

deleted by the GC.

To prove ESR, developers need to prove that eventually the GC stops racing with the

controller on the object. To help developers prove that eventually the GC stops trying to

delete an object x (as x has an existing owner), Anvil provides a lemma with the precondition

that any request from the controller that tries to (re)create or update x sets x’s owner to an

existing object, and the postcondition that eventually if x exists, it has an existing owner

(Figure 4.10). This lemma saves developers the trouble of reasoning about a long chain of

the GC execution, including that the GC eventually sends a request to delete x (if it is an

orphan), the network eventually delivers the request, and the API server eventually handles

the deletion. This lemma takes 200+ lines of proof code and is used in verifying all of the

controllers in Section 4.4.

1 proof fn eventually_always_has_an_existing_owner(

2 model: TemporalPredicate , x: ObjectKey

3 )

4 requires model.entails(

5 always(each_req_sets_an_existing_owner(x))),

6 ... // some preconditions on fairness are omitted

7 ensures model.entails(

8 eventually(always(has_an_existing_owner(x))))

9 { ... } // proof body is omitted

Figure 4.10: The garbage collector lemma. If each request that tries to create or update
x sets x’s owner to an existing object, then eventually it is always true that if x exists, it
has an existing owner.

4.3 PROVING THE ESR THEOREM

Proving the ESR theorem requires developers to reason about how the controller makes

progress starting from any cluster state towards any desired state. We leverage the opportu-

nity that all controllers follow the state-reconciliation principle and develop a proof strategy

for ESR. The proof strategy is realized by temporal reasoning using Anvil’s TLA embedding

and lemmas. We present the proof strategy for ESR and temporal reasoning with Anvil.
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4.3.1 Proof Strategy for ESR

The key idea of our proof strategy is to divide the proof into two main lemmas by separation

of concerns: (1) proving that the environment eventually becomes stable, and (2) proving

that the controller, starting from any state (any state()) resulted from arbitrary previous

executions and faults, eventually achieves the desired state in this stable environment. Here

an environment is stable if (1) the controller does not conflict with the other controllers, (2)

faults do not happen, and (3) the desired state description remains unchanged. The ESR

theorem is finally proved by combining the two lemmas using temporal proof rules (e.g.,

leads-to transitivity). Figure 4.11 shows the high-level proof structure.

1 proof fn ESR_proof ()

2 ensures model.entails(forall (|d: DV|

3 always(desire(d)).leads_to(always(match(d)))

4 )) /* the ESR theorem */ {

5 // (1) prove ∀d. model |= □desire(d)⇝ stable model(d)

6 env_is_eventually_stable ();

7 // (2) prove ∀d. stable model(d) |= any state()⇝ □match(d)
8 liveness_in_stable_env ();

9 // (3) prove model |= ∀d.□desire(d)⇝ □match(d)
10 ...

11 leads_to_transitive (...);

12 }

13

14 proof fn env_is_eventually_stable () // lemma 1

15 ensures forall |d| model.entails(

16 always(desire(d)).leads_to(stable_model(d))) {...}

17

18 proof fn liveness_in_stable_env () // lemma 2

19 ensures forall |d| stable_model(d).entails(

20 any_state ().leads_to(always(match(d)))) {...}

Figure 4.11: High-level structure of the ESR proof. model describes the original
environment in Section 4.2.3. stable model(d) describes the stable environment: faults and
conflicts stop, and the desired state d is stable.

Environment is Eventually Stable

Proving that the environment is eventually stable is straightforward and is largely automated

by Anvil’s lemmas. For example, developers can directly invoke Anvil’s lemma which proves

that faults eventually stop happening based on Anvil’s assumption of faults (Section 4.2.3).
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However, proving that the controller eventually stops conflicting with the other controllers

still requires certain controller-specific reasoning. Take the garbage collector (GC) as an

example, developers can use Anvil’s lemma on the GC (Figure 4.10) to prove that the GC

eventually stops racing with the controller on any object, after they prove that the controller

correctly sets the owner of the target objects (required by the GC lemma).

A notable corner case emerges due to asynchrony: even if the desired state description

remains unchanged, the controller could still be affected by an older version of the desired

state. Consider an execution where the controller crashes right after sending a request to

match d1, then the desired state description is updated to d2 and remains unchanged from

then, but the old request for d1 is still pending in the network. After the restarted controller

sends a new request to match d2, the two requests will conflict with each other—the two

requests try to make the cluster state match two different versions of the desired state.

To address this problem, we prove that after the desired state description stabilizes, any

controller request for any previous version of the desired state eventually leaves the network.

Liveness in a Stable Environment

Within the stable environment, developers focus on proving that the controller reaches the

desired state through each reconciliation step, without considering faults or conflicts.

The main challenge is to prove liveness starting from any possible state. The state here

includes both the shared cluster state and the controller’s internal state: the cluster state

can result from any possible interleaving between the controller’s previous execution and

arbitrary faults, and the controller internally can be running any reconciliation step.

It is tedious to reason about different executions starting from every internal state. For the

ZooKeeper controller in Figure 4.3, it would require reasoning about controller executions

starting from CheckService, ReconcileService and all other branches in step(), respec-

tively. To reduce proof burden, we organize the proof in three stages (Figure 4.12). First,

we prove a termination property: the controller’s current reconciliation (the current invo-

cation of reconcile() in Figure 4.2) eventually terminates regardless of its current internal

state. This is done by reasoning about internal states backward, e.g., CheckService leads to

termination if all its successor states lead to termination. Second, we prove that a new rec-

onciliation eventually starts after the previous one terminates. This holds as Anvil requeues

the next invocation of reconcile() when the current terminates (Figure 4.2). Lastly, we only

need to reason about the controller execution starting from its initial internal state in the

new reconciliation (e.g., CheckService in Figure 4.3) to prove that the controller eventually

creates and updates all the state objects to match the desired state.
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Reconciliation terminates

Reconciliation restarts

Query service

Create service Update service

Query config map

① The current reconciliation 
eventually terminates.

②A new reconciliation 
eventually restarts.

③ From the initial internal 
state, the controller eventually 
realizes the desired state.

…

…

Figure 4.12: Proving liveness in a stable environment.

To reason about the controller execution starting from its initial internal state, we need to

reason about how the controller manages each state object. We observe that controllers often

employ similar workflow for managing different objects, which can be leveraged to develop

general lemmas to further reduce proof burden. For example, the ZooKeeper controller

in Figure 4.3 manages its service, config map and stateful set with a similar pattern: (1)

querying the object and (2) creating or updating the object depending on the query result.

We develop a lemma parameterized by state objects which proves that, from the step that

the controller queries the object, eventually the object always exists and matches the desired

state. The lemma internally reasons about how the controller creates or updates the object

to match the desired state.

4.3.2 Temporal Reasoning with Anvil

The proof strategy for ESR is realized by temporal reasoning. With Anvil, developers

perform temporal reasoning by focusing on reasoning about state and action predicates using

Anvil’s TLA embedding and lemmas. We use the example in Figure 4.13 to demonstrate

temporal reasoning with Anvil.

Developers perform temporal reasoning to prove that all possible executions allowed by

a model satisfy a property Prop (model |= Prop). A model is defined as the initial state
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1 // model ≜ init ∧□next ∧ fairness(...)

2 let model = lift(init).and(always(lift(next))

3 .and(fairness (...)));

4

5 // (1) prove model |= P⇝ Q

6 // if P holds , P or Q will hold in the next state

7 assert forall |s, s’| P(s) && next(s, s’)

8 implies P(s’) || Q(s’) by { ... }

9 // if P holds , running A makes Q hold in the next state

10 assert forall |s, s’| P(s) && next(s, s’) && A(s, s’)

11 implies Q(s’) by { ... }

12 // if P holds , A is enabled (A can possibly occur)

13 assert forall |s| P(s) implies enabled(A)(s) by { ... }

14 wf1(model , next , A, P, Q);

15

16 // (2) prove model |= Q⇝ R

17 ...

18 wf1(model , next , A, Q, R);

19

20 // (3) prove model |= P⇝ R

21 leads_to_transitive(model , lift(P), lift(Q), lift(R));

22

23 // (4) prove model |= P⇝ □R
24 assert forall |s, s’| R(s) && next(s, s’)

25 implies R(s’) by { ... }

26 leads_to_stable(model , lift(next), lift(P), lift(R));

27

28 // (5) prove model |= □Inv
29 assert forall |s| init(s) implies Inv(s) by { ... }

30 assert forall |s, s’| Inv(s) && next(s, s’)

31 implies Inv(s’) by { ... }

32 invariant_by_induction(model , init , next , Inv);

Figure 4.13: Temporal reasoning with Anvil. Developers focus on reasoning about
states and actions and applying TLA proof rules.

(init), all possible next-state actions (next), and fairness assumptions (line 2-3). Fairness

assumptions are only used for proving liveness properties such as ESR.

Proving ESR often involves proving that if condition P holds then eventually Q holds

(i.e., P ⇝ Q). For example, if the controller sends a request, then eventually the request is

received and handled by the API server. Proving P ⇝ Q is typically done by applying the

WF1 rule [63]. WF1 states that “Action A makes P lead to Q” with four requirements (1)

running any action in a state satisfying P makes either P or Q hold in the next state, (2)
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running A in a state satisfying P makes Q hold in the next state, (3) P implies that A is

enabled (i.e., A can possibly occur) and (4) A has the weak fairness assumption. To apply

Anvil’s wf1 lemma (line 14), developers focus on proving (1)-(3) by reasoning about P , Q,

A and all other actions allowed by the model (line 7-13), and (4) is automatically proved by

the definition of the model.

Proving ESR requires reasoning about a sequence of actions. For example, the controller

sends a request, the API server handles the request, and the controller receives the response

and continues to send the next request. To prove that the controller makes progress through

multiple actions, developers apply the leads to transitive lemma (line 21) to combine

multiple leads-to properties into one (P ⇝ R).

To reason about stability (if P ⇝ R, then P ⇝ □R), developers need to demonstrate

that R is preserved by all possible actions (if R holds, then it will hold in the next state)

and apply the leads to stable lemma (line 24-26).

Proving ESR (or other properties) often requires invariant reasoning by induction (line

29-31). For example, to prove that a state object x always exists, developers need to prove

an invariant that the controller never deletes x. Such invariants are often required when

applying wf1 and leads to stable.

4.4 CASE STUDIES

We use Anvil to build three verified Kubernetes controllers for managing different applica-

tions and services (ZooKeeper, RabbitMQ, and FluentBit). For each controller, we use a

mature, widely used controller as a reference (either the official Kubernetes controller of the

applications or from companies that offer related products). We verify ESR for all three

controllers, and a safety property of the RabbitMQ controller.

Feature parity. We aim to implement verified controllers that are feature rich with pro-

duction quality. For the ZooKeeper and RabbitMQ controllers, we implement key features

offered by the reference controllers [112, 113] including scaling, version upgrading, resource

allocation, pod placement, and configurations, as well as network and storage management.

For the FluentBit controller, we implement all the features offered by the reference con-

troller [114]. We also implement important features missing in the reference controllers. For

the ZooKeeper controller, we implement a feature that the controller automatically restarts

each ZooKeeper server to load the new configuration once the configuration changes. For the

FluentBit controller, we implement a feature that the controller allows users to customize

how a load balancer discovers FluentBit daemons. All the verified controllers can readily be

39



deployed in real-world Kubernetes platforms and manage their respective applications.

Experience. Anvil’s Controller API (Figure 4.1) is expressive to implement all the features

of the controllers. For verification, we spent around two person-months on verifying ESR

for the ZooKeeper controller, during which we developed the proof strategy (Section 4.3).

We took much less time (around two person-weeks) to verify the other two controllers using

the same proof strategy and similar invariants. We find Anvil’s ability to formally verify a

controller’s implementation invaluable. We discovered deep bugs via verification. Some of

them also exist in the reference controllers but were not detected by testing [64, 65].

4.4.1 ZooKeeper Controller

We implement and verify a full-fledged ZooKeeper controller, using the controller [112] from

Pravega [115] as the reference. Figure 4.3 is a simplified version of our ZooKeeper controller.

We discuss two challenges of verifying the controller.

Supporting non-Kubernetes APIs. We extended Anvil to support non-Kubernetes

APIs to implement features like scaling. To scale a ZooKeeper cluster, the controller needs

to change ZooKeeper membership by invoking ZooKeeper APIs. We implement procedures

to invoke ZooKeeper APIs as callbacks invoked by reconcile() (Figure 4.2); Anvil decides

whether to invoke Kubernetes APIs or ZooKeeper APIs based on the request object returned

by the controller step().

Invoking ZooKeeper APIs needs new specifications beyond what Anvil supplies. Hence,

we write a trusted model (an abstract state machine) of the ZooKeeper APIs used by our

controller and register it with the extensible compound state machine. To prove liveness,

we assume weak fairness on the ZooKeeper API model: if the controller sends a request to

a deployed ZooKeeper cluster, it eventually receives a response.

Reasoning about dependencies between state objects. To prove ESR, we need to

reason about dependencies between state objects—the desired state of one object depends on

the current state of another object. For example, to support reconfiguration, our controller

attaches the version number of the config map to the stateful set as an annotation [116]. To

ensure the ZooKeeper servers managed by the stateful set use the updated configuration,

the desired state of the stateful set should contain the current version number of the config

map as an annotation. To verify the reconfiguration, in ESR, match asserts that each state

object matches the desired state description (as in Figure 4.8), and the annotation in the

stateful set matches the current version of the config map. We prove that the config map’s

version eventually becomes stable and thus the annotation eventually matches the version.
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Bugs precluded. We found and fixed two liveness bugs when verifying our ZooKeeper

controller. The first bug occurs when the controller crashes between the steps of scaling

ZooKeeper and cannot continue reconciliation after restart, similar to Figure 2.3. This led

us to find a similar bug in the reference controller we reported in [117]. Recent work [64]

applied extensive fault-injection testing on this controller but failed to find this bug, because

the bug only manifests in specific timing under specific workloads (not covered by tests).

The second bug was caused by the controller trying to update immutable fields in a stateful

set. Kubernetes always rejects the update, so the controller never finishes its reconciliation.

Our environment model captures how Kubernetes validates each request (Section 4.2.3),

which helped us find this bug.

4.4.2 RabbitMQ Controller

We implement and verify a full-fledged controller for RabbitMQ, a widely used message

broker [118]. We use the official RabbitMQ controller as the reference [113].

Verifying safety. Besides ESR, we verify a safety property for our controller. The official

RabbitMQ controller disallows scaling down a RabbitMQ cluster by reducing the stateful

set’s replicas due to data loss concerns [119]. The recommended practice is to export the

data, redeploy RabbitMQ with fewer replicas, and import the data back. So, our controller

prevents reducing replicas count. We prove a safety property stating that the replica count

never decreases using Anvil. The safety proof is done by standard inductive proof. For

example, we first prove invariants like “no request in the network reduces replicas,” and

conclude the replicas in the data store never decreases using the invariants.

Bugs precluded. We found a safety bug and a liveness bug via verification. The safety bug

was caused by a concurrency issue involving the RabbitMQ controller and the Kubernetes

garbage collector (GC). Initially, we restricted that replicas never decreases in desired state

descriptions using Kubernetes’ validation rule [120]. However, safety can still be violated,

because the GC may not immediately remove orphan stateful sets. If the stateful set updated

by the controller was created by an old (already deleted) desired state description that set

a larger replicas (r1) than the current one (r2), the controller would in fact decrease the

stateful set’s replicas (r1 → r2). We fixed the bug by enforcing the controller to wait for

the GC to delete orphan stateful sets.

The liveness bug was caused by a naming rule we inherited from the reference controller.

The bug causes the controller to assign the same name for service objects from different

RabbitMQ clusters. In this case, the desired state descriptions of two RabbitMQ clusters
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drive the controller to change each other’s service object back and forth, thus neither can

reach desired states stably. We caught this bug because the oscillation behavior prevented

us from proving the cluster state eventually always matches the desired state description in

the presence of another conflicting description. We fixed the bug by changing the naming

schema. The same bug also exists in the reference controller.

4.4.3 FluentBit Controller

We implement and verify a controller for FluentBit, a popular logging and metrics ser-

vice [121]. FluentBit is deployed as a group of daemons collecting and processing data on

different nodes in a cluster. We use the official FluentBit controller as the reference [114]

and implement all its features.

Incremental verification. To evaluate the efforts of maintaining an evolving controller,

we first implemented and verified a basic version of the controller that deploys FluentBit

daemons, and then added new features incrementally, including version upgrading, daemon

placement, reconfiguration. We repaired the proof every time when a new feature was added.

We find the efforts of evolving a verified controller manageable (Section 4.5.1).

4.5 EVALUATION

We evaluate Anvil along the dimensions of verification effort (Section 4.5.1), controller cor-

rectness (Section 4.5.2) and performance (Section 4.5.3). Our evaluation shows that it is

pragmatic to implement, verify and evolve practical Kubernetes controllers with Anvil.

4.5.1 Verification Effort

Table 4.1 shows the details of each verified controller we built using Anvil. The proof effort

is manageable. Implementing and verifying each controller takes around 2.5 person-months.

The proof-to-code ratio ranges from 4.5 to 7.4 across three controllers. We attribute the rel-

atively low ratio to Anvil’s reusable lemmas (Section 4.2.4) and proof strategy (Section 4.3).

For example, the ESR proof of the RabbitMQ controller uses the same set of leads-to rea-

soning lemmas to prove nine different state objects eventually match the desired state.

The ESR proof mainly consists of proving invariants and applying temporal proof rules.

Proving invariants takes about 40% of the proof, which can potentially benefit from research

on inductive invariant inference [122, 123, 124, 125, 126, 127, 128, 129]. All our temporal
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logic reasoning is done by applying Anvil’s temporal logic lemmas without unfolding the

definition of executions and temporal logic operators.

Trusted Exec Proof Time to Verify
(lines of source code) (seconds)

ZooKeeper controller Section 4.4.1
Liveness (ESR) 94 – 7245 511
Conformance 5 – 172 9
Controller model – – 935 –
Controller implementation – 1134 – –
Trusted wrapper 514 – – –
Trusted ZooKeeper API 318 – – –
Trusted entry point 19 – – –
Total 950 1134 8352 520 (154)

RabbitMQ controller Section 4.4.2
Liveness (ESR) 144 – 5211 278
Safety 22 – 358 45
Conformance 5 – 290 18
Controller model – – 1369 –
Controller implementation – 1598 – –
Trusted wrapper 358 – – –
Trusted entry point 19 – – –
Total 548 1598 7228 341 (151)

FluentBit controller Section 4.4.3
Liveness (ESR) 115 – 7079 337
Conformance 10 – 201 10
Controller model – – 1115 –
Controller implementation – 1208 – –
Trusted wrapper 679 – – –
Trusted entry point 24 – – –
Total 828 1208 8395 347 (96)

Total (all) 2326 3940 23975 1208 (401)

Table 4.1: Code sizes and verification time of the controllers verified using Anvil.
Trusted includes the (verified) theorems, trusted assumptions and unverified implementation.
Time in brackets is obtained by running the verifier in parallel (11 threads on 6 cores).

The verified controllers have a large portion of unverified (trusted) components: 67% of the

trusted code is for defining wrapper types of Kubernetes custom objects (used for describing

desired states) to integrate kube-rs, and their views to enable verification (Section 4.2.1).

The ZooKeeper controller also relies on the trusted ZooKeeper API: 180 lines for specifying

the ZooKeeper API and 138 lines for implementing the callbacks for Anvil to invoke the

ZooKeeper API during runtime.
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Verifying each controller takes under 3 minutes in real time on a 6-core 16 GB laptop with

11 parallel threads. 87% of proof functions verify in under ten CPU seconds, and the slowest

of them takes 120 CPU seconds.

Evolving controllers with Anvil. We measure the efforts to evolve the FluentBit

controller with Anvil by incrementally adding features and updating its proof. We first

implemented and verified a basic FluentBit controller for deploying FluentBit daemons,

then added 28 new features including version upgrading, daemon placement, and various

configurations. On average, implementing a feature took less than a day and 47 lines of

changes, including 19 lines in the proof. Among them, implementing metrics port required

the most changes (403 lines in total and 211 in the proof); it added a new service that routes

traffic to the metrics port of each daemon, and we proved the service eventually matches the

desired state.

Effort to build Anvil. As a reference, the Anvil framework consists of 5353 lines of

reusable lemmas and 7817 lines of trusted code, including the TLA embedding (85 lines),

the environment model (1846 lines) and the integration with Kubernetes (5886 lines); 89%

of the integration is for defining wrapper types and views of Kubernetes built-in objects

(Section 4.2.1). All the lemmas are verified in under one minute.

4.5.2 Controller Correctness

We run extensive end-to-end functional tests on the verified controllers using Acto [65].

Acto generates different desired state descriptions to exercise controller reconciliation under

various scenarios. We also run extensive crash tests to check if the verified controllers can

recover from random crashes during their reconciliation. The crashes are injected using an

implementation of Sieve [64] for Rust controllers; we present Sieve in Chapter 5.

Controller
Functional testing Crash testing
# Tests # Bugs # Tests # Bugs

ZooKeeper 239 1 212 0
RabbitMQ 197 0 158 0
FluentBit 557 0 484 0

Table 4.2: Testing results of the three verified controllers. The tests cover all the
features of the controller under test.

Table 4.2 shows the testing results. The crash tests did not find any bug—the verified

controllers correctly recovered from all the injected crashes and successfully reconciled the
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cluster to the desired state. The functional tests found a bug in the ZooKeeper controller

(no bug found in other controllers).

The bug is caused by an incomplete specification of a trusted ZooKeeper API that did

not cover ZooKeeper misconfigurations. If a misconfiguration results in partial failures

(ZooKeeper is still running but cannot serve write requests [130]), the controller fails to

update the membership and thus blocks the subsequent reconciliation steps. We fixed this

bug by adding configuration validation in the implementation, enhancing the specification,

and updating the proofs.

4.5.3 Controller Performance

The verified controllers have comparable performance to the reference controllers. We use

Acto [65] to generate many different desired state descriptions, triggering a sequence of rec-

onciliations. For each desired state, we measure (1) execution times for the target controllers’

reconcile() methods, and (2) the time it takes for the system to be fully reconciled (e.g.,

after the controller issues a rolling update). The experiments are run on CloudLab Clemson

c6420 machines with dual Intel Xeon Gold 6142 processors, 384GB DRAM, and a 6Gb/s

HDD running Ubuntu 20.04 LTS.

Controller
Verified (Anvil) Reference (unverified)

Mean (ms) Max (ms) Mean (ms) Max (ms)

ZooKeeper 439 696 212 413
RabbitMQ 439 725 690 1531
FluentBit 195 303 221 464

Table 4.3: Comparison of reconcile() execution time (in milliseconds) between
the verified controllers and their references.

Table 4.3 shows that the verified and reference controllers have comparable execution

times. The verified ZooKeeper controller’s execution time is about twice that of the reference

which implements optimizations to conditionally skip state updates. None of the controllers

are latency critical. On average, reconcile()’s execution time takes less than 1% of the

overall system reconciliation time, most of which is out of the control of the controller (e.g.,

container restart time).

We also evaluate if the verified controllers introduce more load on the data store which is

often the bottleneck for Kubernetes scalability [3, 131]. We measure the disk I/O of etcd and

the verified controllers do not cause noticeably more loads—the verified FluentBit controller
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causes only 0.44% load increase compared to the reference; the other two verified controllers

do not cause load increase.

4.6 LIMITATIONS

Formal verification is often a tradeoff between human efforts users need to pay and the

correctness guarantee users get. Anvil provides strong correctness guarantee, but requires

manual proof effort. Developers need to perform Hoare-style and TLA-style reasoning and

write machine-checked proofs to finish verification. As the controller implementation evolves,

developers also need to maintain and repair the proof. From our evaluation, we found the

proof effort is manageable (proof-to-code line ratio ranges from 4.5 to 7.4).

Anvil cannot be directly applied to verify arbitrary controller implementations. To apply

TLA-style reasoning, Anvil requires developers to structure a controller implementation as a

state machine, and each action of the state machine must be atomic with respect to cluster-

state changes. From our experience, the state machine model is general and expressive

enough to write controller implementations.

4.7 DISCUSSION

The correctness of controllers verified by Anvil is not absolute. Anvil relies on trusted

components, including the model of the environment, the shim layer, trusted external APIs,

and the verifier, compiler, and OS. We indeed found a bug caused by an incomplete trusted

assumption (Section 4.5.2). We believe that the bug does not diminish the value of Anvil.

Anvil formally verifies reconciliation – the core of a controller – and reduces the code one

needs to look for bugs in to the trusted assumptions.

Note that ESR does not preclude all possible controller bugs. For example, ESR may

not rule out all potential safety violations. Unlike ESR as a general correctness specifica-

tion, safety properties are often controller-specific; e.g., the safety property we verified in

Section 4.4.2 that the replicas number never decreases is specific to the RabbitMQ controller.

We choose to focus on verifying ESR because ESR is a general, reusable property that

precludes a broad range of bugs, and it is straightforward for developers to specify ESR.

Some bugs precluded by ESR may be precluded by some safety properties as well, but these

safety properties may be more difficult for developers to specify. For example, the bug in

Figure 2.3 could be precluded by a safety property saying “irrecoverable intermediate states

never happen.” However, specifying such safety properties requires knowledge of the nature
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of the bugs (e.g., what kind of intermediate states the controller cannot recover from?) [60].

In contrast, specifying ESR only requires knowledge of desired states.

We expect verified controllers to be deployed on real-world Kubernetes platforms, run-

ning alongside unverified controllers. If the unverified controllers are custom controllers not

modeled in Anvil (Section 4.2.3), Anvil cannot reason about their interactions with verified

controllers, and hence cannot rule out bugs caused by conflicting interactions.

In future work, we aim to gradually replace existing (unverified) controllers with verified

controllers using Anvil, including both custom and built-in ones. We plan to extend Anvil

to admit multiple verified controllers and verify the interactions among them in a modular

way. We also plan to ensure the quality of the trusted model of the environment, the shim

layer, and external APIs using lightweight formal methods.

4.8 SUMMARY

In this chapter, we present Anvil, a framework for developing and verifying controllers. With

Anvil, developers write controllers in Rust and verify safety and liveness properties, including

ESR, using TLA-style deductive verification. Our work shows that it is not only feasible but

also pragmatic to implement, verify, and maintain practical Kubernetes controllers. We hope

that Anvil and ESR lead to a practical path toward provably correct cloud infrastructures.

We have made Anvil publicly available at https://github.com/anvil-verifier/anvil.
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CHAPTER 5: RELIABILITY TESTING FOR CONTROLLERS

Formal verification provides strong correctness guarantees, but we still need to test existing

controllers continuously and extensively before there are verified replacements. In addition,

verifying the controller code does not provide an end-to-end correctness guarantee for the

entire system stack because lower layer systems, such as operating systems and compilers,

are not verified yet. Testing helps discover bugs that originate from unverified code or the

boundary between the verified and unverified.

The existing testing practices fall short. Many popular controllers adopt mature software

testing practices and have numerous unit, integration, and end-to-end test cases. Some even

test scenarios involving faults. However, manually-written test suites do not sufficiently test

a controller’s reliability as it is prohibitively difficult for developers to anticipate all possible

cluster states, let alone codify them into test cases.

In this chapter, we present Sieve, an automatic reliability testing tool for controllers. The

key idea of Sieve is state perturbation, a general testing approach for state-reconciliation

systems based on state-centric reasoning. Sieve perturbs the controller’s view of the cluster

state in ways it is expected to tolerate, and then compares the cluster state’s evolution with

and without perturbations to detect triggered bugs.

Sieve’s testing covers diverse types of bugs. Sieve tests a controller by exhaustively intro-

ducing state perturbations through crashes, delays, and reconfigurations. These are circum-

stances that reliable controllers are expected to tolerate. Currently, Sieve supports three

typical perturbation patterns that expose controllers to (1) intermediate states (Figure 2.3),

(2) stale states (or past cluster states), and (3) unobserved states due to missing some cluster

state transitions (Section 5.2.1).

For each pattern, Sieve automatically generates test plans that cover all possible pertur-

bations during an execution of the controller under test. Test-plan generation is based on

analyzing a controller’s behavior and the cluster-state evolution during reference executions.

Sieve effectively avoids redundant and futile test plans to maximize test efficiency.

Sieve automatically detects buggy controller behavior using differential test oracles that

compare the cluster-state transitions with and without perturbations. This comparison is

feasible because a controller’s behavior is reflected in the sequence of cluster-state transitions.

The differential oracles are often more effective than searching for errors in logs and more

comprehensive than human-written assertions (Section 5.2.6).

Sieve is highly usable. Sieve does not require (1) formal specifications of the controller

or the cloud infrastructure system, (2) hypotheses about vulnerable regions in the code
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where bugs may lie, or (3) highly specialized test inputs. It does not rely on expert written

assertions either. Sieve requires only a manifest for building the controller image and basic

test workloads. Sieve’s testing is then fully automatic. This degree of usability is key to

making reliability testing broadly accessible to the rapidly increasing number of controllers.

We evaluated Sieve on ten popular open-source controllers for managing critical cloud sys-

tems (e.g., ZooKeeper, MongoDB, Cassandra). The controllers are from either commercial

vendors or official projects of the managed applications. Sieve found 46 new bugs in total,

among which 35 have been confirmed (22 fixed) after we reported them. Notably, these

are deep semantic bugs that Sieve detected without any expert guidance. The bugs have

severe consequences, including application outages, security vulnerabilities, resource leaks,

and data loss. Sieve is highly efficient—all controllers could be tested in under seven hours

on a cluster of 11 machines, representing a typical nightly test. Sieve also has a very low

false-positive rate of 3.5%, making its testing results trustworthy.

Summary. The chapter makes four main contributions:

• We present state perturbation, the first automatic reliability-testing technique for state-

reconciliation systems: exhaustively perturbing the controller’s view of cluster states and

using differential oracles on the cluster state evolution to detect bugs.

• We design and implement Sieve, a system that uses our proposed technique to automati-

cally test unmodified cluster-management controllers in Kubernetes.

• Sieve has already improved the reliability for ten popular open-source controllers by virtue

of bugs it found that were then fixed by developers. It is practical to run Sieve regularly.

• We have made Sieve publicly available at https://github.com/sieve-project/sieve,

with instructions to reproduce all discovered bugs.

5.1 STATE PERTURBATION

We present state perturbation, a comprehensive and efficient testing approach for controllers

designed based on state-centric reasoning. The key idea of state perturbation is to perturb

a controller’s view of the cluster state in ways the controller is expected to tolerate, and

then compare the cluster state’s evolution with and without perturbations to automatically

detect safety and liveness issues.

State perturbation is powered by a fundamental opportunity in cloud infrastructure systems—

the cluster state is represented by objects, and controllers interact with the cluster state

objects via state-centric interfaces (in Figure 5.1). State-centric interfaces perform semanti-

cally simple operations on the cluster state (e.g., reads and writes) and deliver notifications
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Figure 5.1: Interaction between a Kubernetes controller and the state objects.
Any update to the state objects stored in etcd is propagated to a local cache of each API
server and subsequently to the controller’s local cache. The controller reads each state object
either from its local cache (for performance) or via a quorum read from etcd (for consistency).

about cluster-state changes; the objects that flow through the interfaces typically have a uni-

form schema. State-centric interfaces are highly introspectable and hence an ideal vantage

point to observe and perturb a controller’s view of the cluster state.

State perturbation can be implemented by injecting events that controllers should tolerate,

such as node crash or time delay. Compared to directly reasoning about when to inject what

events, state perturbation narrows down the testing space by focusing on the events that

effectively lead to different state reconciliation decisions made by controllers.

5.2 SIEVE’S DESIGN

Sieve checks whether the controllers under test can correctly operate the system under

common perturbations (due to unexpected faults and inherent asynchrony) and detects

bugs that lead to safety and liveness issues at the development time. Sieve is automatic—it

tests unmodified controllers and does not rely on formal specifications or controller-specific

assertions. Sieve is effective—it focuses on well-defined, highly-targeted perturbations that

reliable implementations are required to tolerate.

Sieve perturbs the controller’s view of the cluster state based on three broad patterns

that expose the controller to (1) intermediate states, (2) stale states, and (3) unobserved

states. We discuss the three patterns and their rationales in Section 5.2.1. Note that these

are not the only patterns in which faults can occur, but cover a broad range of faults that a

component in a distributed system is expected to handle gracefully. Sieve can be extended

to incorporate other patterns in the future.

Sieve tests controllers with the following workflow:

• Collecting reference traces (Section 5.2.2). Sieve starts by learning how a controller be-

haves in the absence of faults (under test workloads) and records the state transitions in
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reference traces. To do so, it instruments the state-centric interfaces used by the controller

to interact with the cluster state.

• Generating test plans (Section 5.2.3). Sieve then analyzes the reference traces to generate

test plans. A test plan describes a concrete perturbation. The test plan specifies what

faults to inject and when to inject them to effectively drive the controller to see a target

cluster state.

• Avoiding ineffective test plans (Section 5.2.4). To achieve high test efficiency, Sieve prunes

redundant or futile test plans. For example, it avoids a test plan if it is clear that it cannot

causally lead to a target cluster state.

• Executing test plans (Section 5.2.5). Sieve executes each test plan using a test coordinator.

The test coordinator monitors the cluster-state transitions during testing and injects the

specified faults according to the test plan’s specification.

• Checking test results (Section 5.2.6). Sieve has generic, effective, differential oracles to au-

tomatically check test results. The oracles detect buggy controller behavior by comparing

the cluster-state evolution between the reference and test runs.

Sieve deals with non-deterministic elements of the cluster state during testing to minimize

their impact on test plan generation and test oracles (Section 5.2.7). Specifically, Sieve

identifies non-deterministic state objects and fields and excludes them.

Usage. To use Sieve, one needs to provide two inputs: (1) a manifest that specifies how

to build and deploy the controller under test, and (2) a set of test workloads that exercise

end-to-end behavior of the controller under test. The two inputs are mostly available in

mature controller projects, as they are needed for controller development and deployment.

In our experience, finding them is straightforward.

5.2.1 Perturbing a Controller’s View of the Cluster State

Sieve operates under the assumption that a controller follows the state-reconciliation prin-

ciple, which receives a sequence of notifications about the changes to the cluster states and

outputs a corresponding sequence of updates to the cluster states. Sieve aims to affect the

outputs of a controller by perturbing its view of the cluster state. These perturbations are

produced by injecting targeted faults (e.g., crashes, delays, and connection changes) when

specific cluster-state changes (triggering conditions) happen.

Notably, the perturbation strategy allows Sieve to decouple policy from mechanism. The

decoupling makes it easy to extend existing policies or add new policies by orchestrating the

underlying perturbation mechanisms. Specifically, a policy defines a view Sieve exposes to
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the controller at a particular condition, while the mechanism specifies how to inject faults

to create the view. Sieve automatically generates test plans for each policy; each test plan

introduces a concrete perturbation based on a specification of a triggering condition and a

fault to inject when that condition happens.

Sieve currently supports three patterns to perturb a controller’s view. Crucially, these

perturbations drive a controller to states that it is expected to tolerate. They represent

valid inconsistencies in the view that a controller could see due to common faults as well as

the inherent asynchrony of the overall distributed system. Over time, we hope to add more

perturbation patterns.

Intermediate states. Intermediate states occur when controllers fail in the middle of a

reconciliation before finishing all the state updates they would have otherwise issued. After

recovery (e.g., Kubernetes automatically starts a new instance of a crashed controller), the

controller needs to resume reconciliation from the intermediate state left behind.

VolDesired: 15GB
VolCur: 10GB
VolReq: 10GB

VolDesired: 15GB
VolCur: 10GB
VolReq: 10GB

Controller Code Snippet 
(simplified)

Desired = Get(VolDesired)
Current = Get(VolCur)
if Desired > Current {
...
Update(VolCur, Desired)
...
Update(VolReq, Desired)
... 

} 
/* reconcile_persistence.go */

VolDesired: 15GB
VolCur: 15GB
VolReq: 15GB

VolDesired: 15GB
VolCur: 15GB
VolReq: 10GB

VolCurß15GB
VolReqß15GB

Correct run Faulty run

VolCurß15GB

Controller crash 
and restart

Cluster State (Controller’s View)

Figure 5.2: An intermediate-state bug in a RabbitMQ controller detected by
Sieve [132]. The controller fails to recover from the intermediate state introduced by Sieve;
the controller does not successfully resize the storage volume.

Figure 5.2 illustrates how Sieve tests the official RabbitMQ controller with intermediate-

state perturbations and reveals a new bug. The test workload attempts to resize the storage

volume from 10GB to 15GB. The resizing is implemented with two updates: (1) updating

VolCur to 15GB; (2) updating VolReq to 15GB which triggers Kubernetes to resize the

volume. The controller issues updates when VolCur is smaller than the desired volume

size. During testing, Sieve crashes the controller between the two updates, which creates

an intermediate state where VolCur is updated, but VolReq is not. The controller cannot

recover from the intermediate state and the resizing never succeeds. The bug has been fixed

with 700+ lines of Go code to revamp the volume resizing logic. In addition, the developers
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Controller Code Snippet (simplified)
if Get(   ).DeletionTS != nil {
...
DeleteAllPods()
...
DeleteAllVols() 

} /* perconaservermongdb/finalizers.go */

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

Time
travel

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

MongoDB (UID: 1) deleted 

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

DeleteAllPods
DeleteAllVols

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

MongoDB (UID: 2) created 

MongoDB (UID: 1) deleted 

MongoDB (UID: 2) created 

(DeletionTS) : an object 
is marked for deletion

Cluster State (Controller’s View)
Correct run Faulty run

Figure 5.3: A stale-state bug in a MongoDB controller detected by Sieve [135].
The controller experiences a “time-travel” and observes a stale state. It makes wrong rec-
onciliation action based on the stale state (deleting all the pods and volumes) which leads
to application outages and data loss.

added eight new tests along with the fix to exercise how the controller handles different

intermediate states, which is what Sieve performs automatically.

Stale states. Controllers often operate on stale states, due to asynchrony and the extensive

uses of caches for performance and scalability [133]. As shown in Figure 5.1, controllers

do not directly interact with the strongly consistent data stores, but are connected with

API servers. The states cached at API servers could be stale due to delayed notifications.

Controllers are expected to tolerate stale views that lag behind the latest states maintained

in the data store.

Tolerating stale views correctly is nontrivial. For example, a Kubernetes controller’s view

may “time travel” to a state it observed in the past. Time traveling occurs when there are

multiple API servers operating in a high-availability setup, when the controller reconnects to

a stale API server that has not yet seen some updates to the cluster state. The reconnection

can be triggered by failover, load balancing, or reconfigurations. Controllers are expected to

recognize the stale state [134], instead of treating it as a new, unseen state.

Figure 5.3 illustrates how Sieve tests Percona’s MongoDB controller with stale-state per-

turbation and reveals a new bug that leads to both application outages and data loss. To

support graceful MongoDB cluster shutdowns, the controller waits to see a non-nil deletion
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timestamp (DeletionTS) field attached to the state object representing the MongoDB cluster

(a common practice to give systems time to react to an impending deletion [136]). When

the controller sees this change, it deletes all the pods and volumes of the MongoDB cluster.

Sieve drives the controller to mistakenly delete a live MongoDB cluster by introducing a

time-travel perturbation. With a workload that first shuts down a MongoDB cluster and

then recreates a new instance of the same cluster, Sieve waits till the cluster is recreated

and then introduces a time-travel perturbation. The perturbation causes the controller to

see the deletion timestamp being applied to the already-deleted cluster. Consequently, the

controller mistakenly shuts down the newly created cluster. This revealed that the controller

should be checking for the UIDs of clusters, not just their names.

Unobserved states. By design, controllers may not observe every cluster-state change in

the system. The full history of changes made to the cluster state is prohibitively expensive

to maintain and expose to clients [111]. Controllers are hence expected to be designed as

level-triggered systems (opposed to being edge-triggered), i.e., a controller’s decision must

be based on the currently observable cluster state (level) [137], not on seeing every single

change to the cluster state (edge).

DesiredReplica: 1
Pods: [                  ]
Vols:  [                  ]

Correct run Faulty run

DesiredReplica: 1
Pods: [                  ]
Vols:  [                  ]

DesiredReplica: 1
Pods: [                  ]
Vols:  [                  ]

DesiredReplica: 1
Pods: [                  ]
Vols:  [                  ]

DesiredReplica: 1
Pods: [                  ]
Vols:  [                  ]

Delete
Delete

Cassandra controller 
code snippet (simplified)
if Get(  ).DeletionTS != nil {
...
Delete( )
...

}
/* cassandradatacenter/finalizers.go */

Statefulset controller 
code snippet (simplified)
// mark pod for deletion
SetDeletionTS(  ,    )
...
Delete( )

/* statefulset/stateful_pod_control.go */

Delete

Unobserved State

SetDeletionTSSetDeletionTS

Cluster State (Controller’s View)

Figure 5.4: An unobserved-state bug in a Cassandra controller detected by
Sieve [138]. The controller misses a transient state where the pod has a non-nil dele-
tion timestamp. It thus fails to delete the volumes, leaking storage resources. The bug also
prevents new Cassandra pods from rejoining.

Figure 5.4 illustrates how Sieve tests Instaclustr’s Cassandra controller using unobserved-

state perturbations and reveals a new bug that leads to resource leaks and service failures.

The test workload first scales down and then scales up storage volumes of the Cassandra
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cluster. During scale-down, the controller removes volumes when it learns that the corre-

sponding pods were marked for deletion (a non-nil deletion timestamp field is set on the

pod object, similar to the previous example). The pods’ lifecycles (including deletions) are

managed by a built-in controller called a StatefulSet controller. Sieve pauses notifications

to the Cassandra controller for a window such that it does not see these deletion marking

events by the StatefulSet controller. This causes the Cassandra controller to not delete the

corresponding volumes even though it has the right information to make that call (i.e., its

view has volumes created by it that do not have pods attached to them).

Hence, the volume never gets deleted, leaking the storage resource. The bug also prevents

the controller from scaling the Cassandra cluster – newly-created pods try to reuse the dan-

gling volumes and cannot rejoin using the cluster metadata already in them (as it represents

a node that was decommissioned). The bug has been fixed by adding a pre-deletion hook –

a coordination mechanism in Kubernetes that allows the Cassandra controller to complete

the required cleanup operations before the pods can be deleted [139].

5.2.2 Collecting Reference Traces

Sieve starts by learning how a controller behaves in the absence of faults. To do so, Sieve

interposes around the state-centric interfaces used by the controllers to interact with the

cluster state. All modern cloud infrastructure systems have unified, well-defined client li-

braries based on state-centric interfaces. Taking Kubernetes as an example, any interaction

with the cluster state (exposed by the API servers) goes through a small, well-defined set

of client APIs that read, modify, or receive notifications about state objects. They are used

by every controller that interacts with the Kubernetes API servers. To support Kubernetes

controllers, Sieve decorates 10 functions in the client library and this interposition is fully

automated (Section 5.3).

With the interposition in place, Sieve learns every cluster-state change notification that

the controller receives, as well as any reads and writes attempted by the controller to the

cluster state or to the local cache of the cluster state. Sieve then runs each test workload

supplied by the developer and collects the following two reference traces:

• Controller trace. A series of events observed via the interposition of client APIs, including

notifications about state changes, entry and exits of each reconciliation cycle, and client-

API invocation by the controller and their arguments.

• Cluster state trace. The initial cluster state and the sequence of state changes, collected

using public APIs of the cloud infrastructure system.
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The controller trace is used for generating test plans (Section 5.2.3) and the cluster-state

trace is used by test oracles (Section 5.2.6).

5.2.3 Test Plan Generation

Sieve generates a set of test plans for each test workload for which it has collected reference

traces. Each test plan specifies a perturbation to inject during the workload.

A test plan is represented by a self-contained file that describes a test workload, a list of

faults to inject during the workload run, and the triggering condition for when to inject each

fault. Sieve currently supports several primitives that test plans can compose to introduce

complex faults: (1) crash/restart a controller, (2) disconnect/reconnect a controller to an

API server, (3) block/unblock a controller from processing events, and (4) block/unblock an

API server from processing events. When an executed test plan reveals a bug, the test-plan

file is sufficient to reproduce the bug.

Figure 5.5 shows a simplified test-plan file generated by Sieve. Each element in faults

specifies the fault to inject (faultType) and the triggering conditions (triggers). Each

element in triggers specifies a triggering condition, that causes the specified fault to be

injected before or after a particular cluster state change if executed. A composite triggering

condition can be specified in compositeTrigger by combining multiple conditions in triggers

with boolean operators. For example, t1 & t2 means the fault is only injected when both

t1 and t2 are triggered. In Figure 5.5, trigger1 is the only required condition to inject the

fault. Similarly, composite faults can be constructed (e.g. crashing a controller after t1 and

restarting it after t2).

We now present the basic rules Sieve applies to compute test plans that exercise one

of the three patterns in Section 5.2.1. We later describe how Sieve avoids ineffective test

plans in Section 5.2.4. Optionally, one can customize patterns by implementing new rules

or manually writing test plans.

Intermediate-state rule. For a controller, Sieve generates test plans that force all possible

intermediate states and exposes them to the controller. To do so, Sieve analyzes the reference

controller trace and marks the sequence of state updates made by the controller within each

reconciliation loop. Concretely, for every reconciliation that issues multiple state updates,

U1, U2, ..., Un, Sieve generates one test plan per state update Ui, where Sieve crashes the

controller after it issues Ui. When the controller restarts after the crash, it is presented with

the target intermediate state.

Stale-state rule. For stale states, Sieve generates test plans that make the controller travel
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testWorkload: resizePVC

faults:

- faultType: crashController

triggers:

- triggerName: trigger1

triggerAt: afterControllerIssues

stateChange:

beforeChange: 'VolCur :10GB'
afterChange: 'VolCur :15GB'

compositeTrigger: trigger1

Figure 5.5: A test plan generated by Sieve. This is a simplified view of the test-plan file
that detected the bug in Figure 5.2. This test plan crashes the RabbitMQ controller right
after the controller updates VolCur from 10GB to 15GB. Sieve learns every state change
issued by the controller via the state-centric interfaces (e.g., Update in Table 5.1).

back in time and see stale states that it has already observed. Concretely, Sieve checks the

controller trace for a notification-update pair (N,U), such that observing N results in an

update U (see Section 5.2.4). It then searches for a subsequent state-change notification

N ′ which has a conflicting effect with U (e.g., U deletes an object and N ′ creates the same

object). With time traveling, if the controller mistakenly issues U after seeing the stale state

N , it could corrupt the newer cluster state as notified by N ′.

Sieve generates test plans that (1) block a reserved API server to prevent it from advancing

its own state after it sees N , (2) after the controller sees N ′, time-travel the controller to

see N by reconnecting the controller to the reserved stale API server, and (3) unblock the

stale API server; so, the introduced staleness is only transient—both the API server and the

controller catch up eventually.

Unobserved-state rule. For unobserved states, Sieve generates plans that skip states

that a controller might observe during normal executions, but could potentially miss in the

presence of faults. Sieve checks the controller trace to find pairs of notifications (N,N ′) in

which N ′ is the closest subsequent notification that cancels the effect of N . Sieve generates

test plans that (1) block the controller to prevent it from seeing N , and (2) unblock the

controller when N ′ arrives. Such a test plan causes the controller to miss cluster states from

N (inclusive) up to N ′ (exclusive).
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5.2.4 Avoiding Ineffective Test Plans

Sieve may potentially generate a large number of test plans using rules specified in Sec-

tion 5.2.3. For example, in stale-state testing, Sieve might identify every notification the

controller receives as a point to inject staleness, therefore generating test plans for every

received notification. For example, the näıve rule above for stale states would generate

140,000+ test plans for the MongoDB controller in Figure 5.3. It is therefore key to prune

ineffective test plans.

As a guiding principle, we prune a test plan if the test plan does not introduce an

intermediate-, a stale- or an unobserved-state that can affect the controller’s outputs, or

the introduced state is identical to states introduced by other test plans. This naturally

requires Sieve to have a clear notion of what input events affect the controller’s outputs.

Pruning by Causality

If a controller makes an update U based on a notification N , we consider N and U to be

causally related. We consider a pair (N,U) that is not causally-related to be irrelevant from

a testing standpoint, because perturbing N will not affect U .

Inferring causality between events is generally a challenge in distributed systems. By

focusing on the “narrow waist” of state-centric input and output events of the controller

under test, we are able to design simple yet effective rules for Sieve to infer whether a pair

(N,U) is causally related. These rules are lenient and only introduce false positives at best,

but not false negatives. False positives increase testing times by generating redundant test

plans, whereas false negatives risk reducing test coverage that could miss bugs. While causal

tracing support [140] for Kubernetes is currently in its infancy [141], we might be able to

leverage it in the future.

Sieve currently considers a pair (N,U) to be causally related if both the following condi-

tions holds (Figure 5.6 exemplifies the two causality rules):

• Read-before-update rule: the object pertaining to N is read by the controller before it

issues U ;

• Earliest-reconciliation rule: N and U happen in the same or adjacent reconciliation cycles.

The rationale is that controllers always issue updates relevant to N in the earliest possible

reconciliation cycle after N is received.

For stale- and unobserved-state testing, Sieve only generates test plans involving a no-

tification N if it has at least one causally-related update U . We find pruning test plans
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Figure 5.6: Causality rules used by Sieve. For simplicity, in this figure the object
pertaining to each notification is immediately read by the controller. (N1, U1), (N1, U2),
(N3, U3) and (N4, U3) are causally related according to the rules in Section 5.2.4. N2 is not
causally related to any update, given the earliest-reconciliation rule.

by causality effective, especially when there are many notifications due to other activities

irrelevant to the controllers under test.

Pruning Unsuccessful Updates

Sieve ignores any update U that does not change the current cluster state. Sieve checks

whether an update U is successful based on whether U triggers a state change ∆S of the

cluster state. This information is typically encoded in the return value of the U operation.

For stale-state testing, Sieve further ignores an update U that, if issued again, does not

change any of the subsequent cluster states, (i.e., there does not exist an N ′ that is affected

by U). Sieve checks whether the state objects updated by U would later be conflicted with

a notification N ′.

The rationale for the above pruning is straightforward. If an update does not change the

current cluster state, it is unlikely to cause new states in the execution. If an update U

cannot affect any future cluster states, it would not perturb the controller’s execution under

the time-travel pattern either, i.e., if U is issued again, it would not corrupt any future state.

In practice, we found that many controllers issue unsuccessful updates that do not actually

change the cluster state, including pathologically frequent ones caused by inefficient but

benign behavior (see Section 5.4.2).

5.2.5 Test Plan Execution

Every test plan is executed by the Sieve test coordinator running in the testing cluster. The

coordinator faithfully executes the test plan by running the test workload and injecting the

faults specified in the test plan. Specifically, the test coordinator monitors state transitions

of both the controller’s view of the cluster state as well as the cluster state as seen by API
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servers. This is done based on the interposition described in Section 5.2.2; it allows the

test coordinator to intercept and take actions (e.g., injecting faults) when state transitions

happen. If the observed state transition matches the triggering condition ∆S specified in

the test plan, the coordinator marks the condition as matched. The coordinator injects a

fault (e.g., a controller crash) once all the corresponding conditions are matched. Most of

the interposition and injection are done through the client APIs. But, for stale-state testing,

the coordinator also needs to interpose at the API server (to make an API server stale).

As a concrete example, to execute the test plan in Figure 5.5, the test coordinator monitors

every state transition issued by the RabbitMQ controller. The coordinator marks trigger1

in the test plan as matched when it observes a state transition that updates VolCur from

10GB to 15GB. Since trigger1 is the only required condition in the test plan, the coordinator

injects a controller crash right after trigger1 is matched. If the test plan specifies multiple

faults, the coordinator injects them one by one according to the specified order.

The test coordinator also records the cluster states in a trace during testing, which will

be compared with the reference cluster-state trace (Section 5.2.2) to detect buggy behavior.

5.2.6 Differential Test Oracles

Sieve has generic, effective oracles to automatically detect safety and liveness issues. The

oracles detect buggy controller behavior based on the cluster states during and at the end

of the test run. The goal is to validate that the testing traces are free of safety and liveness

issues, in addition to monitoring anomalous controller behavior (e.g., crashes and hangs).

Developers can also add domain-specific oracles.

In our experience, many buggy controller behaviors do not show immediate or obvious

symptoms (e.g., crashes, hangs, and error messages). Instead, they lead to data loss, security

issues, resource leaks, and unexpected application behavior which is hard to check with

oracles typically used by prior art [48, 56, 142, 143, 144]; in our evaluation, only five (out of

46) bugs can be flagged by checking for exceptions or crashes.

We therefore develop differential test oracles that compare cluster states in a reference

run versus those in test runs—with inconsistencies typically indicating buggy behavior. This

methodology means we need to exclude nondeterministic states and state objects affected

by the perturbation (Section 5.2.7).

We found that Sieve’s differential oracles vastly outperform developer-written assertions in

the test suites of the controllers we evaluated, because Sieve’s oracles systematically examine

all the state objects and their evolution during testing. It is challenging for developers to

manually codify oracles that comprehensively consider the large number of relevant states.
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Note that Sieve does implement regular error checks for obvious anomalies, including

exceptions, error codes and timeouts. Sieve scans the controller’s log and checks whether

the controller encountered any unexpected exception (i.e., panic in Go). Sieve also checks

whether the operations in the test workload return error codes or fail to complete on time.

Checking End States

Sieve systematically checks the end state after running a workload. Specifically, our oracles

check the count of state objects by type and the field values of all the objects after accounting

for nondeterminism (Section 5.2.7). It compares the end state of the test run versus the

reference run. Sieve fails the test if it finds inconsistencies between the end states and prints

human-readable messages to pinpoint inconsistencies.

Such checking is effective compared to the simpler assertions that we found in test suites

for the controller projects we studied. For example, in an intermediate-state bug [145], the

MongoDB controller fails to create an SSL certificate used for securing communications inside

the MongoDB cluster. This causes the controller to fall back to insecure communications.

Such security issues do not manifest in the form of crashes or error messages. Sieve however

automatically catches the bug, because the certificate object in the faulty run does not exist

in the cluster state, which is different from a normal run. The bug was detected by Sieve

and confirmed by the developers.

We found that none of the 71 test cases shipped with the controller has an assertion that

checks the certificate object, despite the fact that enabling TLS is recommended and is the

default configuration [146]. We would not be able to repurpose the assertions in these test

cases to catch this bug.

Checking State-Update Summaries

Besides the end state, Sieve also checks how the controller updates the cluster state over

time. It does so by comparing summaries of constructive and destructive state updates for

each object (e.g., CREATE and DELETE operations). Such checks are complementary to the

end-state checks, because a correct end state does not imply that the controller behavior is

always correct during the test. We find that buggy behavior can end in correct states (same

as in the reference runs).

For example, in a stale-state bug [147], the XtraDB controller mistakenly deletes the front-

end proxy (which routes user requests to the XtraDB cluster), causing service unavailability.

After the staleness ends, the API server and the controller eventually catch up with updated
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states and recreate the proxy. In this case, the end state of the proxy in the test run is the

same as in the reference, but the update that deleted the proxy in the test run is buggy. Sieve

detects the bug by noting that the proxy pod receives 2 CREATE and 1 DELETE operations in

the faulty run, but only 1 CREATE in the reference run.

In another intermediate-state bug [148], the NiFi controller fails to reload configuration

files. The end state is the same as a normal run; however, in the faulty run, the controller

did not restart the NiFi pod to reload the configuration. Sieve flags this by noting the NiFi

pod receives a CREATE and a DELETE operation (to reload the configuration) in the normal

run, but neither appears in the faulty run.

Note, comparing the sequence of state-update is unreliable and would lead to false alarms—

the sequences are not strictly the same due to concurrent controller operations. The sum-

maries instead are robust to different event orderings.

5.2.7 Dealing with Nondeterminism

The shape of a state object (the set of fields and their values) might be nondeterministic.

This nondeterminism affects Sieve’s test plan generation and the differential test oracles.

We now describe how Sieve combats this problem.

All objects have identifying metadata (e.g., a type, namespace, and name). This is key

for Sieve to identify two instances of the same object, both within a run (e.g., checking for

conflicting operations in the stale-state rule) and across runs (e.g., comparing configurations

of objects across runs).

Sieve identifies nondeterministic field values by running the test workloads without per-

turbation multiple times when generating reference runs, and then comparing the values of

each field in each state object.

Objects whose identifying metadata is nondeterministic are excluded from test plan gen-

eration and subsequent steps, because Sieve cannot reliably match them across runs or setup

triggering conditions for them. If other kinds of fields have nondeterministic values (typi-

cally IP addresses, timestamps, or even random port numbers), Sieve does not exclude the

object but simply masks the field values. Note that these two rules still allow Sieve to spot

unexpected changes to the set of fields on the object (e.g., missing deletion timestamp fields).

In addition, Sieve provides an API for Sieve users to exclude specific state objects or fields

from test plans or oracles based on domain knowledge, if needed.
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5.3 IMPLEMENTATION

We implement Sieve for Kubernetes controllers. Sieve uses kind [149] to run a Kubernetes

cluster on a single machine, so every test plan can be run entirely on one machine. Sieve

configures two API servers for stale-state testing. Sieve is implemented in 5,500 lines of

Python code (for test plan generation and oracles) and 3,100 lines of Go code (for automated

instrumentation and fault injection).

Sieve instruments 10 API methods, representing the state-centric interface, for monitoring

and perturbing states (Table 5.1). Those methods are in Kubernetes client libraries [150, 151]

and the API server. Sieve implements an automated procedure to instrument the 10 methods

using dst [152] to work with different versions of Kubernetes client libraries and API servers.

Sieve analyzes the syntax tree for each method to insert monitoring and fault-injection code.

Sieve applies the instrumentation when building the controller image. Sieve does not need

to analyze or instrument the controller code.

API Component Instrumentation

reconcileHandler Client Log entry and exit
Get, List Client Send objects to coordinator
Create, Update, Patch Client Send objects to coordinator
Delete, DeleteAllOf Client Send objects to coordinator
HandleDeltas Client Send objects to coordinator
processEvent API server Send objects to coordinator
Get, List Client Add delay
processEvent API server Add delay

Table 5.1: Instrumentation performed by Sieve to monitor and perturb states.
The instrumentation is automated.

In Kubernetes, level-triggered controllers do not immediately read notifications when they

arrive [137]. Instead, the controller first updates a locally-cached view of the state objects;

the controller reads from this cache when it uses Get or List APIs to query the cluster state.

In causality analysis (Section 5.2.4) Sieve needs to know whether a notification is read before

an update. To do so, Sieve analyzes the state objects updated by each notification and those

read by each Get/List.

Some controllers are multi-threaded, where each thread calls a different reconcile func-

tion. Sieve uses the instrumented client libraries to obtain stacktraces whenever the con-

troller reads or updates the cluster state (e.g., Get, Create). These stacktraces are used to

differentiate between controller threads when generating and executing test plans.
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5.4 EVALUATION

Sieve’s premise is that automatic and effective reliability testing for unmodified controllers is

viable, by (a) exhaustively perturbing a controller’s view of the cluster states and (b) using

differential oracles to flag safety and liveness issues.

We validate this hypothesis with three evaluation questions: (1) Can Sieve find new bugs

in real-world controllers? (2) Does Sieve do so efficiently? (3) Are Sieve’s testing results

trustworthy? We answer these questions in the affirmative:

• Section 5.4.1: Sieve finds new bugs in all ten evaluated controllers, resulting in a total of

46 new bugs, which represent a swathe of safety and liveness issues. So far, 35 of them

have been confirmed and 22 have been fixed by the developers.

• Section 5.4.2: All controllers can be tested in seven hours on a cluster of 11 machines,

representing a typical nightly test. This is attributed to the effective reduction techniques

which reduce test plans by 46.7%–99.6% across the controllers.

• Section 5.4.3: Sieve poses a low false positive rate of 3.5%.

Tested controllers. We evaluated Sieve on ten popular controllers from the Kubernetes

ecosystem for managing widely-used cloud systems (Table 5.2). The controllers are either

developed by the official development team of the corresponding system, or by companies

that have production-grade offerings around said systems. The term operator [153] in the

project names refers to the Kubernetes design pattern of using a custom controller to manage

an application.

Operator Systems Developers #Stars #Commits #WL

cass-operator Cassandra DataStax 287 477 2
cassandra-operator Cassandra Instaclustr 227 337 2
casskop Cassandra Orange 177 1643 3
elastic-operator Elasticsearch Official 1832 3375 2
mongodb-operator MongoDB Percona 142 1407 5
nifikop NiFi Orange 101 232 3
rabbitmq-operator RabbitMQ Official 343 1679 3
xtradb-operator XtraDB Percona 302 1693 5
yugabyte-operator YugabyteDB Official 41 36 4
zookeeper-operator ZooKeeper Pravega 242 220 2

Table 5.2: Kubernetes controllers used in our evaluation. “#WL” stands for the
number of different test workloads.

Sieve employs 2–5 basic test workloads for each controller (Table 5.2). Each workload

exercises a feature of the controller. Every evaluated controller supports software deployment
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and autoscaling, and therefore has at least two workloads. Sieve also employs workloads for

controllers that support more features, such as sharding, storage resizing, reconfiguration,

and load balancing. A test workload is typically implemented in 6–12 lines of code and takes

4–12 minutes to run.

It took us on average three hours to apply Sieve to each controller, which was mostly spent

on understanding how to build the controller. We expect controller developers to expend

much less effort to integrate Sieve in their workflow.

5.4.1 Finding New Bugs

Controller
Intermediate Stale Unobserved

Indirect Total
State State State

cass-operator 2 1 0 0 3
cassandra-operator 0 2 1 2 5
casskop 1 2 1 0 4
elastic-operator 0 2 0 0 2
mongodb-operator 2 3 1 3 9
nifikop 2 0 0 1 3
rabbitmq-operator 1 2 1 0 4
xtradb-operator 3 3 1 0 7
yugabyte-operator 0 2 1 2 5
zookeeper-operator 0 2 1 1 4

Total 11 19 7 9 46

Table 5.3: New bugs detected by Sieve in each controller.

Sieve finds a total of 46 new bugs in the evaluated controllers (Table 5.3). Those bugs

include 11 intermediate-state bugs, 19 stale-state bugs, 7 unobserved-state bugs, and 9

bugs indirectly detected by Sieve during testing. Sieve finds new bugs in all the evaluated

controllers. We have reported all these bugs. So far, 35 of them have been confirmed and

22 have been fixed. No bug report was rejected.

Sieve can consistently reproduce all the 37 intermediate-, stale-, and unobserved-state

bugs—running the test plan always reproduces the buggy behavior. In our experience, Sieve’s

reproducibility is invaluable for debugging test failures. It helps developers localize bugs in

the source code and continuously iterate on bug fixes.

Table 5.4 shows the consequences of the 46 controller bugs and an exemplar bug for each

kind of consequence. We see that many bugs have severe consequences, such as application

outages, security issues, service failures, and data loss. Note that these controllers are all
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mature projects (Table 5.2), suggesting that controller reliability is challenging to achieve.

The bugs that Sieve finds are deep and highly unlikely to be detected by manual testing

or imprecise techniques like chaos testing or randomized fault injection tools [23, 24, 25, 26].

For example, a bug [154] in nifikop is triggered only when the controller crashes between

issuing two specific state updates within one reconciliation loop (the time window between

the two updates is about 0.7 milliseconds). In contrast, the test workload used for detecting

the bug takes about 440 seconds to finish, and causes 481 reconciliation loops and 1,687

state updates issued by the controller. Sieve can detect and consistently reproduce the bug

because it relies on injecting a fault precisely when a specific cluster-state change happens.

Consequence Example # Bugs

Application outage rabbitmq-operator-648: The RabbitMQ 12
cluster is mistakenly turned down [155].

Service failure K8SPSMDB-433: Sharding service for the 5
MongoDB cluster wrongly terminated [156].

Data loss K8SSAND-559: Storage volumes of 8
Cassandra replicas wrongly deleted [157].

Reduced reliability zookeeper-operator-314: The ZooKeeper 7
cluster scaled down unexpectedly [158].

Misconfiguration nifikop-49: The NiFi pod is not updated 6
with new configuration [148].

Security issue K8SPXC-896: TLS is not enabled for the 6
XtraDB cluster [159].

Resource leak cassandra-operator-398: Volumes used 7
by deleted replicas never recycled [138].

Controller malfunc. casskop-370: The controller stops serving 8
scaling requests [94].

Table 5.4: Consequences of the bugs found by Sieve (Table 5.3). One bug can lead
to multiple consequences.

Intermediate-state bugs. Sieve found 11 intermediate-state bugs. Sieve stresses a

common pattern among controllers, where they issue multiple updates per reconciliation,

after the controller checks for a certain condition to hold in the cluster state. However, Sieve

finds bugs when these condition checks only detect states from running the reconciliation

loop in its entirety; that is, when the checks do not account for intermediate states that may

arise due to controller crashes. For example, in the intermediate-state bug in Figure 5.2,

rabbitmq-operator compares VolCur and VolDesired to check whether the volume has been

expanded already. However, this check assumes that all subsequent steps in the reconciliation

succeed whenever this condition is satisfied. In the bug in Figure 2.3, the condition check

cannot differentiate an intermediate state versus an unexpected faulty state. Part of the
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challenge is that controllers lack mechanisms analogous to write-ahead logging or journaling

to guarantee atomicity of each reconcile action to enforce crash consistency. Controllers

typically run as Kubernetes pods themselves and the newly created controller pod instance

lacks any memory of its past execution (as they should – controllers must only depend on

the current state). Sieve exposes those bugs without the need to understand source code—it

systematically tests a controller with all possible intermediate states.

Stale-state bugs. Sieve found 19 stale-state bugs. In our experience, it is notoriously

challenging to anticipate all possible stale states. That said, we found controllers were

not adequately using Kubernetes’ mechanisms to tolerate asynchrony and staleness: like

object versioning and unique IDs (instead of referring to objects by names, that need not be

unique), or using coordination mechanisms to enforce ordering between events. Controllers

also have the option to avoid staleness by using quorum reads to API servers, but this

creates a scalability bottleneck as it drives more load to etcd – developers therefore choose

to synchronize selectively. In general, we do not believe there is a shortcut to reasoning about

any given update under all possible staleness or time-travel scenarios. Sieve therefore aids

developers by systematically testing controllers under all possible time-traveling scenarios.

Unobserved-state bugs. Sieve found 7 unobserved-state bugs. We find that all of

them are rooted in latent edge-triggering behavior in the controllers, that go against the

Kubernetes philosophy of designing controllers to be level-triggered (Section 5.2.1). That

is, these bugs arise when the controller’s correctness relies on observing a specific state

transition (edges), as exemplified by Figure 5.4. By identifying states that would be later

overwritten and preventing those states from being observed by the controller, Sieve is

effective at exposing unobserved-state bugs in controllers.

Bugs indirectly detected by Sieve. Sieve also finds 9 bugs that were not directly

triggered by input states Sieve generated but were still correctly flagged by its differential

oracles. All these bugs could (and do) happen in reference runs as well; but because Sieve

executes many test plans, some test traces inevitably differ from the reference traces due

to these bugs, allowing Sieve to detect them. These bugs are caused by a range of issues,

including (1) controllers making incorrect assumptions about the Kubernetes API (e.g.,

assuming a list of pods from a query have stable ordinals); (2) spurious, dangling object

creations, masked by Kubernetes’ garbage collection (e.g., accidentally creating ZooKeeper

pods after deleting the high-level ZooKeeper cluster object); (3) the applications managed by

the controller being buggy and failing. Sieve can be extended with new perturbation patterns

to systematically force out some of those bugs. After understanding the root causes, we were

able to reproduce two of these bugs consistently with manually written test plans.
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Oracle Effectiveness

Sieve’s differential oracles are crucial to detect buggy executions. Of the 46 newly found

bugs, 45 were flagged by the differential test oracles. Checking logs for errors only flagged 5

bugs of which 4 were also found by our differential oracles.

Our end-state checker (Section 5.2.6) finds 28 bugs by comparing the end states of a

test workload with and without perturbation. The state-update summaries checker (Sec-

tion 5.2.6) finds 17 more bugs by checking the number of object updates through an exe-

cution. These oracles allow Sieve to detect bugs such as security and reliability issues (see

Section 5.2.6) that do not manifest as simple failure symptoms (e.g., exceptions or crashes).

The only bug that the differential oracles fail to find but is found by a regular error check

in log files, is a null-pointer dereference bug [160] that causes an unexpected controller crash.

Since Kubernetes automatically restarts the controller, it does not affect the end states or

the state updates.

5.4.2 Test Efficiency

Controller
Testing Time (Machine Hours)

# Test Plans
Generation Execution Total

cass-operator 0.60 43.67 44.27 218
cassandra-operator 0.49 10.72 11.21 81
casskop 0.57 12.40 12.97 125
elastic-operator 0.43 30.10 30.53 245
mongodb-operator 1.00 66.24 67.24 584
nifikop 1.17 41.61 42.78 239
rabbitmq-operator 0.47 10.60 11.07 133
xtradb-operator 1.40 62.96 64.36 395
yugabyte-operator 0.67 17.38 18.05 196
zookeeper-operator 0.33 13.75 14.08 164

Table 5.5: Sieve’s total testing time for each controller.

Table 5.5 shows the total time Sieve takes to test each controller. All experiments were run

on 11 Amazon EC2 virtual machines, each with 8-core Intel(R) Xeon(R) Platinum 8259CL

CPU with 2.50GHz and 32 GB memory, running Ubuntu 20.04.2 LTS.

Sieve’s total testing time varies from 11.07 to 67.24 machine hours across the controllers.

Sieve runs tests in parallel because every test plan is independent. With eleven virtual

machines, the total testing time for each controller is no more than 7 hours. Therefore, it is

practical to run Sieve as a regular nightly test. Sieve’s techniques to avoid ineffective test
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plans are key for tractability. Overall, Sieve prunes away 46.7%–99.6% possible test plans

across the evaluated controllers.

Over 95% of the testing time is spent on executing test plans. With the perturbations

introduced by Sieve, a workload takes 8.8% longer to run on average. The overhead mainly

comes from delays injected by Sieve for stale- and unobserved-state testing. In a few cases,

when Sieve triggers bugs that lead to liveness issues, the controller hangs and triggers a

timeout (by default, 10 minutes).

Sieve also spends 0.33–1.40 hours to (1) collect the reference trace and (2) generate test

plans for each controller. The collected trace for each workload contains 3,386 events of

notifications, updates, or reads on average. Generating test plans takes only 20 seconds for

each workload on average.

Test reduction. Sieve’s techniques to avoid ineffective test plans are key for tractabil-

ity. Figure 5.7 breaks down the cumulative contribution of each technique. The baseline

represents the basic rules described in Section 5.2.1 without any of the pruning techniques

in Section 5.2.4. Overall, Sieve prunes away 46.7%–99.6% possible test plans across the

evaluated controllers.

Specifically, pruning by causality (Section 5.2.4) reduces test plans by up to 95.0% across

the controllers. This reduction is particularly effective for controllers that receive many

notifications that are not causally related to any update. For example, mongodb-operator

receives 700+ notifications regarding 20+ state objects, which are not causally related to

most of its updates. This allows Sieve to prune 136,000+ causally unrelated pairs of notifi-

cations and updates.

Pruning unsuccessful updates (Section 5.2.4) further prunes up to 75.8% of test plans

across the controllers. In casskop, 60.0+% of updates issued by the controller do not affect

the cluster state because the controller redundantly recreates two service objects that al-

ready exist. As none of these updates are relevant, Sieve excludes them when generating

test plans.

Sieve finally prunes up to 72.9% of test plans across all controllers by focusing on de-

terministic triggering conditions (Section 5.2.7). This makes Sieve robust to many peculiar

behaviors. For example, zookeeper-operator has an inefficient but benign behavior – it regu-

larly clears the NodePort field of a service object in every reconciliation, forcing Kubernetes

to randomly allocate a port. This leads to thousands of state transitions with random port

numbers. Sieve identifies these nondeterministic transitions and avoids related test plans.
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Figure 5.7: Effectiveness of Sieve’s test plan reduction techniques (Section 5.2.4).
The number of generated test plans is reduced by 46.7%–99.6% compared with the baseline.

5.4.3 False Positives

Sieve has a low false positive rate of 3.5%. It reports a total of 227 test failures for the

ten evaluated controllers. 219 of them were true alarms—the test failures are caused by the

46 bugs described in Section 5.4.1 (one bug might fail multiple tests). The other eight test

failures are false alarms.

The eight false alarms come from test results of three controllers (casskop, nifikop and

xtradb-operator). All of them are caused by benign state transitions introduced in the

faulty runs that did not happen in the reference runs.

The false alarms do not lead to opaque test failures—Sieve pinpoints the inconsistent

fields. In all eight cases, the false alarms are easy to identify based on the identified fields

and we could validate them by running the vanilla workload.

5.5 LIMITATIONS

Like other testing tools, Sieve is neither sound nor complete. Sieve uses specific perturbation

patterns and exhaustively drives controllers to input states according to those patterns.
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Sieve’s differential oracles can yield both false negatives and positives. Sieve only applies

its oracles on cluster states exposed by the state-centric interface. It is possible that certain

application-specific states cannot be observed by the interface, which would lead to false

negatives. In addition, Sieve reports false positives if the inconsistencies captured by the

differential oracles are caused by benign state transitions that did not happen in the reference

runs (Section 5.4.3). We found the false positive rate low (3.5%) in our evaluation.

The way Sieve deals with nondeterminism also leads to false negatives. Sieve excludes

objects with nondeterministic metadata and masks nondeterministic field values in test plan

generation and the differential test oracles (Section 5.2.7). This approach effectively avoids

many irreproducible test plans and false positives, but also misses bugs that are triggered

by states involving nondeterministic fields.

Lastly, Sieve depends on test workloads provided by the user for coverage. Implementing

a test workload only takes 6-12 lines of code from our experience, but it requires domain

knowledge about the controller and the system.

5.6 DISCUSSION

In this section, we reflect on our experience building Sieve and studying the root causes of

bugs it found (Section 5.4.1).

We find that all the evaluated controllers adopt mature software testing practices and have

numerous unit, integration, and end-to-end test cases. Some even test scenarios involving

faults. However, it is prohibitively difficult for developers to anticipate all possible cluster

states that may occur, let alone codify them into test cases. Sieve fills this gap by exhaus-

tively testing input states according to patterns of interest. For two bugs, Sieve detects that

the initial bug fixes are deficient in covering all the conditions. We run Sieve on the patched

controllers and Sieve still detects the bugs!

We also find that it is challenging for developers to comprehensively check test results,

given the enormous state objects and their fields. Developers typically check a few fields of

interest but such assertions can easily miss subtle, but serious issues (e.g., security vulnera-

bilities as discussed in Section 5.2.6).

We also observe that certain bugs are likely rooted in misunderstandings of Kubernetes’

design and API semantics. For example, some unobserved-state bugs are caused by incor-

rectly assuming that every state change can be observed by the controller; some stale-state

bugs can be prevented by using Kubernetes’ mechanisms like resource versioning and pre-

condition checking. We expect such problems to be more prevalent as engineers implement

more and more custom controllers for their cluster management needs.
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While cloud infrastructure systems may avoid some classes of bugs, they come with

hard tradeoffs. For example, not caching state objects at the controllers and API servers

(Figure 5.1) could avoid stale-state bugs. However, it would introduce significant perfor-

mance overheads to the controllers (memory accesses become network round trips) and

make the data store a scalability bottleneck [133]. Also, transactions are not a solution for

intermediate-state bugs – it would complicate the state-centric interface and prevent con-

trollers from independently making progress regardless of failures, a key factor for resilience.

Since there is no silver bullet to implementing reliable controllers, we believe that auto-

matic tools like Sieve are critical to cluster management reliability.

5.7 SUMMARY

This chapter presents Sieve an automatic reliability testing tool for controllers. The key

idea of Sieve is state perturbation: perturbing a controller’s view of the cluster state in ways

the controller is expected to tolerant, and comparing the cluster state’s evolution with and

without perturbations to automatically detect safety and liveness issues. We find that Sieve

is effective and practical by implementing state perturbation with three different pertur-

bation patterns. Sieve’s usability and reproducibility play a critical role in understanding,

debugging, and fixing reliability bugs. Sieve’s testing technique is general and easy to extend

– it separates the policy (how to perturb a controller’s view of state) from mechanisms (how

to realize perturbations). Hence, we are able to use the technique to detect a wide range

of bugs without brittle heuristics, specifications or hypotheses. Our goal is to make Sieve

a part-and-parcel of every controller developers’ toolkit, and to harden the growing number

of controllers that power today’s data centers. We have made Sieve publicly available at

https://github.com/sieve-project/sieve.
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CHAPTER 6: RELATED WORK

In this chapter, we discuss previous work related to this dissertation. Section 6.1 discusses

related work on verification, and Section 6.2 discusses related work on testing.

6.1 VERIFICATION

Verification is an old idea, and there is a long line of research on systems verification. In this

section, we discuss two types of verification closely related to this dissertation: deductive

verification and model checking.

Deductive verification is an approach that proves system correctness with mathemati-

cal proofs that connect systems to their formal specifications. Deductive verification often

requires manual proof effort and involves proof assistants or verifiers for checking proofs.

Anvil belongs to the class of deductive verification. Anvil emphasizes verifying both liveness

and safety properties for practical controller implementations. In addition, ESR is the first

formal specification for controller correctness.

Model checking guarantees system correctness by exhaustively exploring a system’s state

space. Model checking is automatic and does not require manual proof effort, but often

suffers from the state-explosion problem. Sieve is not a model checking tool, but it bears

similarities to model checking, in that Sieve drives a system to a range of states to find bugs.

Different from previous work, Sieve is designed for state-reconciliation system implementa-

tions and it explores implementation state space at the level of the cluster state’s evolution.

Sieve trades exhaustiveness for efficiency.

6.1.1 Deductive Verification

There has been a lot of progress in using deductive verification to build correct systems,

including operating systems [30, 31], compilers [32], file and storage systems [33, 34, 35, 36,

37, 38, 39, 40], and distributed systems [41, 42, 43]. Despite the rich literature, most systems

verification efforts so far focus on safety rather than liveness [30, 31, 32, 33, 34, 35, 36, 37,

38, 39, 40, 42, 43, 44, 161, 162, 163]. A notable exception is IronFleet [41], which also verifies

liveness of system implementations.

IronFleet presents a methodology for building distributed systems and verifying their

liveness and safety properties by combining Hoare-style and TLA-style reasoning. Anvil is

inspired by IronFleet’s methodology, but differs from IronFleet in the objective and proof
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technique. Regarding objective, IronFleet verifies a Paxos-based replicated state machine

and a sharded key-value store, with system-specific specification (e.g., “if the network is fair

then the reliable-transmission component eventually delivers each message”). Differently,

Anvil formalizes ESR as a general specification that captures the essence of state reconcili-

ation and verifies multiple controllers against ESR. Anvil shares IronFleet’s methodology of

using TLA embedding on first-order logic. Different from many IronFleet’s liveness proof

statements that interact directly with instantiated executions by indexing (Figure 6.1), Anvil

abstracts away executions to let developers model components, at the level of state and ac-

tion, and complete liveness proofs exclusively with temporal operators (Figure 4.13).

1 lemma Lemma_PacketSentEventuallyReceivedAndNotDiscarded

2 (b:Behavior <LSHT_State >, send_step:int , ...)

3 returns (received_step:int , ...)

4 requires 0 <= send_step;

5 requires SendSingleValid(b[send_step], ...);

6 requires ... // other preconditions are omitted

7 ensures send_step <= received_step;

8 ensures b[received_step ]. hosts[dst_idx ].host.

9 receivedPacket == Some(Packet(msg , ...));

10 { ... } // proof body is omitted

Figure 6.1: A representative liveness lemma example from IronFleet (writ-
ten in Dafny) [164]. The lemma counts steps in one instantiated execution
(Behavior) to prove that if the packet is sent at b[send step], it will be received at
b[received step]. This lemma, if written in Anvil, will have a postcondition in the form
of model.entails(sent.leads to(received)) without taking or returning any execution in-
stances or indices.

Recent work has proposed techniques for automating liveness verification. Ivy [125, 165] in-

corporates a technique for proving liveness of distributed protocols using first-order logic [166,

167]. Compared to Anvil, Ivy obtains a higher degree of proof automation at the expense

of a more restricted modeling logic; we are exploring the potential to leverage some of Ivy’s

techniques in Anvil. LVR [168] proves liveness of distributed protocols by automatically

synthesizing ranking functions with limited manual guidance. LVR is complementary to

Anvil and might be able to synthesize ESR proofs for controller implementations. The Alloy

analyzer has recently been extended to support linear temporal logic [169, 170, 171], which

enables modeling liveness properties of protocols and system abstractions; but only finite

instances can be checked and the analyzed abstractions are not formally linked to executable

code. More broadly, the rich literature on liveness verification includes program termina-

tion [172] and liveness of concurrent programs [173, 174, 175]. These techniques target other
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systems and their liveness specifications, whereas Anvil’s contribution specifically targets

controller correctness and connects liveness proofs to an executable implementation.

6.1.2 Model Checking

Model checking has been applied for verifying critical system software [53, 57, 58, 59, 60,

61, 62, 176, 177, 178, 179, 180, 181, 182], including operating systems, file systems, and

distributed systems. Due to the state-explosion problem, model checking for system im-

plementations is often performed with a timeout or within a bounded space—the model

checker exhaustively explores a finite subset of the entire state space by limiting the number

of events.

Compared to model checking, Anvil requires manual proof effort, but achieves stronger

correctness guarantee by verifying that all possible controller behaviors are correct. In

particular, Kivi [182] is closely related to Anvil. Kivi focuses on detecting failures caused

by desired state changes, configuration errors, and controller interactions by using SPIN to

model check if controllers in a specific deployment violate user-supplied properties at the

model level (not implementation level). Kivi performs bounded model checking by limiting

depth and time. In contrast, Anvil allows developers to verify controller implementations

against ESR, a general controller-correctness specification, with manual proof effort.

Sieve is not a verification tool but it bears similarities to implementation-level model

checking [53, 57, 58, 59, 60, 61, 62], in that we drive an unmodified implementation to a

range of states to find bugs. Unlike model checking, Sieve does not seek to exhaustively

cover the controller’s state space. It instead executes developer-supplied test cases and

exhaustively perturbs these test cases according to some fault patterns. Additionally, model

checkers typically rely on a specification for correct behavior. While Sieve intentionally does

not require hand-crafted specifications, it leans on reference traces as a partial specification

of expected correct behavior.

6.2 TESTING

Previous research has made great progress in testing distributed systems [45, 46, 47, 48, 49,

50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], but they do not offer a generally applicable,

comprehensive, and efficient testing approach for diverse controllers.

Fault-injection tools [45, 46, 47, 48, 49, 50, 51, 52, 183] have been developed for distributed

systems, including chaos testing tools from the industry for cloud infrastructure systems [23,

24, 25, 26]. Sieve’s goals differ from those in the fault injection literature. Sieve seeks to
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expose controllers to as many input states as possible to test their reliability. For us, faults

just happen to be a good mechanism to drive controllers to the required states. Compared

to randomized chaos testing approaches that are unaware of cluster state transitions, Sieve

can precisely force specific bug-triggering state transitions and consistently reproduce bugs.

Furthermore, unlike prior art [48, 49, 184], Sieve is not based on an expert’s hypotheses

about vulnerable regions in the code under test.

A few prior tools can, in principle, expose some bugs found by Sieve. For example,

concurrency-testing tools [53, 54, 55, 56] may expose bugs triggered by unobserved states

(which in essence occur due to reordering of events). Similarly, tools that check for crash

safety [48, 49, 185, 186] could expose bugs caused by the intermediate states. Finally, tools

that inject network partitions [50], with expert guidance, could find some bugs caused by

the stale-state pattern, i.e., a partition might force a controller to talk to a lagging API

server (after talking to an up-to-date one). In contrast to these tools, Sieve does not target

one class of bugs. Through exhaustive state perturbations, Sieve finds many kinds of bugs,

essentially combining the power of prior targeted tools. Further, the chances that prior tools

will find the bugs Sieve does are small, as they lack the context required to efficiently drive

controllers to their buggy corners (e.g., a network-partition injector is unlikely to reliably

orchestrate time-travel bugs).

Acto [65], which is also our work but not part of this dissertation, is closely related to

Sieve. Acto is designed for testing operators—a special type of controllers for managing

applications deployed on cloud infrastructure systems. Acto focuses on generating and mu-

tating desired state descriptions and checks three operation correctness requirements: the

operator (1) always reconciles the managed application to desired states, (2) performs man-

aged application recovery from undesired or error states by rolling back to a previous good

state, and (3) should be resilient to misoperations (i.e., operation errors) by preventing them

from driving the application into error states. Acto and Sieve are complementary to each

other: Acto can automatically generate testing workloads for Sieve by generating a series of

desired state descriptions, and Sieve can enhance Acto’s tests using state perturbation that

injects external events (e.g., crashes). We have applied the combination of Acto and Sieve

to test the verified controllers of Anvil, and the testing discovered bugs in unverified code.
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CHAPTER 7: CONCLUSION AND FUTURE WORK

Reliability of cloud infrastructure systems is critical but challenging. This dissertation fo-

cuses on verification and testing techniques for controllers—the core components of cloud

infrastructure systems. The key idea of this dissertation is to develop formal verification and

comprehensive, efficient testing techniques that are generally applicable to diverse controllers

using state-centric reasoning.

We first present state-centric reasoning, an approach for reasoning about behaviors of

diverse controllers without knowing their implementation details. State-centric reasoning

provides a uniform representation of controllers’ behaviors by leveraging an important op-

portunity in cloud infrastructure systems: There is a clean separation between controllers

and the cluster state, and the cluster state is represented as highly introspectable objects.

This idea of reasoning about the cluster state’s evolution enables this dissertation’s work on

specifying, verifying, and testing controllers.

To enable formal verification for cloud infrastructure systems, we present eventually stable

reconciliation (ESR), the first general formal specification for controllers. The key idea

of ESR is to capture controllers’ essential functionality using liveness. ESR is formalized

concisely in Temporal Logic of Actions (TLA). Our analysis shows that ESR precludes

69% of all the bugs detected by Sieve and Acto, two state-of-the-art controller testing tools

developed by us.

We then present Anvil, the first framework for implementing practical, formally verified

controllers. Anvil employs a hybrid of Hoare-style and TLA-style reasoning to allow devel-

opers to prove liveness and safety properties of controller implementations. With Anvil, we

have built three Kubernetes controllers and verified that they implement ESR. The verified

controllers are practical—they achieve feature parity and competitive performance compared

to existing, unverified references. ESR and Anvil enable a practical approach that gradu-

ally verifies cloud infrastructure systems by incrementally replacing existing controllers with

verified ones.

Formal verification provides strong correctness guarantees, but the approach of building

new, provably correct systems does not directly improve the reliability of existing systems.

To improve the reliability of existing controllers before verified replacements are available,

we then present Sieve, an automatic reliability testing tool for controllers. The key idea of

Sieve is state perturbation, a general testing approach that perturbs a controller’s view of

the cluster state and uses differential oracles to catch bugs. Sieve employs three different

perturbation patterns and exhaustively introduces state perturbations. Sieve is effective in
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finding new bugs—it has detected 46 new bugs in 10 popular Kubernetes controllers.

Many open challenges remain in improving the reliability of cloud infrastructure systems.

We discuss future work that continues along the lines of this dissertation.

How to reduce proof effort for verifying liveness of system implementations? Anvil pro-

vides verification support but the verification process still involves a lot of manual effort

(proof-to-code ratio ranges from 4.5 to 7.4). Most of the existing techniques for proof au-

tomation focus on safety instead of liveness [122, 123, 124, 127, 129]. Some techniques, such

as LVR [168] and dynamic abstraction [166, 167], have successfully automated liveness veri-

fication for distributed protocols such as Paxos. An interesting future direction is to develop

proof automation techniques for TLA-style liveness verification for system implementations.

How to verify liveness properties (e.g., ESR) for systems that are not written as state

machines? To apply TLA-style verification, we have to structure systems implementations

as state machines. However, most of the systems are not written as state machines explicitly.

It is an interesting challenge to close the gap between such system implementations and

liveness verification. A potential approach is to extend recent techniques [36, 39, 40, 42]

for verifying concurrent and distributed systems implementations with liveness verification

support and apply them to verify existing Kubernetes controller implementations. Another

approach is to faithfully transpile between procedural code and state machine models like

PlusCal [187] and PGo [188].

How to combine the strengths of testing and verification? Lightweight formal methods have

been increasingly used in industry to improve production system reliability [189, 190, 191,

192]. Lightweight formal methods are much easier to apply compared to proof-based formal

verification and provide stronger guarantees compared to regular testing. Lightweight formal

methods include a broad range of techniques such as property-based testing and (bounded)

model checking. A starting point is to extend Sieve to be a bounded model checking tool

that exhaustively searches both event interleaving and input space.
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APPENDIX A: WRITING TLA-STYLE LIVENESS PROOF USING ANVIL

To support liveness verification, Anvil provides a TLA embedding and a set of TLA proof

rule lemmas that can be used for temporal logic reasoning for any system. We use a simple

example to demonstrate how to use Anvil’s TLA embedding and lemmas to prove liveness.

We consider a program with two threads competing to acquire the same lock and then release

the lock. We model the program as a state machine in Verus.

We model the program state using a lock variable to represent whether the lock is acquired

and a map threads to represent the states of the two threads.

1 struct ProgramState {

2 lock: bool ,

3 threads: Map <Tid , PC >,

4 }

Each thread (A or B) can be (1) Waiting for the lock, (2) Holding the lock, or (3) Terminated

after it releases the lock.

1 enum Tid {

2 A,

3 B

4 }

5

6 enum PC {

7 Waiting ,

8 Holding ,

9 Terminated ,

10 }

In the initial state, the lock is not acquired and both threads are in the Waiting state.

1 spec fn init() -> StatePred <ProgramState > {

2 |s: ProgramState| {

3 &&& !s.lock

4 &&& s.threads.contains_key(Tid::A)

5 &&& s.threads[Tid::A] is Waiting

6 &&& s.threads.contains_key(Tid::B)

7 &&& s.threads[Tid::B] is Waiting

8 }

9 }
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Note that init returns a state predicate, i.e., a closure that takes a ProgramState and returns

a bool.

The transition function is defined as a number of possible choices for the next step of the

program. First, a thread might acquire the lock in the next step. A next step is defined as an

Action with a precondition and a transition. The step takes only when the precondition

is satisfied and it drives the program to a new state returned by transition.

1 spec fn thread_acquires_lock () -> Action <ProgramState , Tid , ()> {

2 Action {

3 precondition: |tid: Tid , s: ProgramState| {

4 !s.lock && s.threads[tid] is Waiting

5 },

6 transition: |tid: Tid , s: ProgramState| {

7 (ProgramState {

8 lock: true ,

9 threads: s.threads.insert(tid , PC:: Holding)

10 }, ())

11 },

12 }

13 }

This step takes a Tid as input, checks whether the lock is ready to acquire (lock is false)

and the thread is in Waiting state, and then in the next state changes lock to true and the

thread state to Holding.

Second, a thread might release the lock in the next step.

1 spec fn thread_releases_lock () -> Action <ProgramState , Tid , ()> {

2 Action {

3 precondition: |tid: Tid , s: ProgramState| {

4 s.threads[tid] is Holding

5 },

6 transition: |tid: Tid , s: ProgramState| {

7 (ProgramState {

8 lock: false ,

9 threads: s.threads.insert(tid , PC:: Terminated)

10 }, ())

11 },

12 }

13 }
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This step takes a Tid as input, checks whether the thread is in Holding state, and then in

the next state changes lock to false and the thread state to Terminated.

Third, the state machine takes a stutter step and the state remains unchanged.

1 spec fn stutter () -> Action <ProgramState , (), ()> {

2 Action {

3 precondition: |input: (), s: ProgramState| { true },

4 transition: |input: (), s: ProgramState| { (s, ()) },

5 }

6 }

It is a convention in TLA to add a stutter step to a state machine so that the state machine

can run forever (by repeating the stutter step) since an execution is defined as an infinite

sequence of states.

The overall transition function for the state machine is defined in next. In each step,

the state machine might choose to 1) let thread A or B acquire the lock (if the precondition

holds), 2) let thread A or B release the lock (if the precondition holds), or 3) do nothing.

1 spec fn next() -> ActionPred <ProgramState > {

2 |s, s_prime: ProgramState| {

3 ||| thread_acquires_lock ().forward(Tid::A)(s, s_prime)

4 ||| thread_acquires_lock ().forward(Tid::B)(s, s_prime)

5 ||| thread_releases_lock ().forward(Tid::A)(s, s_prime)

6 ||| thread_releases_lock ().forward(Tid::B)(s, s_prime)

7 ||| stutter ().forward (())(s, s_prime)

8 }

9 }

Our goal is to prove a liveness property: Both threads eventually terminate.

1 spec fn both_terminated () -> StatePred <ProgramState > {

2 |s: ProgramState| s.threads[Tid::A] is Terminated && s.

threads[Tid::B] is Terminated

3 }

We create a proof obligation: Assuming that a state machine model starts with the initial

state and continues running the next step, and the two steps for acquiring and releasing

locks are weakly fair, how to prove that both threads eventually terminate? Note that the

weak fairness assumptions state that for both thread A and B, if the action to let the thread

acquire or release the lock remains enabled, then the action eventually occurs.

1 proof fn liveness_proof(model: TempPred <ProgramState >)
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2 requires

3 model.entails(lift(init())),

4 model.entails(always(lift(next()))),

5 model.entails(tla_forall (|tid| thread_acquires_lock ().

weak_fairness(tid))),

6 model.entails(tla_forall (|tid| thread_releases_lock ().

weak_fairness(tid))),

7 ensures

8 model.entails(eventually(lift(both_terminated ())))

9 { ... }

The key to prove this liveness property is to reason about the progress of the two threads

by applying the wf1 lemma. We first prove that starting from the initial state, eventually

one of the threads is holding the lock.

1 let one_holding = |s: ProgramState| {

2 ||| s.threads[Tid::A] is Holding && s.threads[Tid::B] is

Waiting && s.lock

3 ||| s.threads[Tid::A] is Waiting && s.threads[Tid::B] is

Holding && s.lock

4 };

5 use_tla_forall(model , |tid| thread_acquires_lock ().weak_fairness(

tid), Tid::A);

6 // model |= thread acquires lock().weak fairness(Tid::A)

7 thread_acquires_lock ().wf1(Tid::A, model , next(), init(),

one_holding);

8 // model |= init⇝ one holding

The wf1 rule states that “P lead to Q” with four requirements (1) running any action in

a state satisfying P makes either P or Q hold in the next state, (2) running an action A in

a state satisfying P makes Q hold in the next state, (3) P implies that A is enabled (i.e.,

A can possibly occur) and (4) A has the weak fairness assumption. In this case, P is the

initial state, and Q is the state where one of the threads is holding the lock. We choose A

to be the action that thread A acquires the lock. The intuition of the proof behind wf1 is

that, if the action A happens upon the initial state, then thread A is holding the lock in the

next state. If other actions happen upon the initial state, then either no thread is holding

the lock in the next state (if the stutter step happens), or thread B is holding the lock in the

next state (if the action that thread B acquires the lock happens); the actions for releasing

the lock cannot happen because their preconditions are not satisfied by the initial state.
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To apply wf1, we only need to instantiate the quantified weak fairness condition on thread

id A to prove precondition (4). The other preconditions are automatically proved by Verus.

After proving that the initial state leads to a state where one of the threads is holding the

lock, we need to split the case on which thread is holding the lock. We start with the first case

where thread A is holding the lock. The execution after this state becomes deterministic: A

needs to first release the lock (and terminates), then B can acquire the lock and then release

it (and terminates). We perform a series of wf1 application and use transitivity of the leads-

to operator to prove that from the state where thread A is holding the lock, eventually both

threads terminate.

1 let ta_holding_tb_waiting = |s: ProgramState| s.threads[Tid::A]

is Holding && s.threads[Tid::B] is Waiting && s.lock;

2 let ta_terminated_tb_waiting = |s: ProgramState| s.threads[Tid::A

] is Terminated && s.threads[Tid::B] is Waiting && !s.lock;

3 let ta_terminated_tb_holding = |s: ProgramState| s.threads[Tid::A

] is Terminated && s.threads[Tid::B] is Holding && s.lock;

4 ...

5 thread_releases_lock ().wf1(Tid::A, model , next(),

ta_holding_tb_waiting , ta_terminated_tb_waiting);

6 // model |= ta holding tb waiting⇝ ta terminated tb waiting

7 ...

8 thread_acquires_lock ().wf1(Tid::B, model , next(),

ta_terminated_tb_waiting , ta_terminated_tb_holding);

9 // model |= ta terminated tb waiting⇝ ta terminated tb holding

10 ...

11 thread_releases_lock ().wf1(Tid::B, model , next(),

ta_terminated_tb_holding , both_terminated ());

12 // model |= ta terminated tb holding⇝ both terminated

13 leads_to_transitive_n !(

14 model ,

15 lift(ta_holding_tb_waiting),

16 lift(ta_terminated_tb_waiting),

17 lift(ta_terminated_tb_holding),

18 lift(both_terminated ())

19 );

20 // model |= ta holding tb waiting⇝ both terminated

For the second case, we prove that from the state where thread B is holding the lock,

eventually both threads terminate. The proof is done in a similar way to the first case.
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We then combine the two cases to show that from the state where thread A or B is holding

the lock, eventually both threads terminate.

1 // model |= ta holding tb waiting⇝ both terminated

2 // model |= tb holding ta waiting⇝ both terminated

3 or_leads_to_combine(model , lift(ta_holding_tb_waiting), lift(

tb_holding_ta_waiting), lift(both_terminated ()));

4 // model |= (ta holding tb waiting ∨ tb holding ta waiting)⇝ both terminated

5 temp_pred_equality(

6 lift(ta_holding_tb_waiting).or(lift(tb_holding_ta_waiting)),

7 lift(one_holding)

8 ); // (ta holding tb waiting ∨ tb holding ta waiting) = one holding

9 // model |= one holding⇝ both terminated

Finally, we apply leads-to transitivity again to show that the initial state leads to the state

where both threads terminate.

1 leads_to_transitive(model , lift(init()), lift(one_holding), lift(

both_terminated ()));

2 // model |= init⇝ both terminated

3 leads_to_apply(model , lift(init()), lift(both_terminated ()));

4 // model |= ♢both terminated

This example demonstrates how to use Anvil’s TLA embedding and lemmas to prove

liveness for state machine models. Developers can also connect the proof to executable code

by structuring the code as an executable state machine and proving that the implementation

state machine conforms to the model using Verus’ Hoare-style reasoning.
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