
© 2024 Anna Mazhar

UNDERSTANDING AND IMPROVING THE FIDELITY OF LOCAL DEVELOPER
TESTING FOR CLOUD-BASED SOFTWARE

BY

ANNA MAZHAR

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2024

Urbana, Illinois

Adviser:

Assistant Professor Tianyin Xu

ABSTRACT

Modern software projects have been progressing towards a cloud-based, serverless pro-

gramming model, where software applications use cloud services as important components.

Such cloud-based programming practice greatly simplifies software development by harvest-

ing cloud benefits (e.g., high availability and elasticity). However, it imposes significant

challenges for software testing and analysis, due to the opaqueness of cloud backends and

the monetary cost of invoking cloud services for continuous integration and deployment.

As a result, software developers commonly use cloud emulators for offline development and

testing, before online testing and deployment.

This thesis presents a systematic analysis of cloud emulators from the perspective of cloud-

based software testing. Our goal is to (1) understand the discrepancies introduced by cloud

emulation with regard to software quality assurance and deployment safety and (2) address

inevitable gaps between emulated and real cloud services. The analysis results are concern-

ing. Among 255 APIs of five cloud services from Azure and Amazon Web Services (AWS),

we detected discrepant behavior between the emulated and real services in 94 (37%) of the

APIs. These discrepancies lead to inconsistent testing results, threatening deployment safety,

introducing false alarms, and creating debuggability issues. The root causes are diverse, in-

cluding accidental implementation defects and essential emulation challenges. We discuss

potential solutions and develop a practical mitigation technique to address discrepancies of

cloud emulators for software testing.

ii

”Dedicated with love to my parents and siblings, whose support is immeasurable; to my

husband, who stands by me; and to my friends, who walk this journey with me”

iii

ACKNOWLEDGMENTS

I would like to begin by expressing my gratitude to those who have supported me through-

out the process of completing this thesis. Firstly, I would like to extend my deepest thanks

to my advisor, Professor Tianyin Xu. When I joined UIUC, I was filled with self-doubt and

was hesitant about leading a project, but Tianyin strengthened my confidence and entrusted

me with a project in collaboration with Microsoft Research. His belief in my capabilities

was a pivotal force in my success. He consistently ensured that he fulfilled his role by pro-

viding all necessary opportunities. Tianyin has a very unique relationship with his students;

I deeply admire him for building a relationship that made me comfortable to voice all my

concerns and feedback, which was invaluable during moments of uncertainty and reservation.

His active guidance and high standards in academic research have significantly enhanced my

learning, setting a high benchmark for my future endeavors.

I would like to thank all the contributors of the Cloudtest project whose efforts led to a

successful conference paper submission. I am grateful to Dr. Suman Nath from Microsoft

Research, whose insightful feedback was instrumental in shaping the project. I am immensely

grateful to William Zheng and Saad Sher Alam for their dedication, hard work and invaluable

contributions.

I had a wonderful time at UIUC, enjoying memorable experiences, engaging in thought-

provoking discussions, and forming lasting relationships. This brings me to thank all my

colleagues in the lab. I would especially like to extend my appreciation to my xlab peers

— Yinfang Chen, Xudong Sun, and Hao Lin — for their invaluable assistance in reviewing

my work and offering guidance. Special thanks go to my good friend, Talha Waheed, whose

selfless effort spent chasing an impossible deadline is something for which I will be eternally

grateful.

I am also thankful to my undergraduate advisors at LUMS, Dr. Ihsan Ayyub Qazi and

Dr. Zafar Ayyub Qazi, who nurtured my initial steps into research and laid the foundation

for my academic pursuits. Their advice continues to guide me.

Lastly, and most importantly, I owe a profound debt of gratitude to my family. I am

grateful to my parents for raising me to be a confident and strong woman. Despite the

challenges for a woman in the culture I was born into, they enabled me to pursue every

opportunity. I would also like to express my deepest gratitude to my husband, my sanctuary.

I met him at UIUC, and it did not take long for me to realize that he is a significant part of

my life. Thank you for being my anchor during times of weakness.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Contribution . 4

CHAPTER 2 BACKGROUND . 5
2.1 Cloud Services and Their APIs . 5
2.2 Cloud Emulator . 6

CHAPTER 3 METHODOLOGY . 8
3.1 Studied Emulators and Services . 8
3.2 Test Workloads . 8

CHAPTER 4 DISCREPANCY CHARACTERISTICS 11
4.1 Prevalence of Discrepancies . 11
4.2 Discrepancy Manifestations . 12
4.3 Impact on Real-World Tests . 13

CHAPTER 5 ROOT CAUSE ANALYSIS . 16
5.1 Defects in Existing Specifications . 16
5.2 Unspecified Behavior . 18
5.3 Implementation Defects . 20

CHAPTER 6 DISCREPANCY MITIGATION: A DISCUSSION 22
6.1 An Active Role of Cloud Service Providers 22
6.2 Formal Models as Emulators . 22
6.3 “POSIX” for Cloud Service APIs . 23
6.4 Economic Cloud Services for Testing . 23
6.5 Hybrid Cloud-Emulator Testing . 24

CHAPTER 7 HYBRID CLOUD-EMULATOR TESTING 25
7.1 Policies . 25

CHAPTER 8 THREATS TO VALIDITY . 29

CHAPTER 9 RELATED WORK . 30

CHAPTER 10 CONCLUSION . 31

REFERENCES . 32

v

CHAPTER 1: INTRODUCTION

1.1 MOTIVATION

Modern software development has been progressing towards a cloud-based, serverless pro-

gramming model, where software applications increasingly use cloud services as important

components for storage, database, data processing, etc. Such cloud-based programming

practice greatly simplifies software development and deployment (e.g., applications no longer

needs to purchase or manage large-scale infrastructue) and helps by harvesting cloud ben-

efits (e.g., high availability and elasticity) and software deployment by reducing the cost of

purchasing and managing large-scale systems and infrastructures. Today, all major cloud

providers offer various services to support cloud-based software [1, 2, 3]. These cloud services

are widely used, e.g., the .NET SDK of Azure Storage services alone has tens of thousands

of downloads daily [4].

Despite its benefits, cloud-based programming imposes significant challenges to software

testing and analysis due to the opaqueness of cloud backends and the monetary cost of

invoking cloud services during continuous integration and deployment (CI/CD). First, unlike

other types of dependencies like libraries, which are linked as a part of the software program,

cloud services are external to cloud-based software (invoked via REST API calls), and their

backend implementations are opaque. It is hard to reason about the correctness of cloud-

based software independently, especially its end-to-end behavior. For example, regressions

of cloud backend implementations [5] can directly affect dependent software that invokes

corresponding APIs.

Second, testing cloud-based software with cloud services can be costly, especially with

CI/CD. Cloud services charge users based on the number of API invocations, storage capac-

ity, and additional features like transaction support [6, 7]. So, extensive testing on the cloud

is expensive. For example, the test suite of Orleans (a cloud-based software project) issues

120K+ Azure API calls. Under CI/CD, tests are continuously invoked [8, 9]. We expect

even higher costs in the near future as cloud services are increasingly adopted by software

projects and new tests are being added.

Today, developers commonly use cloud emulators for cloud-based software development

and testing before online testing and deployment. Nine out of ten projects we studied

(Chapter 3) use emulators for CI tests. A cloud emulator offers local simulation of large,

complex cloud services. For example, a fault-tolerant, persistent key-value storage service can

be emulated by a centralized, in-memory hash table [10]. Cloud emulators enable developers

1

Emulator

Cloud

400

Blob created
successfully

Client

Deployment
Safety Violation

201

BlockBlob_Upload(Source_URL)

“One of the HTTP headers is
not in the correct format”

Emulator

Cloud

200

Incompatible location
constraint

Client

False Alarms
400

PutBucketInventoryConfiguration(Bucket, ID)

Request accepted

Emulator

Cloud

400

Exception while calling
s3.CopyObject

Client

Debuggability
Issues

500

CopyObject(Bucket, CopySource, Key)

“Invalid copy source object
key”

Root Cause: Emulator (Azurite) lacks URL format validation for
this API, resulting in a successful response to an invalid request.

Root Cause: Emulator (LocalStack) inaccurately simulates S3's
regional access rules, causing error response to a valid request.

Root Cause: Emulator (LocalStack) fails to handle exceptions
properly when invalid object keys are encountered.

Azure Blob AWS S3

AWS S3

(a) Deployment safety violation

Emulator

Cloud

400

Blob created
successfully

Client

Deployment
Safety Violation

200

BlockBlob_Upload(Source_URL)

“One of the HTTP headers is
not in the correct format”

Emulator

Cloud

200

Incompatible location
constraint

Client

False Alarms
400

PutBucketInventoryConfiguration(Bucket, ID)

Request accepted

Emulator

Cloud

400

Exception while calling
s3.CopyObject

Client

Debuggability
Issues

500

CopyObject(Bucket, CopySource, Key)

“Invalid copy source object
key”

Root Cause: Emulator (Azurite) lacks URL format validation for
this API, resulting in a successful response to an invalid request.

Root Cause: Emulator (LocalStack) inaccurately simulates S3's
regional access rules, causing error response to a valid request.

Root Cause: Emulator (LocalStack) fails to handle exceptions
properly when invalid object keys are encountered.

Azure Blob AWS S3

AWS S3

(b) False alarm

Emulator

Cloud

400

Blob created
successfully

Client

Deployment
Safety Violation

200

BlockBlob_Upload(Source_URL)

“One of the HTTP headers is
not in the correct format”

Emulator

Cloud

200

Incompatible location
constraint

Client

False Alarms
400

PutBucketInventoryConfiguration(Bucket, ID)

Request accepted

Emulator

Cloud

400

Exception while calling
s3.CopyObject

Client

Debuggability
Issues

500

CopyObject(Bucket, CopySource, Key)

“Invalid copy source object
key”

Root Cause: Emulator (Azurite) lacks URL format validation for
this API, resulting in a successful response to an invalid request.

Root Cause: Emulator (LocalStack) inaccurately simulates S3's
regional access rules, causing error response to a valid request.

Root Cause: Emulator (LocalStack) fails to handle exceptions
properly when invalid object keys are encountered.

Azure Blob AWS S3

AWS S3

(c) Debuggability issue

Figure 1.1: Implications of discrepancies between cloud emulators and cloud services with
regards to software testing.

to conduct prompt, cost-efficient offline testing and debugging [11]. They are transparent to

software under test—using emulators requires no code change but a simple setup to connect

to emulated services. Cloud emulators are typically developed or supported by cloud service

providers. For example, Microsoft provides emulators for Azure services, e.g., Azurite [12]

for Azure Storage Services [13].

Ideally, emulators should behave the same as real cloud services so that software quality

assurance, like testing, can rely on emulators. However, it is prohibitively difficult for em-

ulators to achieve perfect fidelity (considering the complexity, scale, and distributed nature

of cloud services). In practice, emulators implement specifications of cloud service APIs

(Chapter 2). However, as shown in our study (Chapter 5.1), specifications of today’s cloud

services and their APIs are often incomplete and limited. Without formal enforcement of

emulator compliance with real cloud service, it is unclear how much fidelity today’s emula-

tors could realize. We use the term discrepancies to refer to emulator behavior that deviates

from expected behavior of cloud services. We observed that discrepancies are constantly

reported to affect testing of cloud-based software [14, 15, 16, 17].

In this thesis, we aim to breakdown the fidelity of cloud emulatos and eventually, bridge

the gap between cloud emulators and cloud services, aiming to elevate the precision of cloud

emulation and its consequential benefits on the quality of cloud-based software and the en-

2

hancement of developer experience. Specifically, we meticulously employ differential testing

on two renowned cloud emulators—Azurite [12] for Azure Storage services (encompassing

Blob, Table, and Queue) and LocalStack [18] for Amazon Web Services (including S3 and

DynamoDB)—to spotlight the nuances in behavior between emulated and actual cloud en-

vironments. By documenting and scrutinizing these variances, we delve into the underlying

root cause behind each discrepancy1.

Our analysis has yielded results that are very concerning. Among 255 APIs from five cloud

services, including Azure and Amazon Web Services (AWS), we detected discrepant behavior

between the emulated and real services in 94 (37%) of the APIs. These discrepancies have

profound implications for deployment safety and developer experience:

1. Code that passes tests with emulators may fail in production with real cloud services.

2. Test failures with emulators can be false alarms.

3. Debugging with emulators can be challenging due to discrepant feedback (e.g., error

codes and messages).

Figure 1.1 shows three examples we discovered in our analysis. We further analyze ten

open-source cloud-based software projects; five of them are affected by discrepancies—some

of their tests have inconsistent results when running on the cloud emulator versus the cloud

services. In one project (Durabletask [19]), 78% of the tests are affected.

The root causes of discrepancies are diverse but can be categorized into (1) incompleteness

of existing specifications, (2) unspecified behavior, and (3) implementation defects (such as

bugs and missing features). While these root causes reflect essential software engineering

challenges, we believe that many discrepancies could be addressed by more comprehensive

testing and more systematic specification. We discuss potential solutions and mitigations,

ranging from practical formal methods to new system-level support (Chapter 6).

We explore hybrid cloud-emulator testing as a short-term mitigation and develop a simple

tool named Et to selectively run tests on emulators versus cloud services, based on whether

the test invokes discrepant APIs (Chapter 7). Et offers different policies depending on

whether discrepant API information is known as apriori or being determined via in-situ

analysis. Through Et, we demonstrate that hybrid testing not only yields considerable cost

savings compared to running all tests with cloud services.

1As a first step, this thesis focuses on basic functional correctness, instead of performance or fault tolerance
(e.g., data consistency and crash consistency) which are beyond the expectation of local emulation.

3

1.2 CONTRIBUTION

This thesis makes the following main contributions:

� An in-depth exploration of the challenges encountered in testing cloud-based appli-

cations using cloud emulators. This discussion sheds light on the obstacles that the

developers face in ensuring the reliability of cloud software.

� A comprehensive analysis that scrutinizes the discrepancies between actual cloud ser-

vices and their emulators. This analysis delves into the characteristics of these dis-

crepancies, identifies their underlying causes, and evaluates their impact on software

testing.

� A thorough discussion on potential solutions for addressing these discrepancies includ-

ing a mitigation tool designed to selectively run software tests on the emulator while

achieving a balance between reliability and cost-saving in the testing process.

� A detailed account of the bugs that were discovered during the analysis and reported

to the developers. So far, six of these bugs have been confirmed and five have been

fixed.

� Our research artifact is available for public access at GitHub repository: https://

github.com/team-cloudtest/cloudtest.

4

https://github.com/team-cloudtest/cloudtest
https://github.com/team-cloudtest/cloudtest

CHAPTER 2: BACKGROUND

2.1 CLOUD SERVICES AND THEIR APIS

Modern cloud services are programmatically accessed via REST APIs on top of HTTP(S).

A service typically exposes several tens of REST APIs. REST APIs use HTTP requests along

with URIs (Uniform Resource Identifies) for accessing resources on the cloud. It utilises

HTTP methods (POST, GET, PUT, DELETE) to perform CRUD operations (Create, Read,

Update, Delete) on the resources exposed by the cloud service. For example, AWS S3 exposes

97 REST APIs [20], and Azure Blob service exposes 72 REST APIs [21]. To ease developer

programming, cloud services provide Software Development Kits (SDKs) with high-level,

language-specific library APIs. Typically, SDK APIs wrap the raw REST APIs, and for a

service, more SDK APIs are built on top of the REST APIs. (e.g., S3 Python SDK has 108

APIs [22] and the Python SDK of Azure Blob has 81 APIs [23], respectively). Most existing

cloud-based applications invoke SDK APIs to interact with the cloud services instead of

calling raw REST APIs. Figure 2.1 shows an example of creating an Azure Blob Container

using REST API and its equivalent SDK method in Python.

API Specification. The REST APIs are commonly described using specification lan-

guages such as OpenAPI Specification [24]. The specification describes the API version,

Request Syntax:

PUT https :// myaccount.blob.core.windows.net/mycontainer?restype=container

HTTP /1.1

Request Headers:

x-ms -version: 2011 -08 -18

x-ms -date: Sun , 25 Sep 2011 22:50:32 GMT

x-ms -meta -Name: StorageSample

Authorization: SharedKey myaccount :{key}

Listing 2.1: REST API Request

def create_container(self): from azure.storage.blob import BlobServiceClient

blob_service_client =

BlobServiceClient.from_connection_string(self.connection_string)

try: self.blob_service_client.create_container(self.container_name) except

Exception as e: print(e)

Listing 2.2: SDK Method in Python

Figure 2.1: REST API call to create an Azure Blob Container and its equivalent SDK
method in Python.

5

request URI, content type, input parameter, output format, error code and messages, etc.

The API specifications are used by cloud emulators (Chapter 2.2) to develop emulated APIs.

We find that the API specifications are often incomplete. For example, the OpenAPI spec-

ification of Azure Blob services only specifies value constraints (including data types) for 63

(59%) of 107 parameters across all Azure Blob REST APIs. Moreover, all the specifications

are for data type, value range, and default value, without deeper behavior semantics.

SDKs often implement additional checks to constrain parameter values of API calls over

the API specifications. Hence, parameter values that can satisfy the API specification can

be rejected by the SDK checks to prevent erroneous and malformed REST API calls from

the applications.

Pricing. Cloud services are expensive. Despite different pricing models of cloud services,

pricing typically depends on the amount of data to be stored and the cost of operations.

Take Azure Blob service as an example. The price for 100TB/month ranges from $91–

$1,545, depending on the access tiers [6]. Azure Blob service then charges for read, write,

iterative-read, and iterative-write operations separately [25]. For example, the price for

write operations varies from $0.0228–$0.13 per 10,000 writes, depending on the tier. Other

features, such as redundancy [26, 27, 28], further increase the cost.

With the current pricing model, testing cloud-based software incurs non-trivial monetary

costs. To demonstrate the cost, we run the tests of Orleans (a cloud-based software project)

with the Azure Storage services with standard configuration. Orleans has 189 tests that issue

120K+ Azure API calls over 23 unique APIs. We run these tests 500 times, which costs

$74.5 US dollars (we expect 500 times to be a reasonable time in CI/CD of large software

projects [29, 30]). Moreover, as cloud and serverless computing trends emerge, applications

are expected to increasingly utilize cloud service APIs, leading to significantly higher testing

costs.

2.2 CLOUD EMULATOR

To reduce cost and get prompt feedback, developers commonly use cloud emulators for

offline development and testing. Developers also commonly use emulators to debug produc-

tion problems. Emulators run as local daemons that simulate cloud services. Cloud-based

software programs transparently interact with the emulator like how they interact with cloud

services—using an emulator only needs a simple configuration that switches the connection

from a cloud handle to localhost listened to by the emulator; no code change is needed.

6

Most cloud services provide developers with official emulators. For example, Microsoft

provides emulators for Azure Storage and CosmosDB, and AWS provides emulators for Dy-

namoDB and Step Functions. Moreover, third-party emulators are developed. One successful

example is LocalStack [18], which emulates many AWS services such as S3 and DynamoDB.

Compared with official emulators, LocalStack provides a more usable integrated develop-

ment environment [31]. Our study deliberately selects an official emulator (Azurite) and a

third-party emulator (LocalStack).

For compliance with the target cloud services, cloud emulators are commonly built on

top of API specifications. For example, Azurite uses AutoRest [32] to generate stub code

from the OpenAPI specification of Azure Storage services [33]. LocalStack employs weekly

GitHub Action Checks to detect any changes of the API specifications of AWS [34].

7

CHAPTER 3: METHODOLOGY

We use differential testing to discover discrepancies between cloud emulators and real

cloud services. Basically, we issue the same REST API calls to the emulated service and the

cloud service independently and check the resulting behavior, including the return values,

error codes or messages (if any), and states of key data objects such as blobs and containers.

Any inconsistent behavior is a potential discrepancy. Once we confirm a discrepancy, we

debug it and localize the source-code location in the emulator that causes the discrepancies.

3.1 STUDIED EMULATORS AND SERVICES

Emulators. We choose to study Azurite [12] and LocalStack [18] because they represent

state-of-the-art emulators and are widely used. Azurite represents the official emulators

provided by cloud service providers while LocalStack represents third-party emulators de-

veloped by companies of cloud-based integrated programming environments. Importantly,

both emulators are open-sourced, which enables us to debug discovered discrepancies. Ta-

ble 3.1 lists the information of the two emulators. Note that LocalStack supports 70+ AWS

services [31]; Table 3.1 only lists services studied in this thesis.

Services. We select five widely used cloud services: Blob, Queue, and Table services

from the Azure Storage services and S3 and DynamoDB from AWS. All these services are

supported by the corresponding emulators (Table 3.1).

3.2 TEST WORKLOADS

We use two complementary test workloads. First, we leverage API fuzzing to generate

sequences of REST API calls. Each API call sequence is a test workload and the workloads

cover all the REST APIs provided by the target cloud services. The API fuzzing workloads

help us understand the discrepancies in each REST API and characterize a broad range of

APIs.

Table 3.1: Emulators and cloud services studied in this thesis

Emulator Service LOC #Commits Developer

Azurite Blob, Queue, Table 2,591K 1,034 Official
LocalStack S3, DynamoDB 449K 5,527 Third-party

8

Note that the fuzzing is done against SDK APIs, not raw REST APIs. In fact, we started

from REST API fuzzing using RESTler [35]. However, we found that certain discrepancies

are not possible if the software under test uses SDKs which have additional checks (Chap-

ter 2). In practice, developers rarely craft REST API calls directly but mostly call SDK

APIs. Since our goal is to understand discrepancies in the context of software development,

rather than security analysis [35, 36], we choose to fuzz SDK APIs. Basically, we focus on

analyzing discrepancies faced by cloud-based software developers.

We also use the test suites of existing cloud-based software projects as the test workloads.

Many tests invoke cloud service APIs. These tests help understand the impact of discrep-

ancies on testing real-world software projects, which is complementary to fuzzing from the

API perspective.

3.2.1 Fuzzing SDK APIs.

We implemented a grammar-aware API fuzzer to generate diverse SDK API calls as test

workloads. We start from default or predefined parameter values for each SDK API and the

fuzzer mutates parameter values based on value constraints defined in OpenAPI specifica-

tions of REST APIs (the “grammar”). To do so, we establish the mapping from the parame-

ters of REST APIs to the ones of corresponding SDK APIs; the mapping process is straight-

forward because SDK APIs are mostly wrappers over raw REST APIs. The grammar-based

mutation ensures that generated SDK API calls are mostly valid and can reach emulated or

real cloud services. Our fuzzer implements the fuzzing approach of RESTler [35]: (1) infer-

ring producer-consumer dependencies among request types (e.g., “API Y should be called

after API X” because Y takes as an input a resource-ID produced by X) and (2) taking

dynamic feedback from responses during testing (e.g., learning that “a API Y called after a

sequence X → Y is refused” and avoiding this combination in the future).

We monitor the response of each API call. If inconsistent responses are returned by the

emulator and the cloud services (including both HTTP response status code like 200 and

404, as well as error code and message if the response returns an error), we capture and

record the discrepancy and abort the test. Otherwise, we progress to the next API call

in the generated sequence. We also check the key data objects before and after the API

calls (e.g., the number of blobs for Azure Blob Services) to capture discrepancies with no

immediately observable manifestation, such as resource leaks (Chapter 4.2). Those checks

are service-specific.

Due to resource constraints (limited cloud education credits), we were only able to conduct

our analysis using the Python SDKs of the studied cloud services.

9

Table 3.2: Cloud-based software projects. “#Tests” refers to tests that invoke cloud services;
“#APIs” refers to unique APIs.

Project Services LOC #Tests #APIs

Alpakka Queue 22.5K 9 6
AttachmentPlugin Blob 1.9K 23 7
DurableTask Blob, Queue, Table 59.0K 101 30
IdentityAzureTable Table 85.7K 51 6
Insights Blob, Queue, Table 144.8K 171 20
IronPigeon Blob 37.8K 7 8
Orleans All services but S3 204.8k 247 35
ServiceStack DynamoDB, S3 756.2K 187 15
Sleet Blob, S3 21.2K 22 21
Streamstone Table 4.6K 75 7

3.2.2 Using existing tests.

To understand the impact of discrepancies on real-world software projects, we perform

differential testing using test suites of ten open-source projects that use the studied cloud

services (Table 3.2). These projects are mature and widely used, developed by companies

like Microsoft (Orleans, DurableTask), NuGet (Insights), and PetaBridge (Alpakka), and

are actively maintained (using recent versions of APIs). We make sure to select applications

that are actively maintained.

In our study, we select tests that interact with the cloud services. The selection is done

by monitoring the HTTP traffic of each test in a reference run using the emulator. We

check whether a test outputs inconsistent results when running with emulators versus cloud

services. Table 3.2 shows the number of tests that invoke cloud services and the number of

unique APIs invoked by the test suite of each project.

10

https://github.com/akkadotnet/Alpakka
https://github.com/SeanFeldman/ServiceBus.AttachmentPlugin
https://github.com/Azure/durabletask
https://github.com/dlmelendez/identityazuretable
https://github.com/NuGet/Insights
https://github.com/AArnott/IronPigeon
https://github.com/dotnet/orleans
https://github.com/ServiceStack/ServiceStack
https://github.com/emgarten/Sleet
https://github.com/yevhen/Streamstone

CHAPTER 4: DISCREPANCY CHARACTERISTICS

4.1 PREVALENCE OF DISCREPANCIES

Our analysis shows that discrepancies are prevalent in the two cloud emulators (Azurite

and LocalStack). The five cloud services we studied expose a total of 255 APIs. Among

these 255 APIs, our API fuzzer (Chapter 3) discovered discrepancies in 94 (37%). Table 4.1

shows the number of discrepant APIs of each service. Both Azurite and LocalStack have

a considerable percentage of discrepant APIs among all the APIs they support and across

the emulated services, showing that discrepancies are not specific to one emulator imple-

mentation or specific to APIs of a particular service. Rather, emulator fidelity is a common

challenge.

These discrepancies have different implications as exemplified in Figure 1.1, including (1)

deployment safety violations (1.1a), (2) false alarms (1.1b), and (3) debuggability issues

(1.1c). Table 4.2 categorizes the implications of the total 98 discrepancies discovered in the

94 discrepant APIs (one discrepancy can have different implications). Here, deployment

safety violations refer to cases where the same API call returns success on the emulator,

but returns error on the cloud service; false alarms refer to cases where the same API call

returns error from the emulator, but success from the real service. Debuggability issues refer

to cases where the same API call returns different responses from the emulator and the cloud

service, making it hard to debug the software. The results show diverse implications of these

discrepancies. We measure their impacts on real-world test cases in Chapter 4.3.

Surprisingly, we find that 37 of the 94 discrepant APIs are certified by the emulators

and considered “fully supported.” LocalStack adopts five methods to certify emulated

APIs [37, 38], including both internal and external integration tests (e.g., snapshot tests [39]).

Despite extensive efforts, 22 (out of 60) discrepant APIs from LocalStack are certified by all

five testing methods, while 39 (out of 60) discrepant APIs are certified with at least one test

method. On the other hand, Azurite’s baseline is to have coverage from atleast 1 unit/in-

tegration test for each newly implemented API[40]. They provide a list of implemented

and unimplemented features and APIs based on their testing. We found that 15 out of 34

discrepant APIs from Azurite are certified as fully supported by Azurite [41]. The results

demonstrate the difficulties that current testing-based methodologies encounter in identify-

ing inconsistencies, highlighting the need for more comprehensive strategies to ensure high

fidelity APIs.

11

Table 4.1: Discrepant APIs with respect to the cloud services

Services Emulator Total APIs Discrepant APIs

Azure Blob Azurite 72 31 (43%)
Azure Table Azurite 15 1 (7%)
Azure Queue Azurite 18 2 (11%)
AWS S3 LocalStack 97 33 (34%)
AWS DynamoDB LocalStack 53 27 (51%)
Total 255 94 (37%)

Table 4.2: Impacts of discrepancies across emulators.

Impact Azurite/Azure LocalStack/AWS Total

Deployment safety 13 22 35
False alarms 12 33 45
Debuggability issues 9 9 18
Total 34 64 98

Key Finding: Discrepancies between modern cloud emulators and real cloud services are

prevalent (discovered in 37% of APIs on average and even in certified APIs). The implications

of discrepancies include unsafe deployment, false alarms, and debuggability issues.

Figure 4.1: Key findings of the practical impact of discrepancies.

4.2 DISCREPANCY MANIFESTATIONS

A notable observation is that discrepancies are manifested through not only inconsistent

responses to the API calls, but also inconsistent remote, cloud-side states. The latter creates

significant challenges to observe and understand discrepancies, especially with short-running

test cases. We implemented domain-specific checks to compare the remote states maintained

by the emulators and the corresponding cloud services (Chapter 3). For example, we check

the states of each container (maintained by the emulators and cloud services) before and

after each container-related API call.

Seven discrepancies have the same response to API calls but create inconsistent remote

states. For example, when invoking an Azure Blob API, “Container Restore [42]”, to recover

an early deleted container, both Azurite and the Azure Blob service return the same response;

however, the Blob service faithfully restores the deleted container, while Azurite creates a

new empty container. Such discrepancies may not be easy to capture without fine-grained

12

checks.

We also find 44 discrepancies that cause inconsistent responses and inconsistent remote

states. For example, when calling a Blob API “BlockBlob StageBlockFromURL” [43] with

an invalid URL, Azurite succeeds by creating a new blob, while the Blob service fails with

InvalidHeaderValue.

Key Finding: Discrepancies that only manifested via inconsistent remote states are hard

to observe; fine-grained state checks are needed to capture those silent discrepancies.

Figure 4.2: Key findings of the challenges in observing discrepancies.

4.3 IMPACT ON REAL-WORLD TESTS

We measure the impacts of discrepancies on real-world test suites of cloud-based software

projects (Table 3.2). The impact is reflected by inconsistent test results when running the

same test with the emulator versus the cloud service. We call a test that invokes discrepant

APIs a discrepant test; a discrepant test may or may not output discrepant results. Among

the ten projects we evaluated (Table 3.2), we discovered discrepant test results in 50% of

them (five projects), as shown in Table 4.3.

Different projects are affected at different levels, ranging from 1% to 100% of tests that invoke

cloud services. The variation is attributed to the usage characteristics of the cloud service

APIs. Specifically, though we discovered a large number of discrepant APIs (Chapter 4.1),

not all these APIs are equally invoked by the test cases. Figure 4.3 depicts the popularity of

Table_Delete: 286 tests
BlockBlob_Upload: 190 tests

Queue_Delete: 157 tests
Container_Delete: 142 tests
Blob_AcquireLease: 128 tests

62 APIs are not used by any tests

Figure 4.3: Popularity of Azure Storage APIs, measured by the number of tests that use an
API across all the studied projects.

13

Table 4.3: Software tests that are affected by discrepancies.

Project
Discrepant # Discrepant Impact

Results Tests Safety Vio. False Alarms

Alpakka 9 (100%) 9 9 0
DurableTask 79 (78%) 101 79 0
Orleans 8 (9%) 82 5 3
ServiceStack 3 (2%) 72 2 1
Streamstone 1 (1%) 75 1 0
Total 100 339 98 4

all Azure Storage APIs (105 in total) invoked by all the tests of the studied projects, where

discrepant APIs are marked in red. Popularity is measured by the number of tests that use

the API. Among the 105 APIs, only 43 of them are invoked by at least one test. Only 12

APIs (out of 43) involved in the tests are discrepant (while 34 discrepant APIs in total are

discovered for Azure; see Table 4.1).

Note that the number of discrepant tests is much larger than the number of discrepant test

results manifested (Table 4.1). The reason is that many discrepant tests are only manifested

when certain parameter values are used.

The results have two important implications. First, addressing discrepancies can leverage

API usage characteristics in the field to prioritize widely used APIs. Oftentimes, fixing

discrepancies of a few APIs can eliminate a large number of discrepant tests or test results.

We take all the tests using Azure services as the example: by resolving the top five discrepant

Azure APIs in Figure 4.3, discrepant tests drop by 63% (from 267 to 99) and discrepant

results drop by 10% (from 89 to 80). The small drop in discrepant results is caused by tests

in DurableTask utilizing multiple discrepant APIs. If the top seven discrepant Azure APIs

are resolved, 75 out of the 79 discrepant results caused by DurableTask will be eliminated.

Second, fine-grained, parameter-level analysis can further capture discrepancies. Although

our analysis stays at the API level instead of parameters, we build on these implications

when designing mitigation solutions (Chapter 7).

Key Finding: Five out of ten studied software projects reveal discrepant test results caused

by discrepancies between emulators and cloud services. Those discrepant tests are caused by

a small set of discrepant APIs. Not all discrepant APIs manifest during testing if triggering

parameters are not used.

Figure 4.4: Key findings of the discrepancies in real-world test suites.

14

We further categorize the implications of discrepant tests into (1) deployment safety viola-

tions (1.1a), and (2) false alarms (1.1b), as broken down in Table 4.3. Debuggability issues

are not applicable here as the tests all pass in the default setup.

The majority of test discrepancies would lead to deployment safety violations—the test that

passes with the emulator would fail when running with the cloud service (i.e., passing the test

provides no safety guarantee on the cloud). For example, a test CreateTaskHub in Durable-

Task uses the Azure Blob API, Container Create, to re-create a previously deleted blob

container. This test fails when run with the cloud service with an error message“the spec-

ified container is being deleted; try operation later,” due to DurableTaskStorageException

because container deletion is asynchronous and provides no guarantee for the time to finish.

However, this test always passes when running with the Azurite emulator, as Azurite always

deletes the container synchronously before the API returns.

False alarms are relatively less common than deployment safety issues (Table 4.3). Two

(out of four) false alarms are caused by brittle assertions on the error messages returned

by the API calls (which are discrepant between the emulator and the cloud service). Such

discrepancies can be addressed by enforcing the consistencies of the error messages. One false

alarm is caused by a flaky test [44, 45]; the non-deterministic flaky behavior only manifests

when running with the emulator, not with the cloud service, due to order differences caused

by discrepant timing of API calls. We fixed the flaky tests by adding await to enforce the

order. The last false alarm is caused by resource discrepancy—the stress-test in Orleans

exhausted the socket limit of LocalStack (which passes with the cloud service). Such resource

discrepancies are essential, and stress tests should not use emulators in the first place.

Key Finding: Deployment safety violations are the major implications of discrepant tests,

while false alarms also appear in testing results. Tests of cloud-based software projects need

to carefully decide to run on emulators versus cloud services.

Figure 4.5: Key findings of the implications of discrepancies in real-world test suites.

15

CHAPTER 5: ROOT CAUSE ANALYSIS

To unravel the root causes of the 98 discrepancies discussed in Chapter 4, we debugged every

discrepancy by inspecting source code of the emulators (both Azurite and Localstack are

open-sourced) and analyzing runtime behavior of the cloud services.

We discuss the discrepancies from the specification perspective. From a high level, both the

emulator and the cloud services are implementations of the API specification. So, discrep-

ancies are the result of either incomplete specification or implementation defects. Based on

the existing API specifications (Chapter 2), we categorize the discrepancies into:

1. Defects in existing API specification: Both Azurite and Localstack adhere to

the API specifications of the cloud services (see Chapter 2.1), which specifies types

and value constraints of API method parameters and error code. However, the API

specifications are incomplete, leading to discrepant validity checks and error responses.

2. Unspecified behavior that is not considered in existing specifications: Many

discrepancies related to discrepant runtime behavior that is unspecified by, and likely

out of the scope of, existing API specifications. A common pattern of unspecified

behavior is asynchrony of API effects.

3. Implementation defects in the emulators or the cloud services: We also find

discrepancies due to defects in the emulator or in the cloud services such as unimple-

mented components and bugs.

Table 5.1 shows the three categories of discrepancy root causes.

During the project, we detected ten bugs in the two studied emulators, of which six have been

confirmed (and five fixed). We also detected two bugs in the cloud backend implementations,

which have been reported to the cloud service providers.

5.1 DEFECTS IN EXISTING SPECIFICATIONS

As discussed in Chapter 2, existing cloud service API specification focuses on parameter value

constraints and error codes and messages, from which emulators automatically generate stub

code that adheres to the specifications (e.g., using AutoRest [32]). However, we still find

that a significant percentage of discrepancies are caused by inconsistent validity checks of

parameter values as well as inconsistent error code and messages. The reason is incomplete

specifications. Table 5.1 shows that incomplete specifications can cause up to 58.1% of the

discovered discrepancies in a service.

16

Table 5.1: Root causes of observed discrepancies.

Service Defects in Spec. Unspecified Defects in Impl.

Azure Blob 18 (58.1%) 1 (3.2%) 12 (38.7%)
Azure Queue 1 (50.0%) 1 (50.0%) 0 (0.0%)
Azure Table 0 (0.0%) 1 (100.0%) 0 (0.0%)
AWS S3 11 (29.7%) 14 (37.8%) 12 (32.4%)
AWS DynamoDB 2 (7.4%) 4 (14.8%) 21 (77.8%)

InvalidHeaderValue

Emulator

Cloud

OK

Lease ID should be
GUID format

No check for Lease ID

Client

Deployment
Safety Violation

Blob_ChangeLease

400

Emulator

Cloud400
Client

Debuggability
Issues

Bad Request

“The number of Queue msg
should be within 1 to 32”

Empty message

Messages_Peek
OutOfRangeQueryParameterValue

200

400

Azure Blob

Azure Queue
(a) Parameter value constraints

InvalidHeaderValue

Emulator

Cloud

OK

Lease ID should be
GUID format

No check for Lease ID

Client

Deployment
Safety Violation

Blob_ChangeLease

400

Emulator

Cloud400
Client

Debuggability
Issues

Bad Request

“The number of Queue msg
should be within 1 to 32”

Empty message

Messages_Peek
OutOfRangeQueryParameterValue

200

400

Azure Blob

Azure Queue

(b) Error response

Figure 5.1: Discrepancies caused by deficient specifications

Parameter value constraint. Ideally, the API specification should define all the value

constraints of every input parameter. In reality, API specifications are deficient. We observe

discrepant value constraint checks in twelve out of 34 discrepant Azure Storage APIs and

ten out of 33 AWS S3 APIs. We observe no such discrepancy in DynamoDB.

Figure 5.1a shows such an example from Azure Blob, where the value of the parameter

x-ms-proposed-lease-id of the Blob ChangeLease API should be in the GUID format [46].

The Blob service implements a format check, while Azurite does not. As a result, an invalid

API call of Blob ChangeLease will be returned successfully by the emulator but rejected by

the cloud. However, such value constraint is not specified in the OpenAPI specification of

Azure Blob services.

In another common discrepancy case across Azure and AWS, cloud service APIs require

authorization to private resources or sensitive operations (e.g., security configuration like

PutBucketAcl). In its absence, these requests are denied by the cloud service. However,

our results revealed that emulators often overlook this constraint, accepting such requests

with a 200 OK response, resulting in 8% of discrepancies. We find that the requirement

of authentication is commonly included in the specification, but only in text descriptions

which is not machine-checkable. Hence, it is not enforced by auto-generated stub code from

specifications. In fact, our experience of examining Azure and AWS OpenAPI specifications

shows that text-based API descriptions often includes constraints that are not in machine-

checkable specifications.

17

Error response. We also find that specifications can be deficient in comprehensively defin-

ing the expected error code and messages and fail to associate them with the APIs, leaving

emulator developers to interpret discrepant error messages. Figure 5.1b shows such an exam-

ple. When a request is made with an out-of-range value for the numofmessages parameter,

the Azure Queue service provides a detailed message pinpointing the error. In contrast,

Azurite only responds with a “Bad Request” error code, offering no specific guidance and

impeding debuggability.

Discrepant error responses were particularly prominent in Azure Storage APIs, accounting

for 21% (7 out of 34) of the total discrepancies. When we examined the Azure API specifi-

cations, we found that the error codes were not associated with the APIs but were defined

in a separate list. Differently, we found that AWS specifications have a more structured

approach to error code definitions, which were also part of the related API definitions. The

latter directly translates to the emulator code. In DynamoDB API specifications, we found

structured definitions of 31 unique error codes, including their error messages, exception

flags, and documentation. Hence, discrepant error responses are rare in DynamoDB and S3.

Investigating techniques for comprehending and enforcing machine-checkable API specifica-

tions may potentially close the gaps and reduce discrepancies, such as specification mining

from code and documents [47, 48, 49], especially leveraging recent advances of large language

models [50, 51].

Key Finding: The completeness of machine-checkable specifications is still a fundamental

challenge, even for simple specifications such as parameter value constraints and error code.

Without an effective way towards comprehensive specifications, we expect such discrepancies

to remain prevalent.

Figure 5.2: Key findings of discrepancies rooted in incomplete API specifications.

5.2 UNSPECIFIED BEHAVIOR

A few discrepancies were caused by API behavior out of the scope of the existing specification

and thus is unspecified. We observed two patterns of unspecified-behavior discrepancies.

We mentioned the first pattern in Chapter 4.3—whether an API is synchronous or asyn-

chronous. For example, Azure Blob’s API Container Delete, which deletes container re-

sources in cloud services, is an asynchronous API. For efficiency consideration, the deletion

is not guaranteed to finish before the API returns. Instead, the time to finish the dele-

tion depends on the amount of resources to be deleted. Conversely, emulators always finish

18

Environment Dynamics

409

Cloud
202 Accepted

Emulator

Client

Deployment
Safety Violation

Root causeImpact Manifestation

Delete

Create
“The specified container is being

deleted. Try operation later.”

Container is
deleted instantly.Client

Delete

Create

201 Created

ContainerBeingDeleted

202 Accepted

Azure Blob

Figure 5.3: Discrepancies caused by unspecified behavior

deletions before returning the API calls. Figure 5.3 depicts such discrepancies. The re-

sult is that API sequences involving creating a container, deleting it, and then attempting

to recreate it with the same name yielded different results: the cloud service returned 409

ContainerBeingDeleted, while the emulator allowed immediate container recreation with 201

Created. This pattern also appears in sequences following a deletion API call: the emula-

tor would return a 404 Not Found after deletion, while the cloud, busy doing the deletion,

would non-deterministically (depending on timing) issue a success response or a 409 Conflict

message, “The specified container is being deleted. Try operation later.”

The second pattern is unspecified API behavior on null references (e.g., non-existent objects).

For example, the LocalStack emulated S3 APIs used for fetching bucket configuration (e.g.,

GetBucketMetricsConfiguration) or policy (e.g., GetBucketPolicyStatus) would return a

200 OK response with an empty policy configuration in the response, when configurations

were never set. In contrast, the real S3 APIs returned a 404 error, indicating the config-

uration was not found. A similar example is APIs used for deleting configurations (e.g.,

DeleteBucketMetricsConfiguration) or object tags (e.g., DeleteBucketPolicy). If a config-

uration was not created, the emulator returned 204 success upon deletion, while the cloud

service returned a 404 error. For S3 on LocalStack, 11 discrepancies were caused by this.

Such undefined behavior resembles null pointers, a common source of undefined behavior [52].

Key Finding: Two patterns of undefined behavior contribute to discrepancies between

emulators and cloud services: (1) the synchrony of the API and (2) null references. Such

behavior is currently not considered in cloud service API specification languages and thus

not enforced in implementations.

Figure 5.4: Key findings of discrepancies caused by unspecified behavior.

19

Emulator

Cloud

404

Client

Debuggability
Issues

500

“The specified key
does not exist”

Invalid key not handled

Restore_Object
AWS S3

InternalError

NoSuchKey

Emulator

CloudClient

False Alarms
400

200

“An unknown operation
was requested”

Backup creation succeeds

AWS DynamoDB
Create_Backup

UnknownOperation
Exception

OK

Emulator

CloudClient
400

500
Illegal Lease Duration

not handled

Azure Blob
Blob_AcquireLease

InvalidHeader
Value

InternalError

“The value for one of
the HTTP headers is not in

the correct format.”
Debuggability

Issues

(a) Unimplemented feature.

Emulator

Cloud

404

Client

Debuggability
Issues

500

“The specified key
does not exist”

Invalid key not handled

Restore_Object
AWS S3

InternalError

NoSuchKey

Emulator

CloudClient

False Positve
400

200

“An unknown operation
was requested”

Backup creation succeeds

AWS DynamoDB
Create_Backup

UnknownOperation
Exception

OK

Emulator

CloudClient
400

500
Illegal Lease Duration

not handled

Azure Blob
Blob_AcquireLease

InvalidHeader
Value

InternalError

“The value for one of
the HTTP headers is not in

the correct format.”
Debuggability

Issues

(b) Bugs in the emulator.

Emulator

Cloud

404

Client

Debuggability
Issues

500

“The specified key
does not exist”

Invalid key not handled

Restore_Object
AWS S3

InternalError

NoSuchKey

Emulator

CloudClient

False Positve
400

200

“An unknown operation
was requested”

Backup creation succeeds

AWS DynamoDB
Create_Backup

UnknownOperation
Exception

OK

Emulator

CloudClient
400

500
Illegal Lease Duration

not handled

Azure Blob
Blob_AcquireLease

InvalidHeader
Value

InternalError

“The value for one of
the HTTP headers is not in

the correct format.”
Debuggability

Issues

(c) Bugs in the cloud service.

Figure 5.5: Discrepancies caused by implementation defects.

5.3 IMPLEMENTATION DEFECTS

Lastly, we observe discrepancies caused by implementation defects, including unimplemented

features and implementation bugs in the emulators and the cloud services.

Unimplemented features in emulators. A significant percentage of discrepancies are

due to unimplemented features in emulators, accounting for 18% in Azure Storage, 16%

in S3, and 74% in AWS DynamoDB. The emulators’ responses to these unimplemented

APIs vary. For example, Azurite responds with a 500 error and the message “Current

API is not implemented yet,” which leads to four wasted retries by the SDK. Whereas the

AWS emulator issues a 400 error, as shown in Figure 5.5a, without triggering retries on

the client side. According to the coverage reference of LocalStack [31], there are 16 (30%)

unimplemented DynamoDB APIs and seven (7%) unimplemented S3 APIs. Azurite states

that more features will be supported based on the needs of customers [53].

It is expensive to implement and maintain the large number of cloud service APIs (with high

fidelity) in the emulator. Hence, existing emulators take a utility-driven approach to only

support commonly used APIs (Figure 4.3). However, if a project relies on unimplemented

APIs, the limited support becomes an obstacle for emulator-based testing.

20

Emulator bugs. Bugs were identified as the root causes of 15% of Azure Storage, 16%

of S3, and 4% of DynamoDB discrepancies. Ten emulator bugs were found across the

three classes of services (three in Storage, six in S3, and one in DynamoDB). For example,

in Figure 5.5b, during tests involving AWS S3’s object restoration API, we encountered

different responses to invalid keys. While the cloud service correctly rejected invalid keys

with a 404 NoSuchKey error, the emulator returned a 500 Internal Error due to a bug that

attempted to access a non-existent “storage class” attribute.

Cloud service bugs. We also find two bugs in the cloud service that resulted in incon-

sistencies with the emulator. As shown in Figure 5.5c, specifying a lease duration for a blob

outside the documented range of 15 to 60 seconds, particularly with an excessively large

value, led to a 500 Internal Server Error in the cloud service. Contrastingly, the emulator

appropriately responded with a 400 InvalidHeaderValue error, correctly identifying the lease

duration as invalid. A similar bug is found in the API for acquiring a container lease.

Key Finding: With the current development of cloud emulators as a reactive practice

to cloud services, discrepancies due to unimplemented features and bugs would largely con-

tinue, even with active bug fixing and feature requests. Resolving discrepancies needs novel

mitigation techniques.

Figure 5.6: Key findings of discrepancies caused by implementation defects.

21

CHAPTER 6: DISCREPANCY MITIGATION: A DISCUSSION

It is easier to ask for more specifications (Chapter 5.1 and Chapter 5.2) and faster bug fixes

(Chapter 5.3). However, it is harder to fundamentally eliminate all the aforementioned dis-

crepancies, as many of them are rooted in the essential complexity of software engineering as

well as today’s common practices. We discuss a few arguably radical ideas or new practices,

hopefully to shed light on viable directions to addressing discrepancies.

6.1 AN ACTIVE ROLE OF CLOUD SERVICE PROVIDERS

We argue that cloud providers have strong incentives to address discrepancies between cloud

services and emulators. High-fidelity service emulation would improve developer experience

and help promote adoption of cloud services, which is likely the reason providers offer official

emulators. Such benefits outweighs the strategy of forcing customers to run all their tests

with the cloud services, at least in the long term.

Our fuzzing-based differential testing shows the effectiveness of detecting discrepancies be-

tween cloud services and emulators. Cloud service providers can adopt similar practices;

they can run the differential testing continuously upon code changes of the emulators or

cloud service implementations. Note that cloud providers already run REST API fuzzing to

find security bugs in cloud backend implementations (Chapter 9). As service providers have

more resources and insights into the implementations, they are in a better position than

researchers or cloud-based software developers to discover discrepancies and should take an

active role in communicating them.

6.2 FORMAL MODELS AS EMULATORS

Essentially, discrepancies are introduced through the current practice of implementing em-

ulators. Our private communication with a major cloud service provider tells us that the

emulators are often not developed by the same engineering team that developed the cloud

services, and the emulators are developed reactive to the cloud services; for third-party em-

ulators like LocalStack, it is unavoidable. So, without comprehensive formal specifications,

discrepancies are inevitable.

One way to resolve discrepancies is to change how emulators are built today. We envision the

use of executable formal models of cloud services as the emulators. Essentially, the emulator,

as the formal model, defines the specifications of the cloud service implementations, which

22

are rigorously tested or verified for compliance. Recent efforts from Amazon [54] show the

promise of developing executable reference models as specifications to be checked against

the implementation of ShardStore, a key-value storage node of Amazon S3. Similar efforts

have been made for file systems [10] and network protocols [55]. In principle, these models

can further be developed into first-class emulators for application testing.

6.3 “POSIX” FOR CLOUD SERVICE APIS

One fact that makes cloud emulators particularly prone to discrepancies is the lack of a

standard such as POSIX for operating system call APIs. Today, cloud service providers

expose APIs with different semantics, constraints, and error codes, even for the same types

of services. Without a standardized API, cloud and emulator developers must navigate

diverse semantics and error handling for even similar services within the same or across

different platforms. As a result, implementations of the APIs, whether by the cloud services

or emulators, tend to be error-prone and inconsistent. As a result, we believe that a unified

API standard would effectively reduce discrepancies in practice. With the incentives from

sky computing [56, 57] and hybrid cloud [58, 59], such a unified API standard may be

possible.

6.4 ECONOMIC CLOUD SERVICES FOR TESTING

With the prevalent discrepancies (Chapter 4), testing of cloud-based software would have to

largely rely on cloud services. To reduce cost, one can minimize the frequency of running tests

with real cloud services (e.g., only do so before deployment, not for CI). If cost is the main

concern (a recent survey [60] shows that cost is a major barrier to cloud service adoption),

one solution is to provide cheap cloud services for testing. The high cost of cloud services is

often driven by pursuits for performance using powerful hardware and fault tolerance using

redundancy (Chapter 2.1). But, functional and correctness testing may not need either of

them. We envision low-cost cloud services specified for software testing (not for production),

with ideas such as using dated hardware [61] and cheap, renewable energy for intermittent

services [62]. Certainly, low-cost services do not address other needs of emulators, such as

convenience and hermetic environments [63].

23

6.5 HYBRID CLOUD-EMULATOR TESTING

One principle to mitigate discrepancies without exclusively using cloud services for testing

is to acknowledge imperfect emulators and make the best use of them—selectively running

tests on emulators when the emulation is not discrepant and on cloud services otherwise.

We term such an approach hybrid cloud-emulator testing and explore it in Chapter 7.

24

CHAPTER 7: HYBRID CLOUD-EMULATOR TESTING

To evaluate the effectiveness of hybrid cloud-emulator testing as a short-term discrepancy

mitigation (Chapter 6.5), we developed a tool named Et that determines whether a test

should be run with emulators or cloud services. The principle is to run discrepant tests with

cloud services for safety while running the remaining tests with the emulators for efficiency.

Note that it is hard to selectively use emulators and cloud services within a test without

expensive state synchronization.

7.1 POLICIES

Et supports three different but complementary policies: depending on if discrepant APIs are

known apriori — cloud emulators are expected to communicate fidelity of emulated APIs,

though current practice does not provide accurate results (see Chapter 4.1).

7.1.1 Selection by discrepant APIs

This policy assumes apriori knowledge of discrepant APIs. It first runs all tests on the

emulator and monitors their REST API calls using a local proxy, as in [64]. If a test invokes

a discrepant API, its result is discarded, and the test is rerun on cloud service. Et monitors

REST API calls using a local proxy as in [64]. with cloud services; it runs tests that do not

invoke any discrepant APIs on the emulator. We use dynamic analysis to record REST APIs

invoked by each test by monitoring the requests at the emulator. Static program analysis

can also be used. In a CI/CD environment, the dynamic analysis needs to be conducted

upon changes to the test and the code under test.

7.1.2 Selection with in-situ API monitoring

Policy §7.1.1 assumes having accurate, comprehensive discrepancy information apriori, which

is often not available in practice (as shown in Chapter 4.1, discrepancies are found in

developer-certified APIs). Without knowledge of discrepancies, all the tests have to run

with cloud services. Moreover, an API can exhibit discrepant behavior only for certain in-

put parameters; hence, statically labeling it discrepant can be too conservative for a test

that uses the API with “safe” parameters.

Et supports a new policy that offloads certain tests from the cloud services to the emulators

to reduce cost. The high-level idea is to maintain a “safe list” database of API call sequence,

25

test
PUT https ://account.blob.core.windows..
PUT https ://account.blob.core.windows..
DELETE https ://account.blob.core.wind..
GET https ://account.blob.core.windows..
DELETE https ://account.blob.core.wind..Emulator

Cloud

Database1
2

3

4

5

Compare newly collected
sequence with stored
sequences.

If no sequence
matches, run on the cloud.

Store the new sequence.

Figure 7.1: Workflow of the policy §7.1.2 of Et.

including each call’s request (with parameters) and response. Et starts with an empty safe

list. For each test, it first runs the test on the emulator and monitors the API call sequences.

If the sequence is not present in the safe list, the test is assumed to be discrepant and is

rerun on the cloud service. The API sequence is added to the safe list if its result from the

emulator matches that from the cloud service. On the other hand, if the API sequence is

found in the safe list, then Et skips running the test with the cloud services, because the

fidelity of interactions has already been validated by a real cloud-based test run. Figure 7.1

shows the workflow.

Note that the analysis considers the entire API call sequence instead of individual APIs

(Figure 5.3 shows an example where the discrepancy only manifests with specific sequence).

Et serializes the API calls at its local proxy. For fast comparison, each sequence is stored

as an ordered list of hashes while each hash represents an API along with its parameters

and response; collisions are chained upon occurrence. We implement masks to exclude

intrinsically non-deterministic parameters and fields in the response, such as timestamps.

Note that this policy accounts for non-determinism of test execution due to multi-threading

and event-based asynchrony. The essence of the policy is to validate the external behavior

of API calls issued by the test on the emulator with the real cloud services. Et does not

make assumptions on the internal implementation of test code or system under test.

Despite no apriori discrepancy knowledge, this policy can outperform the policy §7.1.1 in

certain cases, because it performs a fine-grained, parameter-level analysis. As shown in

Chapter 4.3, discrepancies typically manifest via specific parameter values rather than uni-

versally across the API; a discrepant test can still be run on the emulator if it does not

manifest discrepant results.

26

Table 7.1: Savings of cloud service API invocations with different policies of Et (§7.1.1,
§7.1.2, and §7.1.3). The numbers are averaged across five commits.

Project
Total
Tests

Total
Requests

Saved Requests
§7.1.1 §7.1.2 §7.1.3

Orleans 189 117,905 29.4% 0.4% 29.6%
Insights 171 5,249 4.3% 47.2% 47.2%
Durabletask 101 79,654 0% 0% 0%
Streamstone 75 590 0% 99.2% 99.2%
IdentityAzureTable 51 9,860 100% 0.4% 100%

7.1.3 Combined policy.

We support a combined policy that integrates Policy §7.1.1 and 7.1.2—only conduct in-situ

discrepant analysis for discrepant tests. Basically, if we know a test is not discrepant apriori,

we always run it on the emulator.

7.1.4 Evaluation

We evaluate the three policies described in Chapter 7.1 in terms of cost savings measured

by the number of calls to cloud APIs. We assume a continuous integration (CI) setup as

Policy §7.1.2 only benefits continuous testing, and its benefit is correlated with the compre-

hensiveness of the safe list.

We select five projects that use Azure APIs (Et currently only supports .NET applications)

and use all the related tests (Table 3.2). We select the five projects with the most tests that

invoke Azure APIs. We evaluate Et with the most recent five commits to simulate CI and

record the cost saving for each commit (we run only five commits due to the constraint of

our cloud education credits). All the tests will be run for each commit that changes system

code or test code. Note that regression test selection [65, 66, 67] does not apply to those

tests which are not unit tests but mostly integration and system tests.

Results. As shown in Table 7.1, Et effectively reduces the amount of invocations to cloud

APIs. Interestingly, the three policies bring different benefits across projects, with the

combined policy §7.1.3 achieving the most cost savings.

Policy §7.1.1 achieves substantial savings for two out of five projects. Specifically, it achieves

a 100% saving for IdentityAzureTable where none of its tests issues a discrepant API. How-

ever, it achieves 0 saving for Streamstone and DurableTask, because all their tests issue at

least one discrepant API.

27

Policy §7.1.2 achieves substantial savings for two different projects (Insights and Stream-

stone) but not the others. Our investigation reveals that the effectiveness of Policy §7.1.2

largely depends on the ordering determinism of API call sequences. Since tests that invoke

cloud APIs are typically large system/integration tests with large numbers of API calls, the

sequences recorded during the tests on five commits are insufficient. We expect that a longer

continuous testing process may increase the benefit, which remains our future work.

Key Finding: Et shows that by selectively running tests on emulators, it is promising to

reduce the cost of cloud-based software testing, in terms of the cost of calling cloud service

APIs, while achieving high-fidelity testing.

Figure 7.2: Key findings of Et

28

CHAPTER 8: THREATS TO VALIDITY

Our study is based on the five cloud services (three Azure services and two AWS services)

and two emulators (Azurite and LocalStack). We believe that the studied cloud services

and emulators are representative, but our results may not generalize to other cloud services,

especially those using different practices (e.g., for specifications).

Similarly, our analysis of discrepancy impacts (Chapter 4.3) and Et’s evaluation results

(Chapter 7.1.4) are based on existing test suites of a few cloud-based projects. They may

not generalize to other projects as they depend on API usage characteristics of projects and

their tests (e.g., invoked cloud APIs and their frequencies). In principle, projects that use

cloud services more extensively face higher impacts caused by discrepancies. As cloud-based

programming models are more prevalent, driven by recent trends like serverless [68, 69], sky

computing [56, 57], and hybrid cloud [58, 59], we expect more extensive integration of cloud

services in modern software projects. Hence, we expect cloud-emulator discrepancies to be

common issues for software testing.

The discrepancies analyzed in this thesis are limited to the black-box SDK API fuzzer

we developed based on RESTler (Chapter 3), and we do not claim completeness of studied

discrepancies. A more powerful fuzzer, especially a white-box one, may cover more discrepant

APIs. As a best effort, we run our fuzzer for more than ten hours against each studied

emulator and stop the fuzzing when we do not observe any new discrepancies.

Lastly, we are not concerned with faults that occur during the API invocations, such as

timeout due to network delays. Recent work [64] shows that timeouts on both the request

and response paths of a REST API invocation can reveal different behaviors, which we would

like to study as future work.

29

CHAPTER 9: RELATED WORK

REST API fuzzing. Recent work has developed advanced REST API fuzzing techniques

to test web and cloud services, with the goal of finding bugs and vulnerabilities in web service

implementations [5, 35, 36, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]. Differently, this thesis focuses

on the software projects that use cloud services, instead of the backend implementations of

cloud services. Our goal is to understand discrepancies between the emulator and the cloud

services and their implications for software testing.

We developed our fuzzer based on the fuzzing approach of RESTler [35]. As discussed in

Chapter 3, we did not directly use RESTler (or other REST API fuzzers) because most

projects only interact with SDK APIs, not REST APIs, and REST API fuzzers generate

API calls that would not be output by SDKs.

Fidelity of emulation. Prior work has studied the fidelity of emulation environments in

other domains, such as honeypots for security analysis [80, 81, 82]. The closest related work

is the research on the fidelity of emulated execution environments such as virtual devices

for mobile app testing [83, 84]. The goal is to maximize app testing on emulated devices

and minimize testing on real physical mobile devices (which are more expensive and hard to

manage [83]).

Our work shares similar high-level goals and tradeoffs (cost-efficiency versus safety). But, we

address a different fidelity problem raised by the emerging cloud-based programming model.

The discrepancies are not due to deficiency or incompleteness of device emulation but are

rooted in inconsistent implementations of weakly specified APIs.

Backward compatibility. The studied discrepancies are different from backward incom-

patibility studied in prior work [5, 85, 86, 87, 88]. We do not study the evolution of emulators

or cloud service APIs in this thesis, though certain discrepancies can be caused by regres-

sion [5]. There are also studies on mock libraries for unit tests [89, 90, 91]; few of them

concern fidelity of mock objects—unlike emulation, mocking is not expected to provide fi-

delity but offers a way to control external APIs.

30

CHAPTER 10: CONCLUSION

With the rise of cloud-based, serverless programming models, testing cloud-based software

safely and cost-efficiently becomes a challenge. This thesis provides a comprehensive exam-

ination of the fidelity of cloud emulators in the context of software development and local

testing against real cloud services. Through systematic analysis, we have identified signifi-

cant discrepancies in emulators —37% of APIs (94 out of 255) from Azure and AWS cloud

services exhibited discrepant behaviors, which potentially impact the safety and trustwor-

thiness of testing results of cloud-based software. We discuss the accidental and essential

root causes of these discrepancies and effective strategies for mitigation.

Our findings emphasize the need for more standardized and comprehensive cloud API spec-

ifications, which form the foundation for emulators. As a short-term solution, the proposed

hybrid cloud-emulator testing framework has been effective. It provides accurate testing

outcomes at lower costs compared to using the actual cloud. While this tool addresses many

of the current challenges, future work should explore the additional solutions proposed in

this thesis, which may offer greater cost-effectiveness and better alignment between emulator

and cloud behaviors.

As cloud services continue to evolve, the insights from this thesis will guide future efforts to

improve cloud emulation practices. This work not only encourages ongoing efforts but also

calls for increased collaboration between cloud service providers and emulator developers.

By working together towards the goal of high-fidelity emulators, they can achieve more.

Ultimately, this research contributes to enhanced local developer testing by providing a

clearer path toward reliable cloud emulators in cloud-based software development.

31

REFERENCES

[1] “Azure products,” https://azure.microsoft.com/en-us/products, 2024.

[2] “Google Cloud products,” https://cloud.google.com/products, 2024.

[3] “AWS Cloud Products,” https://aws.amazon.com/products, 2024.

[4] NuGet, “WindowsAzure.Storage NuGet,” https://www.nuget.org/packages/
WindowsAzure.Storage, 2024.

[5] P. Godefroid, D. Lehmann, and M. Polishchuk, “Differential Regression Resting for
REST APIs,” in ISSTA, 2020.

[6] “Azure Blob Storage Cost,” https://azure.microsoft.com/en-us/pricing/details/
storage/blobs/, 2023.

[7] “AWS Pricing Calculator,” https://calculator.aws/#/?nc2=pr&refid=
f42fef03-b1e6-4841-b001-c44b4eccaf41, 2024.

[8] John Micco, “The State of Continuous Integration Testing @Google,” in ICST, 2017.

[9] C. Leong, A. Singh, M. Papadakis, Y. L. Traon, and J. Micco, “Assessing Transition-
Based Test Selection Algorithms at Google,” in ICSE-SEIP, 2019.

[10] T. Ridge, D. Sheets, T. Tuerk, A. Giugliano, A. Madhavapeddy, and P. Sewell, “SibylFS:
Formal Specification and Oracle-Based Testing for POSIX and Real-World File Sys-
tems,” in SOSP, 2015.

[11] Rick Timmis, “Xiatech accelerates their development workflows on cloud using Local-
Stack!” https://localstack.cloud/blog/2023-07-05-case-study-xiatech/.

[12] Microsoft Docs, “Use the Azurite emulator for local Azure Storage development,” https:
//docs.microsoft.com/en-us/azure/storage/common/storage-use-azurite, 2024.

[13] “Introduction to Azure Storage,” https://learn.microsoft.com/en-us/azure/storage/
common/storage-introduction, 2024.

[14] azurite-1465, “Table storage having wrong constraint,” https://github.com/Azure/
Azurite/issues/1465.

[15] azurite-946, “Missing parameter in API response,” https://github.com/Azure/Azurite/
issues/946.

[16] azurite-5, “Requesting for a feature,” https://github.com/Azure/Azurite/issues/5.

[17] nuget-insights-30, “List of issues which blocked CI tests for Insights,” https://github.
com/NuGet/Insights/issues/30.

32

https://azure.microsoft.com/en-us/products
https://cloud.google.com/products
https://aws.amazon.com/products
https://www.nuget.org/packages/WindowsAzure.Storage
https://www.nuget.org/packages/WindowsAzure.Storage
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
https://calculator.aws/#/?nc2=pr&refid=f42fef03-b1e6-4841-b001-c44b4eccaf41
https://calculator.aws/#/?nc2=pr&refid=f42fef03-b1e6-4841-b001-c44b4eccaf41
https://localstack.cloud/blog/2023-07-05-case-study-xiatech/
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://learn.microsoft.com/en-us/azure/storage/common/storage-introduction
https://learn.microsoft.com/en-us/azure/storage/common/storage-introduction
https://github.com/Azure/Azurite/issues/1465
https://github.com/Azure/Azurite/issues/1465
https://github.com/Azure/Azurite/issues/946
https://github.com/Azure/Azurite/issues/946
https://github.com/Azure/Azurite/issues/5
https://github.com/NuGet/Insights/issues/30
https://github.com/NuGet/Insights/issues/30

[18] Localstack, “LocalStack – A fully functional local cloud stack,” https://localstack.
cloud/, 2024.

[19] Azure/durabletask, https://github.com/Azure/durabletask.

[20] “AWS S3 REST APIs,” https://docs.aws.amazon.com/AmazonS3/latest/API/API
Operations.html, 2023.

[21] “Azurite Swagger of Azure Blob Storage,” https://github.com/Azure/Azurite/blob/
main/swagger/blob-storage-2021-10-04.json.

[22] “AWS S3 Python SDK APIs,” https://boto3.amazonaws.com/v1/documentation/api/
latest/reference/services/s3.html, 2023.

[23] “Azure SDK for Python,” https://azuresdkdocs.blob.core.windows.net/$web/python/
azure-storage-blob/12.0.0b5/index.html#clients, 2024.

[24] “OpenAPI Specification,” https://www.openapis.org/, 2024.

[25] “Azure Blob Storage Cost Breakdown,” https://azure.github.io/Storage/docs/
application-and-user-data/code-samples/estimate-block-blob/, 2023.

[26] “Azure Locally-redundant storage (LRS),” https://learn.microsoft.com/en-us/azure/
storage/common/storage-redundancy#locally-redundant-storage, 2024.

[27] “Azure Zone-redundant storage (ZRS),” https://learn.microsoft.com/en-us/azure/
storage/common/storage-redundancy#zone-redundant-storage, 2024.

[28] “Azure Locally-redundant storage (GRS),” https://learn.microsoft.com/en-us/azure/
storage/common/storage-redundancy#geo-redundant-storage, 2024.

[29] Brian Harry, “The largest Git repo on the planet,” https://devblogs.microsoft.com/
bharry/the-largest-git-repo-on-the-planet/, 2017.

[30] R. Potvin and J. Levenberg, “Why Google Stores Billions of Lines of Code in a Single
Repository,” Communications of the ACM (CACM), vol. 59, no. 7, pp. 78–87, June
2016.

[31] “LocalStack Coverage,” https://docs.localstack.cloud/references/coverage/, 2023.

[32] Azure/autorest, https://github.com/Azure/autorest, 2024.

[33] “Regeneration Protocol Layer from Swagger by Autorest,” https:
//github.com/Azure/Azurite/blob/main/CONTRIBUTION.md#
regeneration-protocol-layer-from-swagger-by-autorest, 2024.

[34] “LocalStack Weekly ASF Update Workflow,” https://github.com/localstack/
localstack/blob/master/.github/workflows/asf-updates.yml, 2024.

33

https://localstack.cloud/
https://localstack.cloud/
https://github.com/Azure/durabletask
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations.html
https://github.com/Azure/Azurite/blob/main/swagger/blob-storage-2021-10-04.json
https://github.com/Azure/Azurite/blob/main/swagger/blob-storage-2021-10-04.json
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html
https://azuresdkdocs.blob.core.windows.net/$web/python/azure-storage-blob/12.0.0b5/index.html#clients
https://azuresdkdocs.blob.core.windows.net/$web/python/azure-storage-blob/12.0.0b5/index.html#clients
https://www.openapis.org/
https://azure.github.io/Storage/docs/application-and-user-data/code-samples/estimate-block-blob/
https://azure.github.io/Storage/docs/application-and-user-data/code-samples/estimate-block-blob/
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#locally-redundant-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#locally-redundant-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#zone-redundant-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#zone-redundant-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#geo-redundant-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#geo-redundant-storage
https://devblogs.microsoft.com/bharry/the-largest-git-repo-on-the-planet/
https://devblogs.microsoft.com/bharry/the-largest-git-repo-on-the-planet/
https://docs.localstack.cloud/references/coverage/
https://github.com/Azure/autorest
https://github.com/Azure/Azurite/blob/main/CONTRIBUTION.md#regeneration-protocol-layer-from-swagger-by-autorest
https://github.com/Azure/Azurite/blob/main/CONTRIBUTION.md#regeneration-protocol-layer-from-swagger-by-autorest
https://github.com/Azure/Azurite/blob/main/CONTRIBUTION.md#regeneration-protocol-layer-from-swagger-by-autorest
https://github.com/localstack/localstack/blob/master/.github/workflows/asf-updates.yml
https://github.com/localstack/localstack/blob/master/.github/workflows/asf-updates.yml

[35] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful REST API Fuzzing,”
in ICSE, 2019.

[36] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Checking Security Properties of Cloud
Service REST APIs,” in ICST, 2020.

[37] LocalStack, “Coverage S3 - LocalStack Documentation,” https://docs.localstack.cloud/
references/coverage/coverage s3/, 2023.

[38] LocalStack, “Coverage DynamoDB - LocalStack Documentation,” https://docs.
localstack.cloud/references/coverage/coverage dynamodb/, 2023.

[39] LocalStack, “Parity Testing - LocalStack Documentation,” https://docs.localstack.
cloud/contributing/parity-testing/, 2023.

[40] “Azurite Testing,” https://github.com/Azure/Azurite/blob/main/CONTRIBUTION.
md#testing.

[41] “Azurite Support Matrix,” https://github.com/Azure/Azurite?tab=readme-ov-file#
support-matrix.

[42] “Azure Storage API: ContainerRestore,” https://github.com/Azure/Azurite/blob/
d544d16f910e490fdd9db5565459df701895308f/swagger/blob-storage-2021-10-04.json#
L1554, 2024.

[43] “Azure Storage API: BlockBlob-StageBlockFromURL,” https://github.com/
Azure/Azurite/blob/d544d16f910e490fdd9db5565459df701895308f/swagger/
blob-storage-2021-10-04.json#L7069, 2024.

[44] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An Empirical Analysis of Flaky Tests,”
in FSE, 2014.

[45] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “A Survey of Flaky Tests,”
ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 31, no. 17,
pp. 1–74, Oct. 2021.

[46] “Lease Blob - Microsoft Documentation,” https://learn.microsoft.com/en-us/rest/api/
storageservices/lease-blob?tabs=microsoft-entra-id.

[47] J. Zhai, Y. Shi, M. Pan, G. Zhou, Y. Liu, C. Fang, S. Ma, L. Tan, and X. Zhang,
“C2S: Translating Natural Language Comments to Formal Program Specifications,” in
ESEC/FSE, 2020.

[48] D. Xie, Y. Li, M. Kim, H. V. Pham, L. Tan, X. Zhang, and M. W. Godfrey, “DocTer:
Documentation Guided Fuzzing for Testing Deep Learning API Functions,” in ISSTA,
2022.

[49] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall, “Analyzing APIs
Documentation and Code to Detect Directive Defects,” in ICSE, 2017.

34

https://docs.localstack.cloud/references/coverage/coverage_s3/
https://docs.localstack.cloud/references/coverage/coverage_s3/
https://docs.localstack.cloud/references/coverage/coverage_dynamodb/
https://docs.localstack.cloud/references/coverage/coverage_dynamodb/
https://docs.localstack.cloud/contributing/parity-testing/
https://docs.localstack.cloud/contributing/parity-testing/
https://github.com/Azure/Azurite/blob/main/CONTRIBUTION.md#testing
https://github.com/Azure/Azurite/blob/main/CONTRIBUTION.md#testing
https://github.com/Azure/Azurite?tab=readme-ov-file#support-matrix
https://github.com/Azure/Azurite?tab=readme-ov-file#support-matrix
https://github.com/Azure/Azurite/blob/d544d16f910e490fdd9db5565459df701895308f/swagger/blob-storage-2021-10-04.json#L1554
https://github.com/Azure/Azurite/blob/d544d16f910e490fdd9db5565459df701895308f/swagger/blob-storage-2021-10-04.json#L1554
https://github.com/Azure/Azurite/blob/d544d16f910e490fdd9db5565459df701895308f/swagger/blob-storage-2021-10-04.json#L1554
https://github.com/Azure/Azurite/blob/d544d16f910e490fdd9db5565459df701895308f/swagger/blob-storage-2021-10-04.json#L7069
https://github.com/Azure/Azurite/blob/d544d16f910e490fdd9db5565459df701895308f/swagger/blob-storage-2021-10-04.json#L7069
https://github.com/Azure/Azurite/blob/d544d16f910e490fdd9db5565459df701895308f/swagger/blob-storage-2021-10-04.json#L7069
https://learn.microsoft.com/en-us/rest/api/storageservices/lease-blob?tabs=microsoft-entra-id
https://learn.microsoft.com/en-us/rest/api/storageservices/lease-blob?tabs=microsoft-entra-id

[50] D. Xie, B. Yoo, N. Jiang, M. Kim, L. Tan, X. Zhang, and J. S. Lee, “Impact of Large
Language Models on Generating Software Specifications,” arXiv:2306.03324, 2023.

[51] S. Mandal, A. Chethan, V. Janfaza, S. M. F. Mahmud, T. A. Anderson, J. Turek,
J. J. Tithi, and A. Muzahid, “Large Language Models Based Automatic Synthesis of
Software Specifications,” arXiv:2304.09181, 2023.

[52] C. Hathhorn, C. Ellison, and G. Roşu, “Defining the Undefinedness of C,” in PLDI,
2015.

[53] “Azurite README,” https://github.com/Azure/Azurite/blob/main/README.md.

[54] J. Bornholt, A. Kaufmann, J. Li, A. Krishnamurthy, E. Torlak, and X. Wang, “Speci-
fying and Checking File System Crash-Consistency Models,” in ASPLOS, 2016.

[55] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wansbrough, “Rig-
orous Specification and Conformance Testing Techniques for Network Protocols, as
applied to TCP, UDP, and Sockets,” in SIGCOMM, 2005.

[56] S. Chasins, A. Cheung, N. Crooks, A. Ghodsi, K. Goldberg, J. E. Gonzalez, J. M.
Hellerstein, M. I. Jordan, A. D. Joseph, M. W. Mahoney, A. Parameswaran, D. Pat-
terson, R. A. Popa, K. Sen, S. Shenker, D. Song, and I. Stoica, “The Sky Above the
Clouds: A Berkeley View on the Future of Cloud Computing,” arXiv:2205.07147, 2022.

[57] I. Stoica and S. Shenker, “From Cloud Computing to Sky Computing,” in HotOS, 2021.

[58] Google Cloud, “What is a Hybrid Cloud?” https://cloud.google.com/learn/
what-is-hybrid-cloud.

[59] IBM Hybrid Cloud, “Hybrid cloud solutions,” https://www.ibm.com/hybrid-cloud.

[60] M. Loukides, “The Cloud in 2021: Adoption Continues,” O’Reilly Medial, Tech. Rep.,
2021.

[61] J. Wang, U. Gupta, and A. Sriraman, “Giving Old Servers New Life at Hyperscale,” in
HotInfra, 2023.

[62] P. Ambati, I. Goiri, F. Frujeri, A. Gun, K. Wang, B. Dolan, B. Corell, S. Pasupuleti,
T. Moscibroda, S. Elnikety, M. Fontoura, and R. Bianchini, “Providing SLOs for
Resource-Harvesting VMs in Cloud Platforms,” in OSDI, 2020.

[63] C. Narla and D. Salas, “Hermetic Servers,” https://testing.googleblog.com/2012/10/
hermetic-servers.html, Oct. 2012.

[64] Y. Chen, X. Sun, S. Nath, Z. Yang, and T. Xu, “Push-Button Reliability Testing for
Cloud-Backed Applications with Rainmaker,” in NSDI, 2023.

[65] G. Rothermel and M. Harrold, “Analyzing Regression Test Selection Techniques,” IEEE
Transactions on Software Engineering (TSE), vol. 22, no. 8, pp. 529–551, Aug. 1996.

35

https://github.com/Azure/Azurite/blob/main/README.md
https://cloud.google.com/learn/what-is-hybrid-cloud
https://cloud.google.com/learn/what-is-hybrid-cloud
https://www.ibm.com/hybrid-cloud
https://testing.googleblog.com/2012/10/hermetic-servers.html
https://testing.googleblog.com/2012/10/hermetic-servers.html

[66] G. Rothermel and M. Harrold, “A Safe, Efficient Regression Test Selection Technique,”
ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 6, no. 2,
p. 173–210, Apr. 1997.

[67] S. Yoo and M. Harman, “Regression Testing Minimisation, Selection and Prioritisation:
A Survey,” Software Testing, Verification & Reliability, vol. 22, no. 2, p. 67–120, Mar.
2012.

[68] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V. Shankar,
J. M. Carreira, K. Krauth, N. Yadwadkar, J. Gonzalez, R. A. Popa, I. Stoica, and D. A.
Patterson, “Cloud Programming Simplified: A Berkeley View on Serverless Comput-
ing,” University of California at Berkeley, Tech. Rep. UCB/EECS-2019-3, 2019.

[69] J. Wen, Z. Chen, X. Jin, and X. Liu, “Rise of the Planet of Serverless Computing:
A Systematic Review,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 32, no. 5, pp. 1–61, July 2023.

[70] C. Lyu, J. Xu, S. Ji, X. Zhang, Q. Wang, B. Zhao, G. Pan, W. Cao, P. Chen, and
R. Beyah, “MINER: A Hybrid Data-Driven Approach for REST API Fuzzing,” in
USENIX Security, 2023.

[71] P. Godefroid, B.-Y. Huang, and M. Polishchuk, “Intelligent REST API Data Fuzzing,”
in ESEC/FSE, 2020.

[72] O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing Program Input Gram-
mars,” in PLDI, 2017.

[73] P. Godefroid, H. Peleg, and R. Singh, “Learn&Fuzz: Machine Learning for Input
Fuzzing,” in ASE, 2017.

[74] H. Wu, L. Xu, X. Niu, and C. Nie, “Combinatorial Testing of RESTful APIs,” in ICSE,
2022.

[75] J. C. Alonso, “Automated Generation of Realistic Test Inputs for Web APIs,” in ES-
EC/FSE, 2021.

[76] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “RESTest: Automated Black-Box
Testing of RESTful Web APIs,” in ISSTA, 2021.

[77] A. Arcuri, “RESTful API Automated Test Case Generation with EvoMaster,” ACM
Transactions on Software Engineering and Methodology (TOSEM), vol. 28, no. 1, pp.
1–37, Jan. 2019.

[78] E. Viglianisi, M. Dallago, and M. Ceccato, “RESTTESTGEN: Automated Black-Box
Testing of RESTful APIs,” in ICST, 2020.

[79] Y. Liu, Y. Li, G. Deng, Y. Liu, R. Wan, R. Wu, D. Ji, S. Xu, and M. Bao, “Morest:
Model-based RESTful API Testing with Execution Feedback,” in ICSE, 2022.

36

[80] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen, and J. Yang, “Under-
standing Fileless Attacks on Linux-based IoT Devices with HoneyCloud,” in MobiSys,
2019.

[81] C. Kreibich and J. Crowcroft, “Honeycomb – Creating Intrusion Detection Signatures
Using Honeypots,” in SIGCOMM-CCR, 2004.

[82] M. D. Vrable, J. T. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren, G. M.
Voelker, and S. Savage, “Scalability, Fidelity, and Containment in the Potemkin Virtual
Honeyfarm,” in SOSP, 2005.

[83] H. Lin, J. Qiu, H. Wang, Z. Li, L. Gong, D. Gao, Y. Liu, F. Qian, Z. Zhang, P. Yang,
and T. Xu, “Virtual Device Farms for Mobile App Testing at Scale: A Pursuit for
Fidelity, Efficiency, and Accessibility,” in MobiCom, 2023.

[84] H. Cai, Z. Zhang, L. Li, and X. Fu., “A Large-Scale Study of Application Incompati-
bilities in Android,” in ISSTA, 2019.

[85] L. Chen, F. Hassan, X. Wang, and L. Zhang, “Taming Behavioral Backward Incompat-
ibilities via Cross-Project Testing and Analysis,” in ICSE, 2020.

[86] Y. Zhang, J. Yang, Z. Jin, U. Sethi, K. Rodrigues, S. Lu, and D. Yuan, “Understanding
and Detecting Software Upgrade Failures in Distributed Systems,” in SOSP, 2021.

[87] C. Zhu, M. Zhang, X. Wu, X. Xu, and Y. Li, “Client-Specific Upgrade Compatibility
Checking via Knowledge-Guided Discovery,” ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), vol. 32, no. 4, pp. 1–31, May 2023.

[88] Y. Zhao, L. Li, K. Liu, and J. C. Grundy, “Towards Automatically Repairing Compat-
ibility Issues in Published Android Apps,” in ICSE, 2022.

[89] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, “Automatic Test Factoring for Java,”
in ASE, 2005.

[90] X. Wang, L. Xiao, T. Yu, A. Woepse, and S. Wong, “An Automatic Refactoring
Framework For Replacing Test-Production Inheritance by Mocking Mechanism,” in
ESEC/FSE, 2021.

[91] A. Arcuri, G. Fraser, and J. P. Galeotti, “Automated Unit Test Generation for Classes
with Environment Dependencies,” in ASE, 2014.

37

	CHAPTER 1 Introduction
	Motivation
	Contribution

	CHAPTER 2 Background
	Cloud Services and Their APIs
	Cloud Emulator

	CHAPTER 3 Methodology
	Studied Emulators and Services
	Test Workloads
	Fuzzing SDK APIs.
	Using existing tests.

	CHAPTER 4 Discrepancy Characteristics
	Prevalence of Discrepancies
	Discrepancy Manifestations
	Impact on Real-World Tests

	CHAPTER 5 Root Cause Analysis
	Defects in Existing Specifications
	Unspecified Behavior
	Implementation Defects

	CHAPTER 6 Discrepancy Mitigation: A Discussion
	An Active Role of Cloud Service Providers
	Formal Models as Emulators
	``POSIX'' for Cloud Service APIs
	Economic Cloud Services for Testing
	Hybrid Cloud-Emulator Testing

	CHAPTER 7 Hybrid Cloud-Emulator Testing
	Policies
	Selection by discrepant APIs
	Selection with in-situ API monitoring
	Combined policy.
	Evaluation

	CHAPTER 8 Threats to Validity
	CHAPTER 9 Related Work
	CHAPTER 10 Conclusion
	REFERENCES

