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ABSTRACT

Precise CPU allocation for a multi-programmed computer is crucial to application perfor-

mance and resource efficiency, but is notoriously difficult under dynamic cloud workloads,

where multiple users executing diverse applications often share the CPUs. We argue that

the fundamental problem is rooted in the mismatch of the existing CPU allocation interface

between the cloud and the OS—while the cloud represents CPU resources as a percentage

quota of the host CPU (i.e., millicpu), the OS interprets CPU resources as time-shared quota

slices allowed to run within a defined period. The cloud interface’s disregard for periodicity

stems from the fundamental difficulty of capturing fine-grained application runtime behavior

in userspace. Consequently, existing solutions rely on coarse-grained, surrogate metrics such

as CPU utilization, throttle, and queue lengths, leading to slow and imprecise allocation.

We present CATCloud, an OS extension that closes the semantic gap of cloud CPU allo-

cation. CATCloud views CPU resources as a shared bandwidth interface and implements a

millisecond-scale CPU bandwidth autotuner for quota and periodicity. Implemented in the

OS scheduler, CATCloud realizes observability of fine-grained run time and yield time be-

havior of target applications; which was previously opaque to the userspace autoscalers. By

continuously capturing historical data, it accurately estimates the short-term CPU period

and quota requirements. With an execution latency of only a few milliseconds, CATCloud

can quickly and effectively react to bursty, dynamic workloads with simple statistical al-

gorithms. We show that CATCloud significantly outperforms state-of-the-art techniques in

terms of responsiveness, precision, and efficiency. Our evaluation on various cloud workloads

shows that CATCloud can improve CPU efficiency by on an average of 27.8%, up to 81.3%

and performance improvements on average of 27.91%, up to 152.5% with negligible memory

and compute overheads, over existing autoscaling solutions
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CHAPTER 1: INTRODUCTION

Precise allocation of CPUs is crucial in the cloud setting. Cloud providers can utilize this

information to efficiently provision these resources and schedule applications accordingly.

As a result, cloud users experience predictable performance and costs while running their

workloads. Unfortunately, a poor estimation of CPU limits can lead to either a loss in

performance due to throttling or CPU slack, where allocated but unused CPUs collectively

lower the efficiency of the data center. Estimating CPU limits upfront, however, is non-

trivial, especially in dynamic behavior settings where load spikes may occur in an instant.

Traditionally, the user mitigates this by over-allocating resources to prevent performance

penalties. However, this leads to significantly higher costs and poor utilization of the data

an analysis from Google’s clusters [1] observing an average CPU utilization of 60% and

Alibaba [2] observing the average CPU utilization to not exceed over 40%.

In today’s cloud landscape, users widely adopt autoscaling techniques to optimize resource

utilization and cost efficiency. Autoscaling is the process to automatically requesting for

resources when the applications require it, so that applications do not experience a slowdown.

Major cloud providers like Google [3], Amazon [4], Microsoft [5], and IBM [6] offer autoscaling

capabilities for resource management that observe application behavior metrics in userspace

to suggest resource recommendations. The Kubernetes Vertical Pod Autoscaler [7] (K8s

VPA) has emerged as a popular open-source solution in industry. K8s VPA continuously

monitors resource utilization within defined windows, providing recommendations based

on statistical analyses such as the 50th and 95th percentiles of past CPU usage over a

window. Cloud providers may employ various techniques, including rules-based tuning and

machine learning algorithms, to accurately estimate and suggest CPU allocations for optimal

performance and cost savings.

We observe, that there exists a fundamental discrepancy between cloud interfaces and the

OS cgroup interface. The Cgroup file system is an interface exposed by the OS to regulate the

utilization of resources by tasks groups bound by it. The Linux cgroup bandwidth controller

necessitates CPU limits to be specified in terms of quota and period bandwidth. However,

cloud users typically request CPU limits using a millicpu (i.e., a vCPU ), which represents

a percentage ratio of quota to period. Presently, leading autoscaling solutions focus solely

on adjusting the quota based on observed metrics, while the period often remains constant,

typically defaulting to 100ms. As we discover in this work, this approach leads to inaccurate

resource estimations, resulting in suboptimal performance with high levels of throttling, and

potentially leading to recommendations of unnecessarily high amount of vCPUs (i.e over-
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entitlement/allocation) in the following periods.

New autoscaling techniques have emerged [3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18], aiming to enhance traditional threshold- and utilization-based methods. These

approaches leverage queuing theory, reinforcement learning, and introduce novel metrics such

as performance awareness. Despite these advancements, these techniques (1) do not account

for tuning both the quota and the period; and (2) encounter issues related to reactivity

and precision when making recommendations, further lowering their efficacy. Due to these

inefficiencies, some cloud developers have requested interfaces [19] from orchestrators such

as Kubernetes to manually tune both the quota and period, while other users have called for

not using the quota–period mechanism altogether [20, 21, 22] for when dealing with dynamic

workload when their periodicity is not close to default.

The core problem is that userspace autoscalers rely on surrogate metrics as a proxy to

model the application behavior. The application runtime behavior, while opaque to the

userspace, is fairly transparent within the OS kernel. A task’s behavior in terms of admit-

tance, runtime, and yield can be traced within the scheduler, which can be further be used

to accurately model the current application behavior. We propose CATCloud, an in-kernel

CPU auto tuning solution that profiles the OS scheduler to extract the application behavior

and recommend quota and period based on past behavior. CATCloud presents a lightweight

approach to tracing and recommendation by minimally instrumenting the Linux bandwidth

scheduler to track runqueue statistics of admittance, runtime, yield and collates them at the

cgroup level. CATCloud can operate in the granularity of milliseconds and employs simple

statistical techniques to recommend future CPU limits.

Our proposed solution addresses two primary challenges. First, accurately modeling run-

time behavior proves to be a complex task. Instead of relying on surrogate metrics such as

CPU utilization or throttle count, CATCloud extracts application runtime behavior directly

from the OS scheduler. While the scheduler manages operations such as running and yield-

ing, extracting these metrics and modeling application behavior presents difficulties. Tracing

bandwidth runtime poses challenges due to the scheduler’s nature of task-switching based

on metrics such as context switches, IO wait times, and vruntime slice expiration. These

fragmented runtime and yield slices fail to accurately represent actual application runtime

behavior. Initially, we outline a straw man approach involving period-bound tracing to gather

this information, and highlighting its limitations using micro-benchmarks. Subsequently, we

introduce a novel technique called period-agnostic tracing to track fragmented runtime and

yield data. This data is then aggregated across multiple cores where the application concur-

rently runs.

Second, contemporary CPU autoscaling solutions often rely on heavyweight algorithms

2



such as machine learning and reinforcement learning. These algorithms demand extensive

telemetry data and time to build models, resulting in slow and sluggish reactivity (on the

order of several minutes) when suggesting recommendations. This delay becomes particu-

larly undesirable when dealing with workloads exhibiting high levels of dynamic utilization.

CATCloud offers a contrasting approach with its lightweight tracing infrastructure, enabling

millisecond-scale tracing. This results in significantly improved reactivity when observing

spikes in application load. Moreover, CATCloud empowers users to fine-tune the level of

reactivity based on their domain-specific knowledge of application behavior.

We implement CATCloud as an extension to the Linux bandwidth scheduler on a real

system, providing CATCloud interfaces through the Linux CPU cgroup. These interfaces

can be leveraged by container orchestrators to enable monitoring and recommendations. To

assess CATCloud’s effectiveness, we deploy a custom Linux kernel on QEMU x86 Kernel

Virtual Machine (KVM) [23] and utilize Kubernetes as the cloud orchestrator. Our experi-

ment encompasses a diverse range of cloud applications [24, 25, 26], including microservices,

streaming, and serverless architectures, each exhibiting varying degrees of dynamic behavior.

In our evaluation, CATCloud surpasses state-of-the-art autoscaling techniques such as

Holt–Winters exponential smoothing (HW) and Long Short-Term Memory (LSTM) [13], and

Kubernetes Vertical Pod Autoscaler [7]. CATCloud demonstrates notable improvements in

CPU efficiency, achieving on an average of 27.8%, up to 81.3%, and delivering performance

gains on average of 27.91%, up to 152.5% compared to the evaluated baselines.
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CHAPTER 2: BACKGROUND AND MOTIVATION

In this chapter, we outline the interfaces responsible for allocating CPU resources for cloud

applications. First, we delve into the abstractions provided by the operating system (OS)

and describe the disparity in the way CPU resources are allocated by container orchestrators.

Next, we introduce Vertical CPU autoscaling, one of the most prevalent methods for CPU

resource allocation, and examine the current state of autoscalers. Lastly, we illustrate the

ramifications of this mismatch through a simple benchmark to motivate our solution.

2.1 OS ABSTRACTION: CPU BANDWIDTH

The Linux operating system implements functionality to limit CPU utilization of certain

task groups in terms of bandwidth time. This mechanism allows for better performance

isolation and resource accounting between tasks groups, which are crucial pillars of the

pay-per-use cloud model.

The CPU bandwidth [27] is a function of quota and period that can be tuned by userspace

applications via the control group (cgroup) [28] interface.

• Quota: maximum amount of CPU time that a group of processes can consume.

• Period: duration for which the quota is enforced.

At a high level, by utilizing both quota and period in tandem, the maximum amount of

time an application can run is determined. If the application exhausts its runtime quota,

the scheduler throttles the application until the next period begins. Once the new period

starts, the quota is reset, and the application can once again accumulate runtime.

The simplest implementation of this mechanism is to maintain a global quota for a task

group in which threads use hard synchronization mechanisms to coordinate with global to

ascertain their utilization and limits. The global store however can face severe contention as

a task group and its threads scale. Another approach is to maintain a local quota limit at a

per-CPU level to regulate runtime. If an application spawns threads spanning multiple CPU

runqueues, this mechanism also coordinates with other local quotas. The advantage of this

approach is that it can account for its own utilization locklessly. In practice, this approach

of having quotas locally for each task group does not scale well due to the computational

overhead of the many to many relationships with other groups to compute remaining quota.

The Linux kernel scheduler features several optimizations in its design to primarily cater to
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these scalability challenges by using a hybrid global-local pool mechanism [29]. The following

new parameters are implemented internally within the scheduler:

• Global quota: quota consumed tracked at the task group level

• Local quota: local pool of quota for each run queue.

• Bandwidth slice: a user configurable batch size of runtime. The local quota borrows

runtime from the global in these fixed batch sizes.

Summarizing the working of the modern Linux bandwidth scheduler, when a task group

is restricted using the quota and period, the cgroup quota is assigned as the global quota

of the group. Each runqueue spawned possess a local quota. The local quota borrows

runtime, in the form of small batched bandwidth slices, from the global pool to enable

running of the tasks. When the local pool is exhausted, more runtime is requested from the

global pool. If the global pool runs dry, then the runqueue of the local quota is throttled

for the duration until the next period. This hybrid approach of global-local accounting is

akin to real-time scheduling, but with the key difference of avoiding many-to-many CPU

interactions on refresh and expiration therefore providing better scalability. In subsequent

sections, we describe the implications of this design on accurately estimating application

runtime behavior.

In Figure 2.1, we show the controller in action for a single period in the Completely Fair

Scheduler (CFS). According to the example, the user spawns a task group and assigns a

quota of 15ms, a period of 100ms, and a bandwidth slice of 5ms. Within the scheduler, the

global quota of the cfs bandwidth structure is set to 15ms as well. The cfs rq run queue

structure houses the local quota. Initially for the runqueue to be first scheduled on the

system, the local quota borrows 5ms slice from the global quota, reducing the global quota

to 10ms. The task is then run (highlighted in green in the figure) for the bandwidth slice

amount of time, and yields (highlighted in blue) when the local quota is exhausted. If the

run queue requires more quota, it is again requested from the global quota, further reducing

the global pool to 5ms. Once the global pool is exhausted and the task still requires more

CPU time, the bandwidth controller throttles (highlighted in red) the application for the

duration of the period. In this case, our example granted a total of 15ms of runtime in slices

of 5ms each, and now that the quota is exhausted, the application is throttled for 85ms

(i.e., the remainder of the 100ms period).

By default in the scheduler, the bandwidth slice is set to 5ms; the period is set to 100ms;

and the quota is set to max, which lets regular applications run unrestricted. In addition to

CPU limit, the cgroup also provides statistics regarding usage, pressure, throttle, etc.
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Figure 2.1: Linux bandwidth controller

2.2 CLOUD ABSTRACTION: MILLICORE

User applications typically request CPU resources in terms of cores or logical CPUs.

However, in a multi-tenant cloud environment, applications must interact with the CPU

bandwidth interface to manage their CPU resource requirements. This presents an interface

mismatch, as applications request limits in logical CPUs, while the operating system expects

limits to be provided as a quota–period pair.

To address this interface discrepancy, cloud orchestrators and vendors offer abstractions

to translate between logical CPUs and CPU bandwidth. Various vendors employ different

terms (e.g., millicpu, millicore, vCPU) to fulfill the same functional purpose. We focus on

Kubernetes [30] as our orchestrator of choice, which uses the CPU limit interface to assign

millicores, with autoscaling as the preferred choice of managing the CPU resource.

Kubernetes Container Orchestration. In production cloud environments, containers

are a prevalent deployment method. Kubernetes (K8s) serves as an orchestration platform

designed for automating scaling, deployment, and management of containerized applications.

The fundamental unit in Kubernetes is the pod, which encompasses the containers of an

application with defined resource limits. CPU resource limits can be specified in Kubernetes

either as cpu-set CPUs [28], where pods are pinned to a specific set of CPUs for improved

performance isolation, or more commonly in multi-tenant environments, as millicores [31].
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Millicpu or Millicore. The limits to the CPU resource in a cloud setting is defined as a

unit of millicpu or millicore. A millicpu is defined as a thousandth part of a physical CPU

worth of runtime. Within the OS, millicpu translates to the ratio of quota to the period.

For example, 500 millicpu = 0.5 vCPU = 50ms of quota, for a 100ms of period. When a

user adjusts millicpu limits, the period always remains constant, typically set to the default

100ms, while the quota is adjusted proportionally to maintain the specified ratio provided

by the user.

Vertical Pod Autoscaler. In the cloud model, users typically pay for the resources they

request. Therefore, it is crucial that the requested resources meet the application’s per-

formance requirements at the lowest possible cost. Additionally, applications may exhibit

dynamic CPU utilization patterns due to varying loads. This necessitates periodic adjust-

ment of CPU requests to optimize performance per dollar spent. To automate this process

and avoid manual estimation of resource limits, Kubernetes provides functionality to au-

toscale (i.e., automatically adjust) resource limits over time based on application behavior.

Specifically, for CPU resources, the Kubernetes Vertical Pod Autoscaler (VPA) [7] continu-

ously monitors resource utilization within defined time windows and recommends millicpu

adjustments based on statistical analyses, such as the 50th and 95th percentiles of past CPU

usage.

Kubernetes also allows for custom autoscalers that can recommend and tune for CPU

limits based on the application behavior. This include using various techniques [8, 9] to

dynamically tune CPU limits. These approaches include rule- and threshold-based [4, 5],

statistical models [7, 10, 11], time series / machine learning / reinforcement learning tech-

niques [3, 12, 13, 14], queuing-theory-based [15, 16, 17], and performance-aware models [18].

Each approach presents unique advantages and challenges (Chapter 5) that cloud vendors

account for while choosing their environment’s autoscaler.

2.3 IMPLICATIONS OF INTERFACE MISMATCH

As discussed in the previous section, various techniques exist for tuning CPU requirements

using millicpu units. Tuning millicpu involves modifying only the quota variable, while the

period remains constant, typically set to the default 100ms in the Linux kernel. However,

applications have started encountering issues due to the oversight of their periodicity when

tuning millicores. An example of this was uncovered using production traces of the Golang

garbage collector running in a CPU bandwidth-shared environment [32]. High levels of

throttling were attributed to the use of the default period, as the workload’s periodic nature
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resulted in short bursts of runtime. Similar behavior was reported by other users [20],

prompting the Kubernetes orchestration framework to implement the capability to tune

both the quota and the period [19].

Although Kubernetes provides the interface to adjust both the quota and period, most

users and autoscalers do not utilize this feature. The consequences of setting incorrect

bandwidth limits are often manifested in performance-related metrics (e.g., service level

objectives, or SLOs) and the frequency of throttling. In such cases, autoscalers often com-

pensate by requesting more millicpus, resulting in degraded performance and/or inefficient

CPU resource utilization.

2.3.1 Limitations of Quota-Only Models

To illustrate the consequences of adjusting only the quota, we conduct two experiments

using the Ebizzy microbenchmark [33]. Ebizzy emulates a typical web-search application

workload and features a variant [24] capable of simulating a sleep-wakeup pattern among

threads, introducing burstiness. This micro-benchmark enables us to observe predictable

and consistent CPU utilization patterns. Leveraging the Kubernetes Vertical Pod Autoscaler

(VPA), we analyze application behavior and propose millicpu allocations. Furthermore, we

present scenarios of under-provisioning and ideal bandwidth limits. The following experi-

ments represent a diverse set of applications that may demonstrate varied periodicity as seen

often in real-world [34]. The aim of these experiments is to highlight the modern autoscal-

ing’s inability to account for an application’s periodicity and the resulting implications, even

when the workload demonstrate consistent utilization.

Experiment #1; Periodicity Greater Than Default

Consider a scenario where the Ebizzy micro-benchmark is configured to exhibit a period-

icity greater than the default 100ms. In this experiment, we define the runtime of an Ebizzy

thread to be 20ms, followed by a yield for 150ms before servicing another set of requests

for 20ms.

When using the default periodicity of 100ms, the workload illustrated using Figure 2.2

behaves as follows:

• 1st period: 20ms of runtime and 80ms of idle time observed.

• 2nd period: The remaining 70ms of idle time from the previous period carries over,

and then the application runs for 20ms, with the remaining 10ms occupied by idle

8



Figure 2.2: Exp #1 Illustrative example - workload runtime 20ms, idle time 150ms

time.

Based on this observed behavior, manually estimating CPU bandwidth limits would result

in a quota of 20ms and a period of 100ms, equating to 200 millicores.

However, knowing that this instance of Ebizzy has a yield duration of 150ms, setting the

periodicity to the sum of the runtime and yield (170ms in this case) leads to a different

workload behavior. In this scenario, each period of 170ms accumulates 20ms of runtime

and experiences 150ms of idle time. This equates to a requirement of 117 millicores.

From Figure 2.3, we first observe that in an under-provisioned scenario when an appli-

cation is limited to 100 millicores, the response time latency is large due to the throttling

it experiences. The second case wherein the Kubernetes Vertical Pod Autoscaler is em-

ployed, we are able to achieve ideal latency characteristics, albeit with double the number of

millicores than were allocated in the under-provisioned case (200 millicores). Even though

optimal latency is achieved, since the workload behavior is known, further optimizing for

period can yield better CPU allocation. Therefore in the third case, setting the quota to

20ms and period to 170ms (which allocates 117 millicores) also achieves ideal latency but

at a significantly lower lower CPU cost (41.5%) than the recommendations of K8s VPA.
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Figure 2.3: Ebizzy micro-benchmark - 20ms work, 150ms idle - normalized. Tuning for
a higher periodicity aids in lowering CPU requirement without the compromise of ideal
performance

Experiment #2: Periodicity Lower Than Default

To illustrate the implications of a workload with periodicity lower than the default 100ms,

we define the runtime of an Ebizzy thread to be 40ms, followed by a yield for 30ms.

When using the default periodicity of 100ms, the workload (Figure 2.4) behaves as follows:

• 1st period: 40ms runtime, 30ms yield time, followed by 30ms runtime. Cumulative

runtime = 70ms

• 2nd period: residual 10ms runtime, 30ms yield time, 40ms runtime, and 20ms.

Cumulative runtime = 50ms

• 3rd period: residual 10ms yield time, 40ms runtime, 30ms yield time, and 20ms

runtime. Cumulative runtime = 60ms

Based on this observed behavior, manually estimating CPU bandwidth limits proves to

be challenging. A user may choose the lowest limits of quota = 50ms (500 millicores),

the average at quota = 55ms (550 millicores), or the 99th percentile at quota = 70ms

(700 millicores), with the period remaining constant at 100ms. The 99th percentile is also

the recommendation observed from Kubernetes VPA. However, tuning the CPU limits to

match the ideal periodicity of the application leads to a quota of 40ms and a period of

runtime + yield = 70ms (571 millicores) for all accumulated runtime within each period.
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Figure 2.4: Exp #2 Illustrative example - workload runtime 40ms, idle time 30ms

Figure 2.5 presents the latency characteristics for the various CPU limits discussed above.

Initially, in an under-provisioned case (400 millicores), poor response time latency is ob-

served. Increasing the quota in subsequent runs leads to improved latency. The lowest

achievable latency under a fixed period of 100ms is attained when the quota is set to 70ms

(700 millicores). Finally, when tuning the quota to 40ms and the period to 70ms according

to the application behavior, ideal latency is observed at a lower cost (570 millicores) than

the 99th percentile case.

All of the performance and efficiency issues observed from both trace-based studies and

micro-benchmarks stem from the fundamental discrepancy of not tuning the quota–period

pair in tandem. This discrepancy arises because current autoscaling solutions cannot observe

the entirety of application behavior in the userspace, and only see single-period snapshots.

As a result, they rely on surrogate metrics to estimate this behavior. However, this inability

to directly observe, coupled with the interface mismatch between the bandwidth controller

and the cloud, leads to recommendations that may appear correct under the context of the

default period but are often not the most efficient allocation. This highlights the need to

design a solution at the layer where collecting this information is fairly transparent: the

OS scheduler. The OS scheduler processes data regarding an application thread’s runtime,

yield, and throttle behavior. Any solution operating within the kernel’s scheduler must

not impose significant computational overhead and should be reactive to millisecond load

11



Figure 2.5: Ebizzy micro-benchmark - 40ms work, 30ms idle - normalized. Tuning in
accordance to lower periodicity affects both, quota-period combination and aids in lowering
CPU requirement without the compromise of ideal performance

changes. Additionally, it should possess the capability to bridge the interface gap between

cloud orchestrators and the bandwidth controller.
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CHAPTER 3: CATCLOUD DESIGN

CATCloud is a vertical CPU autoscaling solution designed for applications that rely on

the Linux cgroup CPU bandwidth controller to regulate utilization (e.g., containerized appli-

cations on multi-tenant cloud). Drawing from our previous discussion, where we highlighted

the limitations of monitoring application behavior solely in userspace, we now bypass the

necessity for userspace surrogate metrics. Instead, we seamlessly integrate directly into the

kernel scheduler to extract the operating system’s view of the application, which is opaque

to other autoscaling solutions. Residing in kernel space, CATCloud minimally instruments

the Linux scheduler to trace and analyze application runtime behavior. It also extends the

CPU cgroup by exposing a userspace interface to finely tune the granularity of profiling by

determining the length of observed history. In addition to profiling, CATCloud also exposes

CPU limit recommendations and adjustments based on observed history and gives an option

to automatically tune the CPU bandwidth based on these recommendations.

Design Goals : CATCloud has three main design goals:

• Correctness in capturing application behavior. CATCloud must be able to accurately

capture application runtime and idle-time behavior within the scheduler and must

account for events such as throttle.

• Lightweight profiling and recommendations. Since CATCloud is designed as an exten-

sion to the OS scheduler, it must be computationally inexpensive in order to not slow

down the decisions made by task scheduler. Therefore CATCloud’s profiling must be

simple and minimal.

• Usability. Users must be able to provide hints to tune the reactivity of tracing and

recommendations, along with the ability to extract and apply recommendations on the

fly. These userspace hints can help reduce the overheads of tracing as well as improve

the quality of the recommendations. CATCloud must implement a userspace interface

that is in tandem with the already established CPU cgroup interface

3.1 OVERVIEW

CATCloud’s workflow comprises three essential components: profiling application behav-

ior, analyzing collected runtime data, and deploying CPU limit recommendations. As dis-

cussed in Chapter 2.1, within a bandwidth-controlled environment, the combination of quota
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period and its ratio determines the CPU allocation for applications. In contrast to other

autoscaling solutions, CATCloud fine-tunes both the quota and period parameters to achieve

precise and efficient entitlement for the tasks within that cgroup.

Most VPAs rely on proxy metrics, often leading to ineffective profiling of application run-

time and periodicity. This results in incorrect and inefficient CPU entitlement. CATCloud

addresses this challenge by leveraging the Linux scheduler to profile each runqueue sched-

uled by the application’s cgroup. Each runqueue records the duration it runs before yielding,

storing both runtime and yield time in a history buffer. Simultaneously, a global view of the

cgroup runtime within a period is gathered. Once the history buffer is filled with data from

both per-runqueue and global cgroup views, CATCloud computes the worst-case run/yield

times and recommends a quota–period pair based on that. These recommendations are then

exposed to the userspace via the CPU cgroup. CATCloud’s lightweight implementation

in the OS enables millisecond-scale accounting, ensuring high reactivity when sudden load

spikes and drops are observed.

3.2 PROFILING

To accurately model the current application behavior, we need techniques to observe its

runtime and yield interactions within the scheduler. As described from Chapter 2.1, with

the introduction of hybrid global–local quotas and a system of borrowing runtime as a unit

of scheduler slices, the behavior of the request queue (RQ) during execution is fragmented

(Figure 3.1). This fragmentation complicates the distinction between actual runtime and

involuntary yields. Consequently, we propose two strategies. First, a straw man approach

involves tracing runtime within a defined period. We discuss its similarities with existing

tracing methodologies, its limitations, and its applicability in specific scenarios. Second, we

introduce a novel tracing methodology capable of capturing application behavior agnostic

to the period in which the runtime resides.

3.2.1 Period-Bound Tracing: Straw Man Solution

Our approach for period-bound tracing is simple: we account for the cumulative runtime

within a given period currently set by the cgroup controller. This approach is akin to the

CPU utilization reported by container telemetry tools, with the key difference that the data

is collected in-kernel and accounted for at every single period.

Described in Algorithm 3.1, only the runtime duration is accounted for, while the yield

(idle) duration is implicit at the period boundary. For example, in a 100ms period, if the
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Figure 3.1: Challenges with application behaviour tracing

Algorithm 3.1 Period-Bound Tracing

Require: Task bound by the CFS Bandwidth controller
Require: quota! = max
Require: recommend.status == true
tot runtime← 0
yeildtime← 0
while curr period ≤ default period do

if target runtime is assigned then
tot runtime← tot runtime+ runtime slice

end if
end while
yeildtime← period− tot runtime

cumulative runtime slices accounted for is 30ms, then the yield duration is 100ms - 30ms =

70ms. The implications of this inability to consider the period lead to incorrect allocation as

demonstrated in Section 2.3.1. Despite these drawbacks, the approach does present utility

in cases when applications experience moderate amounts of throttle, which is described in

Section 3.2.3

3.2.2 Period-Agnostic Tracing

While our implementation of period-bound tracing in the last section demonstrates a

lightweight and simple approach, it presents significant shortcomings when the periodicity

of the applications is not in line with the default period. Therefore, in this section, we design

a period-agnostic tracing model to profile application runtime and yield-time behavior whose

periodicity can either be lower or greater than the currently-defined period boundaries.

The core idea described in Algorithm 3.2 revolves around accounting for runtime per

runqueue until the task self-yields. However, runqueues can yield for various reasons, with
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Algorithm 3.2 Period-Agnostic Tracing

Require: Task bound by the CFS Bandwidth controller
Require: quota ̸= max
Require: recommend.status == true
while assign cfs rq runtime() do

if yieldtime ̸= 0 then
curr yieldtime← rq clock()− yieldtime

end if
corr yieldtime = curr yieldtime− prev vruntime
if accumilated runtime ̸= 0 and corr yieldtime ≥ cfs bandwidth slice then

yeildtime hist[idx]← corr yieldtime
runtime hist[idx]← rq clock()− accumilated runtime− corr yieldtime
idx← idx+ 1
accumilated runtime← 0

end if
curr yieldtime← rq clock()
prev vruntime← vruntime
if accumilated runtime == 0 then

accumilated runtime← rq clock()
end if

end while

the most common being the expiry of the CFS bandwidth slice. Therefore, our primary

approach is to account for runtime when the yield duration exceeds the scheduler bandwidth

slice. To implement this approach, we maintain two runqueue clocks: one for runtime and

another for yield time. The yield-time clock is initialized each time a runqueue is assigned

a vruntime. The runtime clock is initialized either if it was not previously initialized, or

when a legitimate self-yield is detected. In a low-contention scenario, when a runqueue has

exhausted its CFS bandwidth slice but still needs to run and has remaining quota, it will be

assigned runtime to be scheduled in the next bandwidth slice. Hence, to identify a self-yield,

we observe when the runqueue is scheduled and check if the yield-time clock exceeds the

scheduler bandwidth slice. This, coupled with the absence of throttling in previous periods

and the deduction of the current yield duration, signifies the current periodic runtime cycle.

3.2.3 Tracing During Throttle

When a task requires more runtime than the user-set quota within a period, it will be

involuntarily yielded due to throttle. This means that the task is evicted from the queue

for the rest of the period and is re-queued only in the next period when the quota replen-

16



ishes. This can significantly change the run–yield behavior and must be accounted for when

estimating the CPU bandwidth requirements.

We characterize throttle behavior into three main categories (light, medium, and high de-

grees of throttle) and describe strategies for tracing during each of these conditions. During

light throttle, the period-agnostic algorithm will experience higher runtime and yield-time

durations, potentially leading to incorrect recommendations. To accurately model the run-

time behavior, we must take into account the amount of time the task was throttled and

make corrections based on that. As described in Algorithm 3.3, we maintain a throttle clock

to record the amount of time a task stayed throttled. When the task is reset in the queue

to be unthrottled, we adjust the yield-time and runtime clocks forward by the duration the

runqueue was throttled for.

Algorithm 3.3 Throttle Correction

Require: quota ̸= max
Require: recommend.status == true
procedure throttle cfs rq(cfs rq)

cfs rq.throttled clock ← rq clock(rq)
end procedure
procedure unthrottle cfs rq(cfs rq)

curr throttle time← rq clock(rq)− cfs rq.throttled clock
if yieldtime ̸= 0 and accumulated runtime ̸= 0 then

yieldtime← curr throttle time+ yieldtime
accumulated runtime← curr throttle time+ accumulated runtime

end if
end procedure

Experiencing some degree of throttle is unavoidable in the life cycle of an auto-tuned

application, and Algorithm 3.3 effectively mitigates the effects of capturing the runtime

duration. However, in scenarios where an application experiences moderate levels of throttle,

temporarily altering its behavior, period-bound tracing can provide a useful recommendation

baseline. As discussed earlier, period-bound tracing may sometimes lead to higher, incorrect

entitlements, especially when behavior is altered. Nevertheless, it can significantly help in

promptly reducing throttle and stabilizing the workload for more accurate runtime profiling.

Lastly, if an application experiences high degrees of throttle, then the application behavior

itself can be severely affected, and correction factors may prove to be inadequate. Therefore,

as described in Algorithm 3.4, when throttle constitutes the majority (≥ 50%) of the period-

bound history size, then for a short duration of time (five bandwidth periods), the quota is

scaled to over-provision the application’s millicore allocation to stabilize the tracing. The
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amount of over-provisioning is determined by an exponential scaling factor of CPUs. Once

a valid runtime is discovered, the over-entitlement-based tracing is disabled.

Algorithm 3.4 Quota Scaling

Require: quota ̸= max
Require: recommend.status == true
ulim interval← 5
curr throttle← 0
cpu scale← 1
procedure do sched cfs period timer

throttled =!list empty(throttled cfs rq)
if curr throttle ≥ period bound history then

if ulim interval ≥ 0 then
quota← quota+ cpu scale
ulim interval← ulim interval − 1
cpu scale← cpu scale ∗ 2

else
ulim interval← 5
cpu scale← 1

end if
end if

end procedure

3.3 CPU PERIOD AND QUOTA RECOMMENDATION

Runtime information for both period-based and period-agnostic tracing is stored in his-

tory buffers. When the user-tunable history buffers are full, the decision-making algorithm

considers this past behavior to determine the best period and quota limits for the future.

To determine the quota–period combination, the 99th percentile of runtime and yield

time duration are calculated from both period-based and agnostic history buffers. Quota

is attributed to the runtime, while the period is determined by the summation of runtime

and yield time. The ratio of quota to period is compared for both period-bound and period-

agnostic techniques, and the lower ratio, indicating lower CPU limits, is then recommended

to be applied.

If the recommended.status CPU cgroup interface (described in Section 3.4) is set to

recommend-only mode, only the recommend.max is updated for the user to manually

make a decision based on these insights. If the status is set to auto mode, the period and

quota of the task are updated automatically as well, and tracing for the following periods is

based on this new quota and period.
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3.4 MULTICORE SUPPORT

Tasks can often spawn multiple threads simultaneously on multiple cores. Therefore, for

period-agnostic tracing, CATCloud profiles all the runqueues (RQs) separately and models

the quota and period for each. During each assign cfs rq, it goes through the entire list of

active RQs and computes cumulative runtime and period, which forms the period-agnostic

recommendation. However, as described in the last section, RQs can yield briefly for several

reasons from scheduler ticks to throttle. This can lead to some genuine RQs that are active

not being present in the list during the collation of all the RQs, resulting in incorrect CPU

limit recommendations. To mitigate this behavior, RQs are added to the active list immedi-

ately when they appear and are persisted for the entirety of a single period, after which the

contents of the active list are purged. This ensures that all active RQ behaviors are consid-

ered when a decision is made. One downside of this approach is that RQs that have been

dequeued and will not enqueue anytime soon can influence the recommendation and cause

over-allocation. However, this case is less frequent, and even in the cases of over-allocation,

the effect will be brief due to the dequeued RQ being removed from consideration within the

span of a single bandwidth period.

3.5 IMPLEMENTATION

We extend the Linux version 6.3 scheduler by introducing per-bandwidth-controller, per-

RQ tracking of runtime and yield. Within the struct cfs rq, we implement heuristics to

monitor behavior independent of time periods. Each RQ includes raw current clock values,

historical data, and the 99th percentile values of both runtime and yield. Additionally,

we extend the struct cfs bandwidth to incorporate similar statistics for period-bound

tracing mechanisms. Furthermore, we integrate variables for externally controlled interfaces

of status, history, and max values within the same structure.

3.5.1 Interface

We augment the Linux CPU cgroup interface to add userspace knobs to control CATCloud.
/sys/fs/cgroup/cpu

cpu.recommend.status

cpu.recommend.history

cpu.recommend.max

The extended controls and their definitions are as follows:

• cpu.recommend.status: Tribool value [0/1/2]
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– 0→ off : Disable CATCloud

– 1 → recommend only mode: Enable tracing, export resource recommendations

to cpu.recommend.max

– 2 → auto mode: Enable tracing, and automatically apply period and quota rec-

ommendations to cpu.max

• cpu.recommend.history:

– period-bound history size, period-agnostic history size

Size of the history buffer of runtimes for both period-bound and period-agnostic trac-

ing.

The core idea behind the history sizes is to control the aggressiveness of suggestions

for different kind of applications. If the history is set too small, then accurate runtime

behavior may not be captured, while if it is set too large, then stale past information

may taint the buffer.

• cpu.recommend.max:

– recommended quota, recommended period

Read-only file that mimics the cpu.max file format, and presents the current quota

and period recommended by CATCloud.

The cpu.recommend.max file is updated both in recommend only mode and auto mode

for the interface cpu.recommend.status: the recommendations are only suggested for

the former, while they are automatically applied to the bandwidth controller in the

latter. In the latter case, cpu.max and cpu.recommend.max will display the same

entitlement.
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CHAPTER 4: EVALUATION

4.1 METHODOLOGY

Benchmark Applications. We deploy three cloud applications: (1) Sleeping Ebizzy mi-

crobenchmark [24] to simulate webpage traffic. (2) EPFL CloudSuite [25] - web search

and media streaming benchmarks, and Hotel-Reservation from DeathStarBench [26]. These

applications are representative of real-world web-based cloud applications. These display

varied application behaviors from streaming to microservices that demonstrate stateless and

data services.

Comparison. We compare CATCloud to (1) Kubernetes CPU Vertical Pod Autoscaler

(K8s VPA), (2) Holt–Winters exponential smoothing (HW), and (3) Long Short-Term Mem-

ory (LSTM) autoscaler.

K8s VPA [7] periodically (every 15 seconds) monitors the CPU utilization and recommends

scale-up or scale-down millicore limits for the pod that it is attached to (every 300 seconds).

The autoscaler also maintains a history of past runs and recommends initial limits based on

its past run behavior.

We implement the the HW [35] and LSTM [36] strategies presented in [13] and integrate

both into a userspace autoscaler for real-time prediction. The implementation uses the

weights supplied as-is and makes a recommendation approximately every 3 minutes.

Experimental Setup. We deploy CATCloud on a patched Linux 6.3, on a testbed of x86

KVM QEMU, with 32 cores, and 32GB of memory. The benchmarks are containerized, and

are unrestricted in all resources except CPU allotment (which is autoscaled). Deployments

are performed on the original container images and are managed by Docker and Kubernetes.

K8s VPA is set up as an add-on to the pod deployment. HW, and LSTM are tested using

a custom userspace autoscaler that resides in the host, monitors the telemetry, and applies

the recommendation directly on the cgroup interface. In the case of CATCloud, we identify

the container’s cgroup to be auto-tuned, and activate tracing and recommendation using the

cpu.recommend.status knob in the cgroup file system.
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4.2 CLOUD BENCHMARKS

4.2.1 Sleeping Ebizzy Microbenchmark

Ebizzy [33] is a web traffic simulation benchmark. We used a customized variant [24] that

introduces burstiness to better model real-world behavior. Starting with the experiment

described in Section 2.3.1, we evaluate the two baselines against CATCloud (Figure 4.1 for

latency, Figure 4.2 CPU limits) to ascertain if our approach is able to attain the hypotheti-

cal CPU limits minima while sustaining maximum performance (lowest latency). K8s VPA

recommends and auto-tunes the median CPU limits to 200 millicores, while also achieving

close to the ideal latency. HW and LSTM perform poorly and require 164 and 175 millicores

respectively. Lastly CATCloud, achieves ideal latency, while the median CPU limits recom-

mended are quota = 22ms, and period = 171ms (128 millicores). CATCloud offers the same

performance characteristics of k8s while reducing the CPU limits by 56.25%. Compared to

HW and LSTM, CATCloud performs 150% better in terms of latency, with 22% and 26.8%

CPU allocation improvements, respectively.

Figure 4.1: Sleeping Ebizzy - latency (lower is better)

4.2.2 EPFL CloudSuite

CloudSuite [25] is modern benchmarking suite that evaluates popular cloud services such

as data serving, web search, and media streaming. Within CloudSuite, we evaluate two

compute-heavy benchmarks, web search and media streaming, for varying degrees of resource

utilization scale. The results are normalized to peak performance for ease of analysis, and
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Figure 4.2: Sleeping Ebizzy - CPU entitlement (lower is better)

we evaluate throughput and CPU entitlement.

For a stable running web search benchmark (Figure 4.3), K8s VPA, HW, LSTM, and

CATCloud all perform close to peak performance. However, K8s VPA, HW, and LSTM

require 20%, 8.6%, and 2.6% more CPUs, respectively, compared to CATCloud. For the

media streaming benchmark (Figure 4.4) - K8s VPA performs 152.5% worse in terms of

performance, with HW and LSTM performing at par to peak. In terms of efficiency, K8s,

HW, and LSTM require 25.3%, 62.1%, and 81.3% higher CPU entitlement, respectively,

compared to CATCloud.

Figure 4.3: EPFL CloudSuite - Web search
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Figure 4.4: EPFL CloudSuite - Media Streaming

4.2.3 Hotel Reservation Microservice-Based Application

The HotelReservation benchmark from the DeathStarBench [26] suite simulates a microservice-

based application. The workload contains many microservices that can be either indepen-

dently or collectively controlled. We choose to control the CPU entitlement recommendation

individually based on each microservice (recommend, search, reserve, etc). This allows for a

finer granularity in monitoring (for all the baselines), and avoids the tuning and tainting of

microservices that display either low or high levels of utilization. The results are normalized

for ease of analysis. The metrics of measurement here are P99 (i.e., 99th percentile) latency

and CPU entitlement. Note that results displayed are after warmup for all autoscalers. This

warmup takes 20 minutes for K8s VPA, 30 minutes for HW and LSTM. CATCloud does

not need any warmup or learning time, as it has the ability to trace information at the

millisecond scale.

If the results are viewed from the best-case recommendations after warmup from all the

autoscalers (Figure 4.5) on a stable load, CATCloud performs better than K8s (10%), HW

(11.95%) and LSTM (10.5%) in terms of latency. In terms of efficiency, K8s, HW, and LSTM

require 8%, 12.4%, 8.9% higher CPU entitlement, respectively, compared to CATCloud.

Note that CATCloud performs the same regardless of the duration it is run for and starts

making accurate decisions right from the first few milliseconds.
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Figure 4.5: DeathStarBench - Hotel Reservation

4.3 OVERHEADS

Autoscalers are widely deployed across multi-tenant clouds and data center applications.

Often, they reside on the same machine as the applications they monitor to observe behavior

and provide resource allocation recommendations. Quantifying the compute and memory

overheads of these approaches is crucial because resource-intensive autoscalers collectively

reduce the resources available in data centers for scaling and running other workloads.

To assess the overhead of userspace autoscalers, we capture the peak CPU usage and

memory usage (in kilobytes) for their process IDs. Since CATCloud is deeply integrated with

the Linux Scheduler, estimating its resource requirements can be challenging. Therefore, we

estimate the runtime utilized by CATCloud over periods to estimate CPU utilization and

estimate memory usage using static analysis of the allocated structures.

The overheads of userspace autoscalers depend on their internal algorithms rather than

the applications they monitor. However, for CATCloud, CPU and memory overheads can

vary depending on the number of runqueues spawned. We estimate the overhead of the four

autoscalers during the previously evaluated DeathStarBench workload.

As summarized in Table 4.1, the Kubernetes VPA’s simple algorithm results in low CPU

utilization of 1%. However, Kubernetes (K8s) incurs a higher memory overhead of 18 MB.

This overhead can be attributed partially to the container orchestration required by VPA and

the maintenance of a large history buffer. On the other hand, the HW and LSTM approaches

run as separate userspace processes, leading to low memory overheads of 0.482 KB and 0.502

KB, respectively. However, these approaches require substantially higher CPU resources

during peak utilization, with HW and LSTM utilizing 11% and 10.5% of CPU, respectively.
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Lastly, CATCloud exhibits a CPU overhead estimated at around 50 microseconds within

a period. In terms of memory overhead, the additional structure variables, including the

history window (default 5 entries), result in an overhead of 0.328 KB, which is comparable

to the HW and LSTM approaches

Overheads CPU Utilization Memory (KB)
K8s VPA 1.02% 18432
HW 11% 0.482
LSTM 10.5% 0.502
CATCloud ≈ 0.05% ≈ 0.328

Table 4.1: Vertical CPU autoscaling overheads

In summary, we assess CATCloud’s capacity to achieve peak performance with reduced

resource utilization compared to state-of-the-art heuristic and ML-based autoscalers. Across

various applications, CATCloud consistently maintains the lowest latency while utilizing up

to 56.25% fewer CPU resources for Sleeping-ebizzy, at minimum 2.6%, maximum of 20% less

CPU entitlement for web search, and 25.3% to 81.3% lower CPU usage for media streaming

in CloudSuite. In the case of the HotelReservation benchmark under simple load conditions,

CATCloud outperforms existing solutions by up to 10% in terms of performance and requires

up to 8% fewer CPU resources.
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CHAPTER 5: RELATED WORK

We now review related work on resource scaling for workloads in a cloud setting, with a

specific focus on CPU allocation management, as well as the techniques employed to model

application behavior to predict future application resource requirements.

Scaling of cloud applications can either be horizontal or vertical. Horizontal scaling allo-

cates additional systems, and is employed when an application’s resource requirements ex-

ceed what the current system(s) can provide. Vertical scaling allocates for resources within

the same system(s). Unlike horizontal CPU scaling, vertical CPU autoscalers adjust for

resource limits at a finer granularity, e.g., millicores or fractional vCPUs.

As briefly mentioned in in Section 2.2, vertical autoscaling techniques are broadly catego-

rized as [8] (a) rule- and threshold-based, (b) statistical models, (c) time series / machine

learning / reinforcement learning techniques, (d) queuing-theory-based, and (e) performance

aware. We describe prior works that utilize one or more of these techniques to recommended

CPU limits to applications. The comparison of these approaches with CATCloud is sum-

marized in Table 5.1

Categories Rules Statistics ML/RL Queuing Performance CATCloud
Primary Metric CPU Util, CPU Util, CPU Util, Queue SLOs Runtime In

Throttle Throttle Throttle Congestion Scheduler
Reactivity

✓ ✓ ✗ ✓ ✗ ✓

Ability to Partially tune
CPUs w/o stepping

✓ ✓ ✓ ✗ ✓ ✓

Accuracy in quota tuning
✗ ✗ ✓ ✗ ✓ ✓

quota-period combo
✗ ✗ ✗ ✗ ✗ ✓

Table 5.1: Vertical CPU autoscaling techniques comparison

5.1 RULE- AND THRESHOLD-BASED APPROACHES

Rule- and threshold-based techniques represent one of the simplest ways to decide CPU

scaling. Autoscalers may look at various surrogate metrics such as CPU utilization, throttle

count, or average response time and if the observed metric is higher or lower than a set

threshold, the CPU limit for an application is scaled accordingly. This approach is simple to

implement and displays high degrees of reactivity. The key disadvantage of using threshold-

based approaches is to identify the right threshold to set for applications. In addition, these

autoscalers need an set an inertia, cooldown, or calm period, a time during which no scaling

decisions can be made so that the workload can be stabilized [37]. While the approach of
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rules and threshold present merits of simplicity, it is often paired with other techniques to

attempt to overcome its shortcomings.

5.2 STATISTICS-BASED APPROACHES

This approach often applies statistics on the various heuristics described in Rules and

Threshold based approach. The key advantage of this approach is that aims to create a more

representative model of the application behavior by charting a distribution. The Kubernetes

Vertical Pod Autoscaler (VPA) [7] collates CPU utilization over a period of time and uses

a combination of thresholds and 90th/95th percentile to recommend millicores. Similarly,

RUBAS [11] uses the the sum of the median and the deviation of CPU utilization observations

to recommend limits. Statistical approaches while improve accuracy, also largely experience

similar pitfalls as to rules and threshold based approaches. Distinct statistical approaches

may be suited better for different workload trends and classifying workload trends can prove

challenging for simple statistical workloads.

5.3 MACHINE LEARNING APPROACHES

In an attempt to accurately model application runtime behavior for future recommenda-

tions, autoscalers use neural network based models to train on the same surrogate metrics

to derive a pattern from them. Autopilot [3] employs moving window predictors and rec-

ommends based on machine learning model. CPU usage prediction techniques have also

been designed [13] using Holt–Winters exponential smoothing (HW) and Long Short-Term

Memory (LSTM) methods. Sinan [38] uses ML to model for SLO violations, while FIRM

[12] uses reinforcement learning to not only react to SLO violations but also identify key

microservices. Autothrottle [14] uses the throttle heuristics to scale for CPUs, and uses re-

inforcement learning to ascertain targets based on SLOs. Most ML- and RL-based solutions

boast improvements in accuracy of tuning for the CPU bandwidth quota. These approaches,

however, suffer large overheads in terms of training and inferences, which leads to lower re-

activity. Scalers such as Autothrottle require 12 hours of warm-up period to train its model,

during which SLO violations are permitted.
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5.4 QUEUING THEORY

The use of queuing theory is an approach that avoids the use of commonly used surrogate

metrics such as utilization and throttle. The core idea of this approach is to identify conges-

tion in a queue as and when requests are scheduled on to it. A queue is said to be congested

if the number outgoing response cannot be serviced faster than the incoming requests. The

advantage of this approach is the simplicity of technique in identifying bottlenecks which

leads to high degrees of reactivity in dynamic workloads. Shenango [17] and Caladan [15]

make use of this technique to build a CPU scheduler that achieves better performance at

the microsecond scale. Solutions like these however suffer from two major downsides. First,

they require a redesign of how schedulers observe and monitor tasks which can often be

impractical to integrate in existing systems. Second, these solutions lack precision in terms

of recommendations of CPUs as they are only able to identify congestion but not ascertain

the precise ratio of CPU bandwidth needed to alleviate the congestion. These solutions

therefore do not recommend CPUs in terms of partial cores which is a key requirement for

the multi-tenant cloud.

5.5 PERFORMANCE-AWARE MODELS

Performance aware models focus on the performance metrics of latency, throughput and

other SLO requirements of the workload as the basis of their surrogate metrics. Performance

aware models may also often overlap with other established techniques such as FIRM [12],

Sinan [38], and Autothrottle [14], which view SLO violations along with other metrics to

learn the behavior of the application. Cilantro [18] framework is designed to minimize

SLO violations by reallocating a fixed set of resources. Cilantro however, is not directly

comparable as it is built to optimize utilization for a fixed cluster and not the elastic cloud.

Aside from all the merits and downsides discussed for related landscape of autoscaling

research, all the approaches do not acknowledge tuning for the quota-period duo in tan-

dem and rather either recommend entire CPUs, or millicores which only tune for quota.

Autoscalers cannot recommend accurate CPU bandwidth required due to their inability to

observe in the userspace. This has led to incorrect limits set for CPUs, which translates to

impacts on performance, efficiency and higher costs for the cloud application. CATCloud,

does not rely on these surrogates and rather implements light weight extensions to the OS

to extract runtime information from the scheduler. This approach significantly reduces the

need for models required to analyze and predict trends making CATCloud lightweight and

highly reactive to dynamic load changes.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

In this thesis, we studied the various factors plaguing vertical CPU autoscaling in the

cloud application landscape, including the core problem of the semantic gap between the

OS and cloud interfaces used for limiting CPU resources. It was asserted that modern

CPU autoscalers tuned for CPU resources using surrogate metrics of CPU utilization, queue

lengths, throttle and, SLOs incorrectly, as they operated in userspace and could not ascertain

true application runtime behavior. Lastly we show that recommendations from the state of

the art can lead to incorrect CPU limit recommendations along with performance regressions.

We introduce CATCloud, a state-of-the-art vertical CPU autoscaler that operates directly

within the OS. It minimally instruments the scheduler to extract run and yield characteris-

tics to model the application behavior. Operating in millisecond timescales, it uses simple

techniques to recommend CPU limits and offers the ability to tune both quota and period

of the CPU bandwidth controller. This unique approach enables CATCloud to optimize

performance by achieving high degrees of performance for the lower CPU limits, thereby

reducing operating costs for cloud-based applications.

6.2 FUTURE WORK

6.2.1 Evaluation of Emerging Applications

With the provision of an in-kernel mechanism to trace application behavior, new applica-

tions as well as workloads beyond the cloud can attempt to utilize and scale efficiently. One

such potential application is serverless computing. Serverless workloads typically exhibit

highly bursty behavior with shorter time-spans, which most modern autoscaling solutions

do not cater to. CATCloud with its light-weight tracing and high reactivity properties may

cater well for workloads like these. Future work can aim to evaluate and optimize CATCloud

for these applications.

6.2.2 Evaluation of Emerging Autoscaling Techniques

Modern autoscalers are beginning to recognize the drawbacks of their computation over-

heads, leading to low reactivity and poorer performance. To address this, solutions such as
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using lightweight reinforcement learning (RL) techniques, as described in Autothrottle [14],

pair threshold-based techniques with RL to achieve higher reactivity. In the future, we aim

to compare CATCloud to these solutions to assess its efficacy.

6.2.3 Beyond Autotuning Recommendations

CATCloud, at its core, is a mechanism that accurately traces application runtime behavior

in the scheduler. However, this knowledge can potentially be utilized to make decisions for

task scheduling as well. Currently, the scheduler employs a suite of simple techniques to

determine which core and when a task should be scheduled. With the analysis of a task’s

admittance, runtime, and yield statistics, we can attempt to make simple predictions about

the task and schedule tasks to potentially achieve better performance and efficiency.
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