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ABSTRACT

A large percentage of real-world software configuration issues, such as misconfigurations,

involve multiple interdependent configuration parameters. However, existing techniques and

tools either do not consider dependencies among configuration parameters—termed config-

uration dependencies—or rely on one or two dependency types and code patterns as input.

Without rigorous understanding of configuration dependencies, it is hard to deal with many

resulting configuration issues.

This thesis presents our study of software configuration dependencies in 16 widely-used

cloud and datacenter systems, including dependencies within and across software compo-

nents. To understand types of configuration dependencies, we conduct an exhaustive search

of descriptions in structured configuration metadata and unstructured user manuals. We

find and manually analyze 521 configuration dependencies. We define five types of configu-

ration dependencies and identify their common code patterns. We report on consequences

of not satisfying these dependencies and current software engineering practices for handling

the consequences.

We mechanize the knowledge gained from our study in a tool, cDep, which detects config-

uration dependencies. cDep automatically discovers five types of configuration dependencies

from bytecode using static program analysis. We apply cDep to the eight Java and Scala

software systems in our manual study. cDep finds 87.9% (275/313) of the related subset of

dependencies from our study. cDep also finds 448 previously undocumented dependencies,

with a 6.0% average false positive rate. Overall, our results show that configuration depen-

dencies are more prevalent and diverse than previously reported and should henceforth be

considered a first-class issue in software configuration engineering.
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CHAPTER 1: INTRODUCTION

1.1 MOTIVATION

Software misconfigurations are among the major causes of failures and performance issues

in today’s large-scale software systems that are deployed in cloud and data centers [1, 2, 3,

4, 5, 6, 7, 8, 9, 10]. For example, misconfigurations are reported as the second largest cause

of service-level incidents in one of Google’s main production services [7]; meanwhile, miscon-

figurations contribute to 16% of service-level incidents [11] at Facebook and are considered

a key reliability challenge at Facebook scale [6].

Besides the prevalent and severe misconfigurations, users’ configuration issues (e.g., diffi-

culties in understanding configurations) also result in high support costs [10, 12, 13, 14, 15].

It has been reported that configuration issues are the dominant source of support costs

incurred by cloud and datacenter software vendors [1, 10].

Among misconfigurations that cause real-world problems, 23.4%–61.2% involve more than

one configuration parameter [10]. Further, in the cases with multiple parameters, the config-

uration parameters have dependencies—the correctness and effects of one parameter’s value

depends on other parameter values. In other words, the dependent configuration parameters

should be considered together: setting one of them could affect the others.

Dependencies among multiple configuration parameters have been identified as a key

source in complexity and error-proneness of software configurations [16, 17]. System users

face not only the enormous configuration space of very many parameters, but they also have

to understand the dependencies. Note that exhaustively enumerating all possible dependen-

cies leads to a combinatorial explosion. To make matters worse, configuration dependencies

could also cross component boundaries—a parameter defined in one software component

could depend on a parameter defined in a different component (or even in a different project).

As we show (§4), inter-component configuration dependencies are not rare.

Taming software configuration dependency through configuration engineering and/or tool-

ing is currently limited because the understanding of real-world dependencies is still prelim-

inary. To make progress, a comprehensive study of configuration dependencies is needed.

Better understanding would significantly benefit existing configuration tooling (e.g., for mis-

configuration detection and diagnosis), reliability engineering (e.g., configuration correctness

rule engineering [11, 18, 19]), configuration-aware testing [20, 21, 22, 23, 24, 25, 26, 27, 28,

29, 30], and customer support and documentation [31, 16].

A few misconfiguration detection and diagnosis techniques consider configuration depen-
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Configuration Parameters:
P1: mapred.job.maxtaskfailures.per.tracker
P2: mapred.reduce.maxattempts
P3: mapred.map.maxattempts
Dependencies: 
P1 < P2 and P1 < P3 
Impact:
Violations of the dependencies will prevent failed 
tasks from trying on different nodes. No checking 
or enforcement is implemented in MapReduce. 
The dependencies were undocumented before 
version 2.0.2. 

Configuration Parameters:
P1: dfs.namenode.heartbeat.recheck-interval
P2: dfs.heartbeat.interval

Dependencies: 
heartbeatExpireInterval = P1× 2 + P2 × 10000
(heartbeatExpireInterval is the period to wait 
for DataNode heartbeat)
Impact:
Many HDFS users were confused by the heart-
beat behavior and asked on the mailing lists
stating that “heartbeat” does not work. 

Configuration Parameters:
P1: hbase.lease.recovery.dfs.timeout
P2: hbase.lease.recovery.pause
P3: dfs.client.socket-timeout
P4: dfs.heartbeat.interval

Dependencies: 
P1 >= P2 + P3 + P4 

Impact:
The violation of this dependency will put the 
lease recovery procedure into infinite loops. 
No checking or enforcement is implemented.

MapReduce

H
B
A
SEH
D
FS

HDFS

(a) (b) (c)

Figure 1.1: Examples of problematic configuration dependencies from cloud and datacenter
software projects and their impact: (a) MapReduce; (b) HDFS, and (c) HBASE and HDFS.
All these dependencies have caused real-world issues [32, 33, 34, 35].

dencies. However, all those techniques rely on a priori knowledge of only one or two depen-

dency types and/or their code patterns as inputs. Tools that implement those techniques

only cover a subset of dependencies, and also overlook several common and important de-

pendency types and the corresponding code patterns. A detailed comparison is in §4.5.2.

1.2 CONTRIBUTIONS

This thesis makes two main contributions. First, we make the first attempt (to the best of

our knowledge) to systematically study software configuration dependencies in modern cloud

and datacenter software, for both intra- and inter-component dependencies. In particular,

we comprehensively study configuration dependencies in 16 widely-used software projects

across two different cloud and datacenter software stacks: the Hadoop-based data analytics

stack and the OpenStack cloud computing infrastructure. We exhaustively search the con-

figuration dependency information described in configuration metadata and manual pages

of these projects, and identify the types of configuration dependencies that exist. In total,

we discover 521 configuration dependencies, including 424 intra-component dependencies

and 97 inter-component dependencies. We manually analyze each of the 521 configuration

dependencies in depth, including their source code patterns, potential impact on the sys-

tem when not satisfied, and existing engineering practices of dependency checking, violation

handling and logging.

Based on our study, we define and formalize five types of configuration dependencies with

the common code patterns that they manifest. These code patterns can be used to auto-

matically discover configuration dependencies from code. Our study also reveals a number

of missing opportunities in software configuration design and implementation for improving

software reliability and usability.
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Second, to discover configuration dependencies, we present a tool named cDep that mech-

anizes our understanding. cDep analyzes Java bytecode of the software programs of interest

and automatically identifies specific types of dependencies and the interdependent parame-

ters. cDep uses a novel and intuitive idea to discover configuration dependencies. cDep first

“colors” program variables that store values of different configuration parameters based on

static taint analysis—variables associated with different parameters have different colors; a

variable derived from multiple parameters could have multiple colors. Then, cDep analyzes

the dependencies between the colored variables based on the source code patterns from our

study. cDep shows that it is feasible to effectively discover various types of configuration

dependencies both within and across software components without the need to exhaustively

evaluate all possible combinations.

We implement cDep on top of the Soot compiler framework [36]. We apply cDep to

the eight Java and Scala projects in the Hadoop stack from our study. cDep finds 87.9%

(275/313) of the configuration dependencies in our manually curated dataset from our study.

cDep also finds 448 previously undocumented dependencies and incurs a false-positive rate

of 6.0%. Running cDep on the Hadoop-based stack of eight large software systems takes

no more than 160 minutes.

Overall, our results show that software configuration dependencies are more common and

diverse than previously reported and should henceforth be considered a first-class issue in

software configuration design and implementation, in tooling for misconfiguration detection

and troubleshooting, as well as in configuration-aware testing and verification.
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CHAPTER 2: BACKGROUND

We show examples of problems due to configuration dependencies, describe configurations,

and define configuration dependencies.

2.1 MOTIVATING EXAMPLES

Figure 1.1 shows three real-world examples of configuration dependencies within and across

the widely-used software projects that we studied. Figure 1.1 also shows that failure to

understand or satisfy configuration dependencies can have negative impact. In fact, all

three dependencies in Figure 1.1 have had significant implications on system reliability,

and have caused real-world issues in the past. In particular, in Figures 1.1(a) and (c), if

the dependencies are not satisfied, the failures occur during system recovery and caused

catastrophic failures [37]. Additionally, the configuration dependencies were not always well

documented—Figure 1.1(a)—and have repeatedly led to bad issues experienced by many

different users—Figure 1.1(b). In Figure 1.1(c), the configuration dependency includes four

configuration parameters across two different components—HDFS and HBase—from two

separate software projects.

2.2 CONFIGURATIONS AND THEIR USAGE

A configuration is a mapping from a parameter to its value. Configurations allow cus-

tomization of system behavior without making changes to the code. We assume the following

model of how configurations are used in programs.

Loading. Configurations are loaded by reading from an external file or database and stor-

ing parameter values in program variables. Mature projects have well-defined application

programming interfaces (APIs) for loading configurations [2, 12, 38, 39, 40, 41, 42, 43]. All

projects evaluated in this paper have such APIs. Hadoop projects load configurations using

getter methods that take a parameter and return a value (e.g., getInt, getString), declared

in wrapper classes for java.util.Properties or apache.commons.Configuration. OpenStack

projects use the configparser API, a part of the standard Python library which provides

getter methods (e.g., getint and getboolean). We found that tracking usages of getter

methods is effective for finding where parameter values are loaded.
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Propagation and Transformation. Once loaded, parameter values may be propagated

along a program’s data-flow paths using assignment statements and may be transformed

using arithmetic or string operations. Propagation is commonly inter-procedural through

arguments and return values or through message passing with sockets or Remote Procedure

Calls (RPCs).

Usage. Eventually, parameter values are used in statements that change program behavior,

e.g., branch conditions or system calls.

This model of configuration usage is the basis of our static analysis for discovering configu-

ration dependencies: it reasons about interactions of program variables that store parameter

values (§6).

2.3 CONFIGURATION DEPENDENCIES

Conceptually, a configuration dependency is either (1) functional if a parameter value is

influenced by other parameter values, or (2) behavioral if a set of parameter values combine

to influence a particular system behavior.

We define a functional configuration dependency as a pair, (M, f). Let P be the set of

all parameters. M maps a parameter p ∈ P to a non-empty set of parameters Q ⊆ P if the

value or scope of p depends on a function f of the value of parameters in Q. For example,

let Q = {q1, ..., qn}. Then, (p 7→ {q1, ..., qn}, f) is a configuration dependency if the value

or scope of c(p) is determined by f(c(q1), ..., c(qn)), where c is a getter method. We put

the functional configuration dependencies in our study into four categories based on what f

computes (§4.1).

A behavioral configuration dependency is a function, g : R→ {true, false} which returns

true if there is a method in the program that takes the set of values of parameters in R ⊆ P ,

i.e., {c(r1), ..., c(rn)} as arguments and can return a non-zero exit code, and false otherwise.

For example, let R = {ip.address, port.number}, and let connect(a,b) be a method in the

program that creates a network connection at an IP address a on port b. Then g(R) = true

is a behavioral configuration dependency, because the system can fail if elements in R are

misconfigured, e.g., if the IP address does not allow connections on the specified port number.

We also categorize configuration dependencies based on where parameters are defined,

essential for analyzing software stacks with multiple components. A functional configuration

dependency is intra-component if all parameters in {p}∪Q are defined in the same component

and inter-component if x, y ∈ ({p} ∪ Q) such that x and y are not defined in the same
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component. Similarly, a behavioral dependency is intra-component if all parameters in R

are defined in the same component, and inter-component otherwise.
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CHAPTER 3: STUDY METHODOLOGY

The key challenge in studying software configuration dependencies lies in the fact that

dependency information is neither usually explicitly specified in code nor documented else-

where. As the first step towards a comprehensive understanding, we manually collect a

large dataset of configuration dependencies both within the same component (i.e., intra-

component dependencies) and across inter-related components (i.e., inter-component depen-

dencies).

In this chapter, we describe our methodology for collecting configuration dependency

information and for validating and analyzing the collected data. We will make our dataset

and analysis scripts publicly available after the double-blind process.

3.1 SOFTWARE SYSTEMS STUDIED

To collect both intra- and inter-component configuration dependencies, we studied soft-

ware systems in two widely-used cloud and datacenter stacks: the Hadoop-based data analyt-

ics stack and OpenStack for cloud computing. Both stacks contain a number of independent

but inter-related open-source software systems. The Hadoop stack includes 17 components

for data processing and analytics, as well as underlying services for cluster management,

scheduling, storage, coordination, etc. Similarly, OpenStack consists of 33 components for

computing, storage, networking, imaging, etc., which can be used for building cloud com-

puting platforms.

Table 3.1 gives a short description of the 16 components that we studied: eight components

from Hadoop (Hadoop Common [44], HDFS [45], YARN [46], HBASE [47], Alluxio [48],

ZooKeeper [49], MapReduce [50], and Spark [51]) and eight components from OpenStack

(Nova [?], Swift [52], Neuron [53], Keystone [54], Glance [55], Placement [56], Ironic [57],

and Cinder [58]). Each component is a stand-alone project but is typically used with other

components to compose large-scale distributed systems. We chose these 16 projects because

they are widely-used and studied; their configuration design and implementation represents

the state-of-the-art in modern cloud systems, and each one exposes many configuration

parameters, as shown in Table 3.1.
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Project Lang. Desc. LOC # Param.

H
a
d
o
o
p

HCommon [44] Java Hadoop core lib/runtime 268K 320
HDFS [45] Java Distributed file system 644K 431
Yarn [46] Java Resource management 639K 397
HBase [47] Java Distributed database 755K 202
Alluxio [48] Java In-memory storage 459K 332
ZooKeeper [49] Java Distributed coordination 105K 51
MapReduce [50] Java Data processing 220K 202
Spark [51] Scala ML and data processing 586K 348

O
p
e
n
S
ta

ck

Nova [?] Python Compute service 365K 708
Swift [52] Python Object storage 216K 405
Neutron [53] Python Networking service 223K 222
Keystone [54] Python Authentication 105K 202
Glance [55] Python Image management 62K 193
Placement [56] Python Resource tracking 15K 22
Ironic [57] Python Machine provisioning 123K 509
Cinder [58] Python Block storage 364K 769

Table 3.1: Studied software systems and their descriptions.

3.2 DATA COLLECTION AND ANALYSIS

Ideally, configuration dependencies would be collected automatically, e.g., by using pro-

gram analysis. However, that was difficult for us because there was no prior study of the

types of configuration dependencies. Therefore, as described in §3.2.1, we manually col-

lected configuration dependencies based on two text-based data sources (henceforth, text

sources) where dependency information is sometimes documented: configuration metadata

(e.g., in XML based default configuration files) and user manuals. While text sources do

not document the complete set of configuration dependencies, they provide a starting point.

We are aware that user manuals and other documents often miss important informa-

tion [39, 59, 31, 60, 20]. In fact, our automated tool, cDep, finds many undocumented

configuration dependencies (§6). We are also aware that text sources could be outdated or

even incorrect [39, 59, 31, 60, 20]. So, we do not treat the dependencies that we collect from

text sources as ground truths. Rather, we manually validated every collected configuration

dependency by understanding how the dependency occurs in the code (§3.2.2).

3.2.1 Collecting Configuration Dependencies

We describe our heuristics for exhaustively searching for potential configuration depen-

dencies in the two text sources. We prioritized completeness over precision—our heuristics-

based text analysis is effective in discovering configuration dependencies but also introduces
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false positives. False positives are acceptable at this stage; all collected data are subsequently

manually inspected and validated. Our data collection does not differentiate intra- vs. inter-

component dependencies. We identify any interdependent configuration parameters which

could come from one or multiple components.

Collecting Potential Configuration Dependencies from Structured Configuration

Metadata. All 16 software systems that we studied manage structured descriptions and

other metadata about configuration parameters, which are organized in different forms,

e.g., manual entries [61, 62, 63, 64] and default (XML) configuration files [65, 66, 67, 68].

Ideally, the description of a configuration parameter should mention its dependencies on

other parameters (if any) but we rarely found such configuration dependency information in

these structured configuration metadata.

We use the following heuristic to search for potential configuration dependencies: if the

description of one parameter mentions another parameter, there is a likely dependency be-

tween both parameters. We implement this heuristic by searching for other parameters in the

description of each parameter. Note that the search is not limited to strict string matching

on parameter names; we implement fuzzy search using a series of natural language process-

ing techniques, including tokenization, lowercase and camel-case filtering, and stemming. As

previously pointed out [69, 70, 71], textual descriptions may not contain the exact strings of

parameter names, but may contain similar text that describes parameters.

Collecting Potential Configuration Dependencies from Unstructured Manual

Pages. Configuration dependencies are sometimes also described in unstructured manual

pages (e.g., [72, 73, 74]). We use the following heuristic to identify potential configuration

dependencies from unstructured texts: if two parameters are mentioned in the same para-

graph, they are likely dependent. We record the paragraph and the manual page for further

validation. Note that for manual pages, we search for exact parameter names.

3.2.2 Validation and Analysis.

We validate each potential configuration dependency by inspecting each portion of text

that contains a likely configuration dependency. We filter out any false positives that we

encounter. Each case is inspected by two inspectors. One inspector first manually examined

each dependency in detail, with the goal to answer these questions: (1) What are the de-

pendent parameters? (2) Is it an intra- or inter-component dependency? (3) How are these

parameters dependent? The second inspector then manually verified all the results from the

9



first inspector. In the end, we had 521 dependencies and categorized them by the types in

§4. Two inspectors spent six months validating. For each of the 521 validated configuration

dependencies, we further analyze the source code to answer three other questions: (4) What

are the code patterns exhibited by different dependency types? (§4.1, §4.2) (5) How are

configuration dependency violations checked in source code? (§5.1) (6) How are detected

violations of configuration dependencies handled in source code? (§5.2)
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CHAPTER 4: CONFIGURATION DEPENDENCY TYPES

We define four types of functional configuration dependencies that we found, provide ex-

amples, and describe commonly-occurring code patterns. We neither imposed a taxonomy

ex ante nor defined types admissible by the definition in §2.3 but which do not occur in our

data set. We also provide more details and examples of behavioral configuration dependen-

cies. Lastly, we describe the results of categorizing the configuration dependencies in our

data set according to the types described in this section.

4.1 TYPES OF FUNCTIONAL DEPENDENCIES

Recall from §2.3 that a functional configuration dependency is one in which a parameter

value is influenced by other parameter values, defined as a pair (M, f). M maps a dependent

parameter p to the set of parameters Q = {q1, ..., qn} such that the scope or value of c(p) is

determined by f(c(q1), ..., c(qn)), where c looks up parameters and returns values. The type

of M is the same in all functional configuration dependency types defined below; f varies.

For brevity, we will sometimes write Q for [c(q1), ..., c(qn)], the list of values of the parameters

in Q. Although Q has one element in all but four of 521 configuration dependencies that we

found, below we give general definitions in which Q is a multi-element set.

4.1.1 Control Dependency

In a control dependency, whether a dependent parameter p value can be used or not

depends on the value of other parameters—f(Q) determines whether p is in scope.

Example. The most common form of control dependency that we found is that {q1, ..., qn}
enables or disables the execution of the only parts of code where p is used. That is,

c(p) is used only when c(q1) ∧ ... ∧ c(qn) is true. In a concrete example from HDFS,

p = rpc.metrics.percentiles.intervals and Q = {rpc.metrics.quantile.enable}. Q

controls whether to measure percentile latency as a RPC metric, p specifies percentiles to

measure.

Code Patterns. Essentially, a control dependency occurs when control flows to all uses

of c(p) are guarded by Q. We found two control dependency code patterns: (1) Branch

condition. Branching depends on Q and the dependent parameter value c(p) is used in

only one branch. The following code snippet shows the control dependency of the example

11



described above, in which the value of rpc.metrics.quantile.enable (in rpcQuantileEnable)

controls the use of rpc.metrics.percentiles.intervals’s value (in intervals).

1 if ( rpcQuantileEnable ) {

2 rpcQueueTimeMillisQuantiles = new MutableQuantiles[ intervals ];

3 for (int i = 0; i < intervals; i++) { ... }

4 }

(2) Object creation. Q is used to initialize an object and c(p) is only used inside the created

object. The following code snippet shows an example of such pattern from HDFS. The value

of dfs.datanode.available-space-volume-choosing-policy.balanced-space-preference-f

raction is only used when the value of dfs.datanode.fsdataset.volume.choosing.policy

is AvailableSpaceVolumeChoosingPolicy, since the former parameter is only used inside the

class AvailableSpaceVolumeChoosingPolicy 1.

1 VolumeChoosingPolicy <...> blockChooserImpl =

2 ReflectionUtils.newInstance(conf.getClass(

3 "dfs.datanode.fsdataset.volume.choosing.policy" ), ...);

4

5 public class AvailableSpaceVolumeChoosingPolicy <...>

6 implements VolumeChoosingPolicy{

7 balancedPreferencePercent = conf.getFloat(

8 "dfs.datanode.available-space-*.balanced-space-preference-fraction" ,...);

9 ... }

4.1.2 Default Value Dependency

The default value of the dependent parameter p is a function of Q if and only if p is not

currently assigned a value:

c(p) =

h(c(q1), ..., c(qn)), if c(p) == null

c(p), otherwise
(4.1)

where null means that a parameter is not mapped to a value.

Example. In one HDFS example, p = dfs.namenode.edits.dir, Q = {dfs.namenode.name.dir}
and h is the identity function. dfs.namenode.edits.dir and dfs.namenode.name.dir specify

1dfs.datanode.available-space-volume-choosing-policy.balanced-space-preference-fraction is abbreviated
to save space.
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the filesystem locations to store name tables and transactions, respectively. The latter serves

as the default value of the former.

Code Patterns. Two code patterns that matched the cases in (4.1): (1) In-file substitu-

tion. One parameter value is explicitly used as the default value for the dependent parameter

in the configuration file, as shown in the following example.

1 <name > dfs.namenode.checkpoint.edits.dir </name >

2 <value >${ dfs.namenode.checkpoint.dir }</value >

(2) In-code substitution. During execution, if the value of the dependent parameter is null,

it is set to the value of another parameter. An example:

1 public static List <URI > getNamespaceEditsDirs (...){

2 if ( editsDirs .isEmpty ()) { //dfs.namenode.edits.dir

3 return getStorageDirs(conf , "dfs.namenode.name.dir" );

4 }

5 }

When editDirs (storing the value of dfs.namenode.edits.dir) is empty (i.e., not set), the

value of dfs.namenode.name.dir is returned.

4.1.3 Overwrite Dependency

When multiple components are used together, some values for parameters defined in

one component may be overwritten to be consistent with the parameter values in an-

other component. Hence, in an overwrite dependency, at some point after p was initialized,

c(p) = h(c(q1), ..., c(q2)). Overwrite dependencies in our data set are often inter-component

dependencies and crashes can occur when an expected overwrite dependency does not hold.

However, users may not be aware of overwrite dependencies, so there can be confusion as to

why the system does not use the parameter values that users set.

Example. An example overwrite dependency from YARN and HDFS had p =dfs.client.

retry.policy.spec, Q = {q} where q =yarn.resourcemanager.fs.state-store.retry-poli

cy-spec, and h as the identity function. p defines the timeouts and retries for HDFS clients;

YARN uses HDFS as a distributed file system and overwrites p with its own parameter q.

Code Patterns. We identified two code patterns: (1) Explicit overwrites. The variable

holding the dependent parameter’s value is directly re-assigned. The following code snippet

shows the overwrite dependency described above,
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1 retryPolicy = conf.get(

"yarn.resourcemanager.fs.state-store.retry-policy-spec" , ..);

2 conf.set( "dfs.client.retry.policy.spec" , retryPolicy);

in which the get and set methods are used to read and overwrite configuration values,

respectively. (2) Implicit overwrites. Multiple parameters are used to set the environmental

variables and different environmental variables possess different priorities which form the

overwriting relation implicitly. The following shows an example from MapReduce:

1 log4jPropertyFile = conf.get( "mapreduce.job.log4j-properties-file" );

2 vargs.add("-Dlog4j.configuration="+log4jPropertyFile);

3 logLevel = conf.get( "yarn.app.mapreduce.am.log.level" );

4 vargs.add("-Dhadoop.root.logger=" + logLevel + ",CRLA");

The environment variable log4j.configuration set by mapreduce.job.log4j-properties-fi

le implicitly has higher priorities over the environment variable hadoop.root.logger set by y

arn.app.mapreduce.am.log.level. Thus, mapreduce.job.log4j-properties-file overwrites

yarn.app.mapreduce.am.log.level.

4.1.4 Value Relationship Dependency

The value of the dependent parameter p is constrained by the values of parameters in Q.

We observed three kinds of such constraints: (1) Numeric. c(p) = (A1·c(q1)�...�An·c(qn))+ε,

where � is any arithmetic operator, A1, ..., An are numeric coefficients, and ε is a positive

or negative constant, or zero. (2) Logical. c(p) = c′(q1) ◦ ... ◦ c′(qn), where ◦ means any

logical operator and c′ is a special getter method that returns true or false depending on

the value of a non-boolean qi or c(q1) if qi is boolean. It means the logical value c(p) should

be equal to the logical value of c′(q1) ◦ ... ◦ c′(qn). (3) Set. c(p) ⊆ c(q1)� ...� c(qn), where �
can be any set operator. Failure to satisfy the constraints of value relationship dependencies

can cause abnormal program behavior, including exit/abort, exceptions, and performance

degradation. Constraints in a value relationship dependency are checked during component

startup or during execution.

Example. In an Alluxio numeric value relationship dependency, p =

seqsplitsmall alluxio.master.worker.threads.max, Q = {q} where q =alluxio.mast

er.worker.threads.min, and ε ≥ 0. p and q define the max and min values of the thread

pool size; hence p ≥ q.
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Code Patterns. Commonly, (1) numeric value relationship dependencies constrain a pa-

rameter value to not be greater (respectively, less) than a max (respectively, min) value

specified by another parameter. The following shows an example from Alluxio,

1 mMinThreads=conf.getInt( "alluxio.master.worker.threads.min" );

2 mMaxThreads=conf.getInt( "alluxio.master.worker.threads.max" );

3 Preconditions.checkArgument(

4 mMaxThreads >= mMinThreads , ...);

(2) Logical value relationship dependencies are often used to specify that parameters need

to be simultaneously enabled. The following shows an example from Spark,

1 if ( dynamicAllocationEnabled ) { //spark.dynamicAllocation.enabled

2 ExecutorAllocationClient =>

3 Some(new ExecutorAllocationManager (...)

4 }

5 private[spark] class ExecutorAllocationManager(

6 private def validateSettings (): Unit = {

7 if (!conf.get( "spark.shuffle.service.enabled" ) && !testing)

8 throw new SparkException("...")

9 }

10 }

If spark.dynamicAllocation.enabled (stored in dynamicAllocationEnabled) is true, Spark

will create an ExecutorAllocationManager object which requires spark.shuffle.service.e

nabled to be true. Otherwise, an exception will be thrown. In short, spark.dynamicAlloc

ation.enabled and spark.shuffle.service.enabled have to be enabled at the same time.

(3) As the name implies, set relationship dependencies are often used to enforce that the

value of one parameter must be the subset of values specified by another parameter. The

following shows an example from YARN and Mapreduce,

1 Collection <String > shuffleProviders = conf.getStringCollection(

2 "mapreduce.job.shuffle.provider.services" );

3 Collection <String > auxNames = conf.getStringCollection(

4 "yarn.nodemanager.aux-services" );

5 for (String shuffleProvider: shuffleProviders)

6 if (auxNames.contains(shuffleProvider)) {

7 ...

8 } else {

9 throw new YarnRuntimeException ();

10 }
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Variable auxNames, which stores yarn.nodemanager.aux-services must be a subset of shuffleProviders,

which stores mapreduce.job.shuffle.provider.services; otherwise, a runtime exception

will be thrown.

4.2 BEHAVIORAL DEPENDENCIES

In a behavioral configuration dependency, there is no dependent parameter p whose value

or scope depends on the values of other parameters. Rather the values of multiple parameters

“co-operate” to influence some behavior of the system. More specifically, a set of parameters

P = {p1, ..., pn} have a behavioral dependency if they are used together in the same operation

(such as a library call, system call or method call), such that changing the value of some

p ∈ P can alter a component’s behavior.

Example. An example behavioral dependency in Hadoop Common is connect(A, B),

where P = {A,B}, A = fs.ftp.host and B = fs.ftp.host.port. Changing A but not

B (and vice versa) could result in an attempt to connect to an IP address at a port that is

not allowing connections—the effect of A is bounded by B.

Code Patterns. The code patterns for behavioral dependencies are (1) The library/sys-

tem/method call has P as arguments, e.g.,

1 String host = conf.get( "fs.ftp.host" );

2 int port = conf.getInt( "fs.ftp.host.port" );

3 client.connect(host , port);

(2) The result of an arithmetic operation on elements in P is an argument to the library/sys-

tem/method call. An example from HDFS,

1 editLogRollerThreshold =

2 conf.getLong( "dfs.namenode.checkpoint.txns" ) *

3 conf.getFloat( "dfs.namenode.edit.log.autoroll.multiplier.threshold" );

4

5 nnEditLogRoller = new Daemon(new NameNodeEditLogRoller(

editLogRollerThreshold ,...));

6 nnEditLogRoller.start ();

dfs.namenode.edit.log.autoroll.multiplier.threshold determines the threshold, which

in turn determines when an active node rolls its own edit log; dfs.namenode.checkpoint.tx

ns controls after how many transactions a checkpoint will be created. These parameters are
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Hadoop OpenStack

Dependencies Intra Inter Intra Inter

Control 125 20 118 0
Value Relationship 46 54 60 3
Overwrite 5 11 0 0
Default Value 32 6 18 0
Behavioral Dependency 11 3 9 0

Table 4.1: The number of dependency types for intra- and inter-component dependencies in
Hadoop and Openstack.

multiplied to obtain the threshold for rolling logs. They control how the function start()

works.

4.3 ONE-OFF CODE PATTERNS

We identify 30 configuration dependencies which fall in one of the dependency types

defined in §4.1 and §4.2, but do not have the common code patterns described in §4.1 and

§4.2. We provide two examples. The first example involves parameters dfs.hosts and

dfs.hosts.exclude in HDFS. The former specifies allowed data node addresses, while the

latter specifies blocked data node addresses. That is, the intersection of values specified by

these two parameters should be empty. However, from inspecting the code, we did not find

how they are related. A second example, also in HDFS, involves the parameters, dfs.na

menode.replication.min and dfs.namenode.safemode.replication.min. Both parameters

control replication numbers: the former controls the replication number in normal mode

while the latter controls the replication number in safe mode. Thus, the latter should be

larger than the former (to be safe), but there is no code to check this dependency.

4.4 RESULTS OF GROUPING DEPENDENCIES BY TYPE

Tables 4.1 and 4.2 show the results of grouping the configuration dependencies in our study

of text sources by the types discussed in §4.1 and §4.2. We highlight four main observations

from Table 4.1, which shows the intra- and inter-component configuration dependencies of

various types in Hadoop and OpenStack. First, majority (95.6%) of configuration depen-

dencies that we studied are functional. Second, control dependencies are the most common

form of (functional) configuration dependencies, comprising 50.5% of the 521 dependencies

that we studied. Third, across all dependency types, there are many more intra-component
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Hadoop OpenStack

Component Intra Inter Component Intra Inter

HCommon 38 36 Nova 65 0
HDFS 46 26 Swift 11 0
Yarn 46 57 Neutron 17 1
HBase 14 11 Keystone 42 1
Alluxio 10 8 Glance 16 2
Zookeeper 4 9 Placement 1 0
MapReduce 28 27 Ironic 28 2
Spark 33 14 Cinder 25 0

Total 219 94 Total 205 3

Table 4.2: The number of intra- and inter-component configuration dependencies found in
each application.

dependencies than inter-component dependencies, as expected (parameters should be used

more inside the components in which they are defined). We further investigated the inter-

component dependencies and found that the components that interacted the most were

MapReduce and YARN with 22 inter-component dependencies. Finally, OpenStack has

much fewer inter-component dependencies than Hadoop because components in OpenStack

are much loosely coupled—each component provides independent services and uses RESTful

APIs to communicate. Hence, in building cDep, we decided to focus on Java, in order to

discover dependencies in Java.

Table 4.2 shows how many intra-component dependencies and inter-component depen-

dencies are in each of the 16 software systems that we evaluate. A key observation is

that every software in our evaluation contains a configuration dependency, suggesting that

configuration dependencies are widespread. On average a component has 33 configuration

dependencies. Even though Placement is the smallest component with only 22 parameters,

it has one configuration dependency.

4.5 DISCUSSION

4.5.1 Variables in Dependencies

The majority of configuration dependencies only involve configuration values read from

configuration file, while some configuration dependencies could also include variables whose

values can only be evaluated at runtime. The following code snippet illustrates the latter.

1 // "mapreduce.map.memory.mb"
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2 Resource capability = getPerAllocationResource ();

3 // "yarn.nodemanager.resource.memory -mb" - allocated_memory

4 Resource available = total memory -allocated_memory

5 if (available > capability)

6 return new ContainerAllocation(pendingAsk , ALLOCATED);

7 else

8 return ContainerAllocation.LOCALITY_SKIPPED;

capability stores the requested memory (mapreduce.map.memory.mb) while available stores

the total available memory (yarn.nodemanager.resource.memory-mb). The variable available

can only be evaluated at runtime.

4.5.2 Comparison with dependencies covered in prior studies.

Control dependencies and value relationship dependencies have been discussed in a few

prior studies [12, 75, 76, 77, 78]. However, the other dependency types were mostly over-

looked.

No prior study provides formal definitions of different types of configuration dependen-

cies. Furthermore, few discuss how dependencies are manifested in source code. The only

exception discusses some code patterns of control and value dependencies [12], but the code

patterns are over-simplified and are limited to dependencies between two parameters. Many

of the code patterns such as object creation for control dependencies, and logical and subset

value relationships were overlooked.

4.5.3 Dependencies that we do not cover.

In this thesis, we mainly focus on configuration dependencies that are formed in software

programs. We do not consider configuration dependencies that are formed in the deployment

environment.

One such example is resource competition, in which different configuration parameters

refer to external resources, such as CPU, memory, and operating system resources (e.g.,

IP addresses, ports, and file descriptors). In other words, p and Q (defined in §2.3) must

satisfy external constraints enforced by the OS, virtual machine, or hardware that deploys

the software systems. Resource competition is difficult to capture in software, without

knowledge of the deployment environment. So, we do not consider them in this paper.
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CHAPTER 5: DEPENDENCY HANDLING IN PRACTICE

In this chapter, we study how configuration dependencies are checked, handled, and logged

in the software programs we study. We focus only on value relationship dependency types

(§4.1.4) which have clear definitions of violations which occur when constraints parameter

values do not hold. In principle, software programs should rigorously check that dependencies

hold, handle any violations, and provide feedback to the system users [31, 2, 12, 59].

We also studied the other types of dependencies, such as control, default value, and over-

write dependencies. Unfortunately, we rarely found checking code or feedback messages in

the program. For example, we observe that only 13 control dependencies have checking code

or feedback messages. Our analysis follows the practice of Xu et al. [2]—source code inspec-

tion and violation injection which observes the system behavior and logs while intentionally

violating the target dependency.

5.1 CHECKING CONFIGURATION DEPENDENCIES

Checking that configuration dependencies hold has significant implications on the relia-

bility, performance, and usability of software systems [2]. Without systematic and proactive

checking, dependency violations would manifest as runtime exceptions, error code, failed

assertions, or performance issues (discussed in §5.4).

Table 5.1 shows a break down of the three execution phases during which configuration

dependency is checked in Hadoop and OpenStack: (1) checking at initialization time,

(2) checking at runtime (after initialization), and (3) no checks. Note that neither

“checking at runtime” nor “no check” is desirable—the former could raise runtime errors

while the latter could degrade performance.

Observations. In Table 5.1, most dependencies (89% in Hadoop and 71.4% in OpenStack)

have logic in the code to check that they hold. However, a significant percentage of de-

pendencies (11% in Hadoop and 28.6% in OpenStack) have no checking logic—the program

directly uses the dependent parameter even when the dependency is violated, as exemplified

in Figure 1.1(c).

SW Stack Init Time Runtime No Check Total

Hadoop 46 (46.0%) 43 (43.0%) 11 (11.0%) 100
OpenStack 20 (31.7%) 25 (39.7%) 18 (28.6%) 63

Table 5.1: Checking practices of value relationship dependencies.
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Moreover, 43% and 39.7% of the cases in Hadoop and OpenStack are checked after ini-

tialization, when it is often too late to prevent or recover from runtime exceptions or other

failures and anomalous consequences [2]. The main reason is that not all modules are needed

at the system’s initialization phase; some modules are created on demand. Thus, in those on-

demand modules, the checking code is only invoked when the module is created. Moreover,

some dependency cases involve dynamic variables which can only be checked at runtime, as

described in §4.5.1.

5.2 HANDLING DEPENDENCY VIOLATIONS

We investigate how dependency violations detected by the checking logic (§5.1) are han-

dled. Table 5.2a shows handling logic in three categories: (1) exceptions: the program

does not recover from the violation; the violation is simply reported. Table 5.2a reports on

when the exception is thrown, either at initialization time or runtime. (2) correction: the

program enforces dependencies by correcting the violation; such correction could potentially

lead to behavior that is different from what the users expect, due to deviation from the

original parameter values set by users. Table 5.2a also reports whether the program logs its

corrective actions as user notifications, (3) logging only: the program logs the dependency

violation and continues its execution without invoking any handling logic.

Observations. Only 45% and 22.3% dependency violations are corrected in Hadoop and

OpenStack, respectively. Of these corrected violations, 80% (32/40) and 70% (7/10) do

not provide any log messages to users that parameter values were updated in Hadoop and

OpenStack, respectively. The implication is that the software that we studied are missing

many opportunities to correct dependency violations; they simply throw exceptions (40.4%

of cases in Hadoop and 73.3% of cases in OpenStack) or log the violations (14.6% of cases

in Hadoop and 4.4% of cases in OpenStack).

5.3 GIVING FEEDBACK ON DEPENDENCY VIOLATIONS

We systematically examined the quality of log/error messages produced during the han-

dling of dependency violations (§5.2). Table 5.2b shows four categories of feedback quality

that we found: (1) Complete: the log message contains all parameters in the dependency

and also describes the dependency, e.g.,

1 Preconditions.checkArgument(mMaxWorkerThreads >= mMinWorkerThreads

, "alluxio.master.worker.threads.min" +" can not be less than "+
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SW Stack
Exception Correction Logging

Total
Init Time Runtime w/ log w/o log only

Hadoop 30 (33.7%) 6 (6.7%) 8 (9.0%) 32 (36.0%) 13 (14.6%) 89
OpenStack 18 (40.0%) 15 (33.3%) 3 (6.7%) 7 (15.6%) 2 (4.4%) 45

(a) Violation handling practices of value relationship dependencies.

SW Stack Complete Partial Inadequate None Total

Hadoop 23 (25.8%) 17 (19.1%) 17 (19.1%) 32 (36.0%) 89
OpenStack 19 (42.2%) 10 (22.2%) 6 (13.3%) 10 (22.2%) 45

(b) Logging quality for violations of value relationship dependencies.

Table 5.2: Handling practices and feedback on dependency violations. We only include cases
that have checking code in Table 5.1—“no check” cases are not handled.

"alluxio.master.worker.threads.max" )

(2) Partial: the log message contains some but not all parameters in the dependency. It

is hard to understand the dependency directly from the log message. The following is an

example:

1 if ( recoveryEnabled ) { // mapreduce.jobhistory.recovery.enable

2 storeClass = conf.getClass("mapreduce.jobhistory.recovery.store.

class");

3 if (storeClass == null)

4 throw new RuntimeException("Unable to locate storage class ,

check mapreduce.jobhistory.recovery.store.class ");}

5 }

The message only pinpoints mapreduce.jobhistory.recovery.store.class, but does not

mention mapreduce.jobhistory.recovery.enable (stored in recoveryEnabled) which can be

disabled to fix the exception. (3) Inadequate: the log message contains no parameter. An

example:

1 try:

2 scheme = CONF. enabled backends [ store id ]

3 except KeyError:

4 msg = _("Store for identifier %s not found") % store_id

5 raise exceptions.UnknownScheme(msg)

the log message will only tell users identifier is not found, while telling neither parameter

names. (4) No message: This mostly occurs when the program overrides the configuration

values to enforce dependencies.
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SW Stack Usability
Startup Runtime Perf. Service

Total
Failure Failure Issues Degrad.

Hadoop 44 (44.0%) 30 (30.0%) 7 (7.0%) 12 (12.0%) 7 (7.0%) 100
OpenStack 24 (38.0%) 18 (28.6%) 15 (23.8%) 3 (4.8%) 3 (4.8%) 63

Table 5.3: Impact of violations of value relationship dependencies.

Observations. Majority of dependency violation handling logic (74.2% in Hadoop and

57.8% in OpenStack) do not provide complete log messages. 55.1% of log messages in Hadoop

and 35.5% of log messages in OpenStack are in the “inadequate” or “none” categories. These

results suggest that log enhancement tools [37, 79, 70] could be enhanced with configuration

dependency information to improve the quality of these messages.

5.4 CONSEQUENCES OF DEPENDENCY VIOLATIONS

Based on the analysis in §5.1—§5.3, we turn to the question, “what are the (potential)

consequences of configuration dependency violations?” We find that violations of configura-

tion dependencies can have several consequences, including (1) runtime failures (2) startup

failures, (3) performance issues (4) usability issues, and (5) service degradation. Table 5.3

shows a breakdown of these categories of potential consequences for control and value de-

pendencies.

49.0% and 57.2% of consequences are severe (i.e., failures or performance issues) for

Hadoop and OpenStack, respectively. The following code snippet from HDFS shows

an example in which a runtime exception is thrown when dfs.replication is less than

dfs.namenode.replication.min,

1 replication = conf.get( "dfs.replication" );

2 minReplication = conf.get( "dfs.namenode.replication.min" );

3 if (replication < minReplication)

4 throw new IOException (...);

Dependency violations can also lead to performance degradation. For example, when map

reduce.map.cpu.vcores exceeds yarn.nodemanager.resource.cpu-vcores, YARN will not

grant more CPUs to MapReduce, slowing down the system. Many dependency violations

could potentially lead to usability issues as the software either silently ignores or overwrites

user-specified parameter values. As discussed in §2.1, configuration dependencies often lead

to user confusion and questions in reality. We also observe service degradation such as log

truncation and stale data.
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CHAPTER 6: AUTOMATED DEPENDENCY DISCOVERY

As discussed in §3.2.2, manual discovery of configuration dependencies is time-consuming.

It took us 20 person months to discover, analyze, and validate the dependencies described in

the documents for the 16 software projects, despite extensive scripting (§3.2.1). However, the

understanding that we gained, including the definition and source code patterns, inspired

our automated solution for discovering configuration dependencies. We present cDep, a

tool for automatically discovering various types of configuration dependencies by statically

analyzing the target software programs. cDep is built on the Soot compiler framework [36].

It analyzes Java bytecode and thus works for both Java and Scala programs. cDep takes

the bytecode of multiple programs as input and outputs the configuration dependencies—the

parameters involved and the dependency types.

6.1 DESIGN AND IMPLEMENTATION

The basic idea of cDep is intuitive. cDep first colors each program variable that stores

a parameter value based on static taint analysis—variables associated with different param-

eters have different colors and one variable could have multiple colors if its value is derived

from multiple parameters. cDep then analyzes the dependencies between the colored vari-

ables using the source code patterns summarized in §4. If the variables match the patterns

of a specific configuration dependency type, cDep records the corresponding configuration

parameters and reports a dependency between them.

6.1.1 Coloring

cDep colors program variables based on an implementation of static taint analysis on top

of Soot. Different parameters correspond to different taint colors. cDep taint analysis is

inter-procedural (to track values across methods), field sensitive (configuration values could

be stored in a field of a class), and context sensitive (recording the calling context) (see the

model in §2.2).

The initial taints are values read from the configuration getter APIs identified by cDep

(§2.2). More specifically, cDep provides one interface class called configInterface. There

are three functions needed to be implemented to understand each configuration getter APIs.

The first function is getConfigName which basically returns the configuration parameter name

when seeing one getter function. The second is isGetter which judges whether a function
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is getter API or not. The third is isSetter which judges whether a function is setter API

or not.

Taints are then propagated along the data-flow paths, through assignments, arithmetic

operations, and string operations, until they reach sink statements. More specifically, we

consider five kinds of data-flow propagations. The first is through assignments. The second

is through binary operations. The third is through access to the field members. The fourth

is through calling functions and the fifth is through passing values to function parameters.

cDep supports taint propagation through RPCs (Remote Procedure Calls) by mapping

the caller stub interface to the callee implementation. A sink statement only consumes

the parameter value; it does not further propagate the value, e.g., by using the value as

a branch condition or passing the value to an external library or system call. We do not

propagate taints via all control flows, to avoid over-tainting [80]. We do, however, analyze

some control-flow dependencies of tainted variables to identify dependency types such as

control dependency and logical value relationship.

6.1.2 Pattern Matching

With colored variables, cDep searches for patterns described in §4 to discover different

types of dependencies:

Control Dependency. If a branch condition uses variables from parameters Q = {q1, ..., qn}
and the branch condition dominates the sink statements of a parameter p, then cDep re-

ports a control dependency between p and Q. Furthermore, considering it is possible the

parameter p is used on both paths under the branch. To eliminate such false positives, cDep

requires only path dominates the usage of p to recognize it as a control dependency. cDep

also finds, as an object creation pattern, if Q is used to initialize an object within which p

is used (§4.1.1).

Default Value Dependency. cDep leverages the semantics of common configuration

getter APIs in which the default value needs to be provided as an argument, e.g.,

1 <T> get(Class <T> class , String parameterName , T defaultValue);

If the default value of parameter p is tainted by other parameters in Q, a default value

dependency is found. Moreover, cDep checks the pattern in which c(p) is overwritten by

parameters from Q, after checking p is not set (i.e., NULL or isEmpty). More specifically, in

our dataset, we only find three such functions. One is the isEmpty function, the second is to

judge whether the variable is NULL and the third one is to check whether the variable is −1.
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Overwrite Dependency. cDep captures explicit overwrites and identifies all the config-

uration rewrite APIs (in the form of setter methods) as shown in §4.1.3. We do not handle

implicit overwrites, as they are not common (0.96% in our dataset) and it requires cDep to

understand the parsing code that reads the values loaded into corresponding variables.

Value Relationship Dependency. For the numeric and set values, cDep identifies col-

ored variables used in binary operator ♦ ∈ {≤,≥, <,>,=, 6=} and set operations (e.g.,

contains). It outputs the operators if the numeric/set relationship is enforced in the pro-

gram. cDep also identifies tainted variables used in max/min methods, which indicate nu-

meric value relationships. For logical values, cDep searches for all tainted variables used in

a logical expression.

Behavioral Dependency. cDep identifies results of applying arithmetic operators ♦
∈ {+,−, ∗, /} to tainted variables which are then used in subsequent library/system/method

calls. These are output as behavior dependencies. Moreover, if tainted parameters are used

in Java’s core library APIs, they are also output as behavior dependencies.

6.1.3 Implementation Details

To improve efficiency, cDep implements its own inter-procedure analysis instead of using

soot’s built-in inter-procedure analysis algorithm. There are three kinds of inter-procedure

data-flow paths considered in cDep. The first one is through return values of a calling

function. The way we achieve that is to keep an object called returnValues which is a

HashMap mapping a function to its return values. Whenever one new function k is added

to this object, we will figure out all the functions which call k and reanalyze those functions.

The second one is through passing colored values to function parameters. If one function does

not have return values while its parameters are tainted, we will analyze them with the colored

values. The third one we consider is through the usage of field members. When cDep detects

one field member is colored, it will reanalyze all functions which use this colored variable.

The inter-procedure analysis algorithm will keep running until no more return values are

found, no more functions are needed to be analyzed with colored values and no more field

members are colored. These three cases already cover all the value propagation rules in our

dataset, so we do not bother to consider other cases.

In addition, for all the called functions, cDep only analyzes the functions which are

defined inside the project, i.e. for any third-party library call and system call, if any of
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their parameters is colored, cDep will directly assume the return value to be colored as well

instead of going further to analyze that function.

Last but not least, we provide one script called regression.py for regression testing.

Whenever one module of cDep is changed, users could rerun the program, get the new

output and use the script to compare it with the old results. The script will return added

cases and missing cases to the user to notify users of the influence of changes they are making.

6.1.4 Running Instructions

To facilitate the deployment of cDep, we add maven support for the whole project. Thus,

all dependency managements are handled in the pom.xml file. Users only first need to run

mvn compile to compile the project. Then, users could use mvn exec:java to run the whole

project. For ease of usage, we provide one script called run.sh to automate all the process

and directly output the result.

6.1.5 Running Costs

The whole evaluations are done on a local laptop which is MacBook Pro with 8 Intel Core

I7 processor cores of 2.6GHz, 16 GB memory and 256GB SSD for storage. The local java

version is 12.0.2. The soot version is 4.1.0. The total running cost over the eight applications

in Hadoop is within 120 minutes.

6.2 EVALUATION

We applied cDep to the eight Java and Scala software components in the Hadoop-based

stack (Table 3.1). Overall, cDep discovered 723 true configuration dependencies of the five

target types, with a 6.0% average false positive rate. The breakdown based on dependency

types is shown in Table 6.1. Note that two co-authors manually verified each dependency

discovered by cDep.

Among the 723 true dependencies that cDepdiscovered, 448 were not in our dataset col-

lected from the documents (§3)—we were not aware of these until cDep discovered them.

There are two reasons for the surprisingly large number of undocumented dependencies.

First, many of the dependencies are control dependencies and default value dependencies as

shown in Table 6.1; those dependencies do not lead to crashes or runtime exceptions. So,

developers may not carefully document them even though they can lead to usability prob-

lems. Second, there is currently no systematic practice of discovering subtle configuration
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Dependencies Discovered Known TP New TP FP

Control 372 143/145 (98.6%) 211 4.8%(18/372)
Value Relationship 155 80/100 (80.0%) 57 11.6%(18/155)
Overwrite 19 3/16 (18.8%) 16 0%(0/19)
Default Value 97 38/38 (100.0%) 59 0% (0/97)
Behavioral 126 11/14 (78.6%) 105 7.9%(10/126)

Overall 769 275/313 (87.9%) 448 6.0%(46/769)

Table 6.1: Evaluation results of applying cDep to the eight software projects in the Hadoop-
based stack (Table 3.1). TP and FP stand for True and False Positives, respectively.

dependencies. Some dependencies are obvious but many of those discovered by cDep are

subtle and even counter-intuitive: we ourselves did not understand some dependencies until

we manually validated them.

We also investigated the 38 false negatives and 46 false positives from cDep. As shown in

Table 6.1, cDep identified 87.9% (275 out of 313) of the dependencies in our dataset. There

are three reasons why cDep missed the remaining 12.1%: (1) 14 dependencies do not have

common code patterns as discussed in §4.3—the patterns used by cDep cannot capture

those dependencies. (2) Some projects use ad hoc means to overwrite parameters instead

of the standard configuration APIs, which contributes to the 13 missing cases of overwrite

dependencies. For example, HBASE uses substring matching to overwrite ZooKeeper pa-

rameters. (3) The remaining cases are dependencies that involve through external libraries,

which cDep does not analyze. The false positives are mainly caused by over-tainting due

to cDep’s analysis not being path-sensitive—some variables should not be tainted as the

variables will not store parameter values at runtime. As the overall false positive rate is only

around 6%, we do not bother to implement one path-sensitive version while in the future,

it might be helpful to incorporate dynamic information into cDep to help eliminate these

overtaintings.
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CHAPTER 7: DISCUSSION

We discuss lessons learned, future directions, and threats to validity.

Eliminating Configuration Dependencies. A fundamental solution to the complexity

caused by configuration dependencies is to eliminate them via better configuration design.

Some dependencies are not necessary but result from poor design. For example, the de-

pendency between dfs.hosts and dfs.hosts.exclude in §4.3 should be eliminated—if a

host string is in both, it is unknown whether it will be allowed or blocked. Also, min

and max value dependencies can be designed as values in a range type to help users keep

track of dependent parameters. However, most dependencies exist for good reasons, e.g.,

mapreduce.map.memory.mb and yarn.scheduler.maximum-allocation-mb both control mem-

ory allocation at different levels. So, it is important to investigate radical new designs to

eliminate unnecessary dependencies and to effectively manage existing ones.

Better Handling. Configuration dependencies are often not systematically handled w.r.t.

checking, error handling, and feedback §5. Testing and analysis tools are needed to detect

deficiencies in handling and to improve usability and reliability of configurable software.

cDep can provide dependency information to enhance misconfiguration injection testing [12,

70] configuration checking/validation [2, 11, 75, 76, 77, 18, 19], configuration-aware software

testing [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30], and many others [81].

Applying NLP for Discover Configuration Dependencies. A future direction is

to add NLP (Natural Language Processing) to cDep. Some dependencies collected from

documents do not have common source code patterns (§4.3) and would be hard to find

using program analysis. Using the definitions in §4, text features can be built with focus on

descriptions of dependencies.

Building a General Infrastructure for Configuration Research. Although cDep

is only for configuration dependency analysis, there is some module inside it which could

benefit other configuration related research projects. More specifically, we think the coloring

module from cDep which returns all colored variables by configuration parameters could

be used by other projects which try to understand the usage of configuration parameters

inside the software. This part is not finished yet and we plan to decouple it from cDep as

a separate module in the future.
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Threats to Validity. Manually finding configuration dependencies from text sources is

error prone, and we may miss or mis-classify dependencies. To reduce this risk, two inspec-

tors double-checked the results. Our results may not generalize to other systems; we only

studied (1) software for cloud and datacenter systems, and (2) software with well defined

configuration APIs. cDep can only find configuration dependencies with code patterns that

we manually identified. Thus, we cannot claim to have found all the configuration dependen-

cies in the projects studied. However, cDep proved our concept, and showed that automatic

configuration dependency discovery is feasible and should be improved more in the future.
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CHAPTER 8: RELATED WORK

The prevalence and severity of software misconfigurations have driven the design and

development of a number of detection and diagnosis techniques [12, 2, 13, 14, 15, 75, 82, 83,

76, 77, 84, 11, 18, 19, 85]. Detection aims at detecting misconfiguration before deployment,

while diagnosis identifies root-causes of misconfigurations that caused failures, performance

issues, and incorrect results.

Most existing techniques either implicitly assume or are explicitly scoped to find miscon-

figurations of individual parameters. However, recent studies show that 23.4%–61.2% of

real-world misconfigurations involve multiple interdependent configuration parameters [10].

In those cases, each parameter value is correct in isolation, but the value combination vi-

olates dependency constraints. Hence, techniques for single-parameter misconfigurations

cannot deal effectively with problems caused by configuration dependencies. cDep is one

step towards enhancing existing technique to make them reason about dependencies.

A few prior studies consider specific types of configuration dependencies [12, 75, 76, 77, 78,

86]. Most of these apply machine learning or data mining techniques to infer the dependent

parameters from a large number of configuration files. As a priori knowledge, these tech-

niques take configuration dependency types as inputs, either as learning templates [75, 78]

or as language grammars [76, 77]. For example, if A is larger than B in a hundred of config-

uration file, those techniques infer a value relationship dependency, A > B. Unfortunately,

without systematic and holistic understandings of configuration dependencies, none of these

studies cover as comprehensive a set of dependency types as we do in this paper. As discussed

in §4.5.2, many common dependency types as well as common code patterns discussed in our

work were overlooked in prior studies. By filling the knowledge gap, we believe that our work

can significantly enhance existing tools to learn more types of configuration dependencies.

cDep is most related to Spex [12]. Spex attempts to automatically discover configuration

dependencies from source code, including control dependencies, and numeric value relation-

ships between two parameters. cDep differs from Spex in at least two aspects: (1) cDep is

able to discover more dependencies with different types and different code patterns, benefit-

ing from the systematic understanding of configuration dependencies in our study, and (2)

cDep is generic to dependencies among more than two parameters, while Spex is hardcoded

to two-parameter code patterns.

The notion of dependencies as a source of complexity has been studied in other domains.

For example, dependencies of network router configurations are considered a key source

of complexity of network management [87, 88] and software product lines [89]. Our work
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focuses on configuration dependencies introduced and enforced by software programs, not

networks or product lines.

Prior work [90] has studied cross-stack configuration errors, referred to as errors in one

component caused by misconfigurations of other components. The concept is fundamentally

different from configuration dependencies defined and studied in our paper.
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CHAPTER 9: CONCLUSION

This thesis presents our study of, and tool for finding, configuration dependencies within

and across software components. We define five types of configuration dependencies and

identify their common code patterns. We also report on existing practices for handling these

consequences, which are often deficient and ad hoc. Our tool, cDep is effective: it discovers

known dependencies with high precision and recall and also finds 448 previously undocu-

mented configuration dependencies. These results show that configuration dependencies are

prevalent and diverse, that it is feasible to automatically discover them, and that they should

henceforth be considered a first-class issue in software configuration engineering.
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