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ABSTRACT

Configuration is an inseparable piece of today’s software development. Due to its dynamic
nature and lack of standardized checking procedure, misconfiguration has been one of the
dominant factors contributing to software failures in production and wide spread outages.
Existing techniques (static validation, system tests, canaries, etc.) for detecting misconfigu-
rations have limitations, either being too coarse grained and unable to precisely exercise the
changed configuration value, or not considering the interaction between configuration and
software source code. Configuration testing takes pages from traditional software testing
practices to test software configurations in a similar vein as how software code is tested.

This thesis makes a first step exploration towards configuration testing, focusing on ana-
lyzing feasibility and effectiveness of reusing existing source code tests to test configuration
values. Through building a semi-automated infrastructure associating unit tests with config-
uration parameters, and later run the associated tests against injected correct and incorrect
configuration values for each parameter, this thesis shows that reusing existing software test
for configuration testing directly could yield an effective rate of 41.7% and 48.8%, for Hadoop
Common and HDFS, respectively. Further, this thesis conducts in-depth analysis on tests
that cannot be effectively reused, categorizes code patterns of these tests that have false

positives or negatives, and provides examples on rewriting these tests.
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CHAPTER 1: INTRODUCTION

On March 14, 2019, Facebook, WhatsApp, and Instagram all went down for around a
day, and the root cause of this incident was later addressed on Facebook’s offcial Twitter
account as “a server configuration change” [1]. On June 2, 2019, Google Cloud experienced a
major outage that impacted multiple services globally for around four hours, which they later
published a detailed postmortem [2] revealing that the outage is caused by “two normally-
benign misconfigurations, and a specific software bug”. On July 11, 2019, Twitter was down
for around an hour due to “an internal configuration change” [3]. And the list goes on. For
years, misconfiguration has been among the dominant causes of system failures in production
[4, 5], resulting in wide spread outages impacting millions of users.

The increasing complexity of software also increases the difficulty in detecting misconfigu-
rations. Although software source code is often heavily tested before releases, configuration
files are not. What makes things worse is that configurations are typically updated inde-
pendently from the software code that uses them. A typical software deployment process is
that developers write code which takes in configurable values, test their code with the config-
urable values fixed, and push their code to production. After this, they update configuration
values through a separate process or specialized tools whenever they desire a behavior change
controlled by the updated configurations [6, 7], which is an extremely error-prone process.

The question then arises: if software source code can be tested, why can’t configuration
values be tested? Since software tests are already exercising configuration values as constants,
a natural first step attempt would be to try reuse these existing tests for configuration
testing [8]. In an effort to identify the opportunities and challenges to reuse exiting source
code tests for checking configuration correctness, this thesis presents a thorough case study
of Hadoop, a mature and widely-used open-source software project. The thesis makes the

following contributions:

e Develop a semi-automated infrastructure for doing test reuse analysis;

Quantify the effectivness of reusing existing tests in the context of Hadoop Common
and HDFS modules;

Categorize different cases why some tests cannot be effectively reused;

In-depth analysis with detailed examples about those non-reusable tests;

Identify opportunities to rewrite some tests so that they could be effectively reused.



The rest of this thesis is structured as follows. Chapter 2 discusses traditional software
testing as an inspiration for configuration testing, as well as state-of-the-art research on
checking configuration correctness and their limitations. Chapter 3 gives a brief overview
of Hadoop configuration interface, providing necessary context to interpret results in later
chapters. Chapter 4 explains the infrastructure being developed for doing the study. Chap-
ter b presents the quantitative results on reuse effectiveness and does in-depth analysis on
the ineffective cases. The future work is discussed in Chapter 6, and Chapter 7 concludes
the thesis.



CHAPTER 2: BACKGROUND AND RELATED WORK

This chapter first discusses how traditional software testing helps catch software bugs but
not software misconfigurations; then summarizes state-of-the-art research achievements on
dealing with misconfiguration and their limitation; and lastly describes configuration testing,

taking pages from software testing practices.

2.1 SOFTWARE TESTING

Software testing is arguably one of the most important software development practices,
and has been tightly integrated into nowadays software development pipelines in both large
tech giants and small startups [9, 10, 11]. By writing tests that setup various use cases,
reach as much source code paths as possible, and exercise different aspect of the software
product, developers rely on testing to break their code in ways that they had not thought
of, and in early development stages before code breaks in production. Testing has shown to
be useful in revealing software bugs that are often notoriously hard to spot only by asking
developers to reason about the code logic.

Based on how much code is covered by the test, software tests could be divided into differ-
ent levels. Unit tests normally only check the correctness of individual methods; integration
tests normally check if multiple methods work correctly together; system tests treat the
software system as a black box and test its end-to-end behavior. Other than these, there are
specialized tests that not only check the functional correctness of the code, but also check

non-functional aspects such as performance and security constraints.

2.2 LIMITATION OF STATE OF THE ART

Despite all its usefulness, traditional software testing is geared towards testing software
behavior based on certain constant values in code, and cannot effectively deal with config-
urable values. Software configurations are dynamic and heterogenous by definition, and thus
could be a source of bug which easily slip through the software testing guard.

Thus, developers and researchers over the years have come up with numerous ways of
combating misconfigurations that worked relatively well, but not without limitations. I

present these limitations below.



2.2.1 Static Validation

Lots of efforts has been put into building better static validation techniques [12, 13, 14,
15, 16], which take in a set of predefined specifications, and check if configuration values

obey those specifications. The limitation with this approach is two fold:

Codifying a complete rule set is hard. Even with new programming language support
and automatic rule inference or specifications deriving [5, 13, 14, 15], coming up with an
accurate and complete rule set is an inherently hard process. New languages could help
formalize how rules are expressed, but developers expressing those rules may not have a
complete understanding of the software, and automatically derived specifications generally

make trade-offs between accuracy and scalability.

Cannot capture undesired code behavior induced by misconfiguration. Static
validation, even with comprehensively compiled rule sets, only checks the correctness of
configurations alone without interacting with the software, and thus fundamentally limits
its ability to ensure the configured value works correctly with the software. A typical example
is when a configuration specifies a file path whose content will be used by source code to
construct some object or state: static validation could only check if the file name is valid or
if such file exists, yet it has no way of checking if the the content of that file actually helps

constructing that object or state correctly.

2.2.2 Learning Based Method

Researchers also investigate using machine learning techniques to detect misconfigurations
[14, 17, 18], which takes various forms ranging from training a classifier that differentiates
correct configuration values from incorrect ones, to combining NLP techniques for analyzing
crash logs or technical knowledge base associating misconfigurations with their root causes
as well as solutions.

The classification based approach does not consider that outliers may not be misconfigu-
rations, and vice versa [19]. The configuration values deviating from its regular range could
come from experienced developers trying to do hand-optimization for system performance,
while default values, which would certainly fall into the regular range, could well be mis-
configurations when they need to be set based on runtime environments but are incorrectly
kept unchanged.

The combined machine learning and NLP approach for mining information from docu-

ments inherently requires a large and high-quality dataset to apply the learning algorithms
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on. However, such dataset, if exists all at, might not always be available to developers.

2.2.3 Canary Test

The idea of canary test is to run the software in a realistic enough environment, which
only a small group of users have access, and observe any abnormal behavior of the software.
There are different practices for doing canary, some build fully-fledged dedicated canary
analysis services [20], some just use it loosely as a deployment strategy to follow, but all
aiming at finding bugs in the early stage of software releases.

While canaries, and system tests (Section 2.1) for this matter, are useful for revealing
bugs that only appear when different components of the software are put together in a
production-like environment, it is hard to reason if these tests could actually exercise the
change of configuration values. Prior study has shown that configurations may only be used

under special conditions, which could be hard for the canary or system test to trigger.

2.3 CONFIGURATION TESTING

Configuration testing [8] tests configuration values just like traditional software testing for
software source code described in Section 2.1. Upon a configuration change, there should be
tests that exercise on the configuration values about to be pushed to production. The tests
pass if software components related to this configuration change still behaves as expected,
and fail if the configuration change leads to undesired behavior of the software. Configuration
testing provides developers with clear indication on whether their configuration changes
are legal with respect to the software being configured, complementing the aforementioned

existing techniques.



CHAPTER 3: THE HADOOP CONFIGURATION INTERFACE

This Chapter describes the configuration interface of the Hadoop project, including the
configuration file structure and the APIs (application program interfaces) for getting and
setting configuration values. It establishes the background and context to interpret our
methodology and results described in the latter chapters.

Note that the configuration ecosystem of Hadoop is representative and resembles a large
number of system software projects, such as Spark, HBase, Alluxio, and OpenStack [5,
21]. Therefore, our methodology and infrastructure (described in Chapter 4) can be easily

extended to other software projects.

3.1 CONFIGURATION FILES

Hadoop adopts key-value style configuration files in XML format. Each Hadoop compo-
nent maintains a specific configuration file (e.g., core-site.xml for Hadoop Common and
hdfs-site.xml for HDFS). A configuration file consists of a set of configuration parameters.
Each configuration parameter is represented by a name and a value, identified by <name>
and <value> in the configuration file, respectively.

Figure 3.1 shows a snippet of the configuration file (core-site.xml) from the Hadoop

Common module.

1 <configuration>

<property>
<name>

net.topology.script.number.args

</name>

6 <value>

7 100

8 </value>

9 </property>

w N

11 <property>
13 </property>

15 </configuration>

Figure 3.1: A snippet from Hadoop core-site.xml.

As noted in the Hadoop official document!, each configuration file is managed by an

"http://hadoop.apache.org/docs/r2.8.5/api/org/apache/hadoop/conf/Configuration.html
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abstracted resource, identified by the name or of that file. There is a precedence for loading
different resources, allowing a customized value overwriting the default one for the same
key. More specifically, each of the Hadoop configuration class as specified in Table 3.1 has
a static block allowing developers to specify what are the resources they want to load in
order. For example, in Configuration.java inside Hadoop Common, we have the loading
sequence shown in figure 3.2, with the latter loaded resource having higher precedence to
overwrite the previous loaded ones. Notably, each parameter inside the configuration file
could also use an optional field <final> (default to false) indicating that no subsequent
overwrites of this value is allowed.

In our study (see Section 4), we added an additional resource to ease the injection of new
configuration values (Section 4.2.2). We create our own XML files: ctest-core-default.xml
for Hadoop Common and ctest-hdfs-default.xml for HDFS and set them with the highest

loading precedence.

1 static{

2 // Irrelevant part omitted.
addDefaultResource("core-default.xml");
addDefaultResource("core-site.xml");

6 // Loading our own resource for injecting values.
7 addDefaultResource("ctest-core-default.xml");

s}

Figure 3.2: Configuration loading sequence for Hadoop Common

3.2 CONFIGURATION APIS

Hadoop has a set of unified configuration APIs for getting and setting configuration values,
referred to as the getter and setter APIs. The APIs are developed based on Apache Commons
Configuration. All configuration parameters are stored in a Configuration object as a key-
value pair (see Section 3.1). The Configuration object has two types of interfaces, i.e., getter

methods and setter methods. The basic form of the interfaces are described as follows:

e String get(String name, String defaultValue)

Gets the value of name, or return defaultValue if no such property exists.

e void set(String name, String value)

Sets value for name. Subsequent get () will return this value being set.



There are a range of variants of these two APIs, such as getInt (), getRaw(), setBoolean(),
setEnum (), which are specialized for different value types and purposes.

Figure 3.3 shows an example of how getter/setter methods are used in the Hadoop code.
The configuration parameter is named net.topology.script.number.args with the default
value being 100. Line 6 is a getter method, which returns the default value in the configu-
ration file for the parameter, or returns the DFAULT_ARG_COUNT if there is not a default value
defined. Line 9 is a setter method, which sets the value for this parameter to be 10, and all

subsequent getter method calls to this parameter should return 10.

1 public static final String SCRIPT_ARG_COUNT_KEY =
"net.topology.script.number.args";

public static final int DEFAULT_ARG_COUNT = 100;

Configuration conf = new Configuration();

N

5 // Getter example.
6 maxArgs = conf.getInt (SCRIPT_ARG_COUNT_KEY, DEFAULT_ARG_COUNT);

8 // Setter example.
9 conf.setInt (SCRIPT_ARG_COUNT_KEY, 10);

Figure 3.3: Simplified code snippet for getter and setter methods

Note that different components in Hadoop maintain different variants of the Configuration
class by inheriting Configuration. We summarize these subclasses in Table 3.1. On the other
hand, we find that all these subclasses of the Configuration class is simple wrappers and use
the same set of getter and setter methods. Therefore, we only need to instrument a small
number of getter/setter methods in the base Configuration class in our study, as described
in Section 4.1.1.

Project Name Configuration Class
hadoop-common-project org.apache.hadoop.conf.Configuration
hadoop-hdfs-project org.apache.hadoop.hdfs.HdfsConfiguration
hadoop-yarn-project org.apache.hadoop.yarn.conf. YarnConfiguration
hadoop-mapreduce-project | org.apache.hadoop.mapred.JobConf

Table 3.1: Configuration classes in different Hadoop modules

3.3 CONFIGURATION USAGE IN TEST CODE

The study presented in this thesis focuses primarily on test code. Therefore, it is necessary

to examine how test code uses configuration values, and the APIs used in the test code. We
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find that test code uses the same configuration APIs described in Section 3.2 as the main
programs. Therefore, the study methodology and infrastructure relies on the getter/setter
APIs. Note that a test could set certain values for one or more configuration parameters
during the test setup, which constructs necessary context for the test to run.

Further note that in some cases, the configuration APIs are overused as a singleton hash
map (which is a bad programming practice). Fortunately, it is straightforward to filter out
such cases, as the keys in those cases are not configuration parameter names but other
strings. We simply ignore cases like this, and only focus our analysis on the configuration

parameters listed in *-default.xml.



CHAPTER 4: METHODOLOGY AND INFRASTRUCTURE

This chapter describes the methodology of our study and the semi-automated infrastruc-
ture we set up to conduct the study. Recall that our goal is to study the feasibility and
effectiveness of reusing existing software tests as configuration tests. Here, software tests are
referring to as existing tests that are designed for testing software implementations (which
typically hardcodes configuration values in the test code, as discussed in Section 2.1), while
configuration tests are referring to the new type of tests for the purpose of testing configu-
ration values.

The main idea is to replace the hardcoded or default configuration values used by existing
software tests with representative values, including both correct and erroneous values (see
Section 4.2). Then, we evaluate whether all tests pass on a correct values and any test fails

on an incorrect value. To achieve this, we have built the following components:

e Associating configuration parameters with software tests that use them;
e Generating and injecting configuration values;

e Running tests and analyzing test results.

We will discuss the detailed test results and findings in Section 5.

4.1 TEST SELECTION AND MAPPING

Our first step is to identify existing software tests that use configuration parameters during
the test run. These tests can potentially be used as configuration tests, as they exercise the
configuration values. Since Hadoop has a unified configuration interface (Section 3.2), we
instrument the configuration getter and setter methods by adding log statements to record
the configuration parameters retrieved during the execution of the test run. Hadoop imple-
ments all the tests in the JUnit testing framework, and uses Maven Surefire plugin to run
the tests. After each test run, all the log messages will be recorded in Maven surefire reports
at the granularity of a test class. These runtime logs enable us to associate configuration
parameters with the software tests that exercise the values of the parameter. In other words,
for the configuration parameter, these tests are potential candidates that can be reused as

configuration tests.
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4.1.1 Instrumenting Configuration Interfaces

We add log printing statements in configuration getter/setter methods to capture the
events that retrieve or mutate configuration values during the test run. Note that we only
need to instrument the following four methods instead of all the getter or setter methods,
because the other methods are merely wrappers around the following ones, and all tests
must go through these methods to get or set configuration values.

- public String get(String name)
- public String get(String name, String defaultValue)

public String getRaw(String name)
- public void set(String name, String value, String source)

After the instumentation, get(String name), get(String name, String defaultValue)
and getRaw(String name) will log "[CTEST] [GET-PARAM] <name>" where <name> is the key
name of configuration parameter. So we could record which configuration parameter was
got during tests running. Similarly, set(String name, String value, String source) will
log " [CTEST] [SET-PARAM-VALUE] <name> <value>" where we could record which configura-

tion parameter was set and which value it was set to.

4.1.2 Test Listener

Since the Surefire report is at a test class level instead of test method level, to obtain a
full list of test methods, we make use of RunListener. It is an event listener for JUnit,
which allows implementing customized functions upon occurrence of various predefined
event. Hadoop has a TimedOutTestsListener that extends RunListener. All we need is
to add two override methods testStarted and testFinished that runs before and after each
test method run to log the test class name and method name. Then we can get a complete
list of test methods from the information TimedOutTestsListener logged out while doing a
full module test run. In our case, a full module test run simply means running mvn test
inside the module we want to analyze. We show in figure 4.1 the two override function we
add inside TimedOutTestsListener.

It is worth noting that this is not the only way to get the complete list of all test method.
One could modify Hadoop’s pom.xml to log out all the test method, or use static analysis to
extract the list. We take the dynamic event listener approach because it is easy to implement,

and this does not mess up Hadoop’s pom.xml.
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1 Q@0verride
public void testStarted(Description description) {
System.out.println(" [CTEST-LISTENER] [METHOD-START] " +
description.getClassName() + "#" + description.getMethodName());

N

}
6 @0verride
7 public void testFinished(Description description) {
8 System.out.println(" [CTEST-LISTENER] [METHOD-FINISH] " +
description.getClassName() + "#" + description.getMethodName());
) }

Figure 4.1: Test listener to log each test method name

4.1.3 Mapping Configuration Parameters to Tests

Lastly, we take the complete list of test methods for a module as well as the instru-
mented configuration interface, run each test method one-by-one using mvn surefire:test
-DTest=<TEST_METHOD>. After each test method run, we process the Maven surefire report,
parse out the configuration keys and values logged in this report. These parameters are

associated with the test method that just finished running, denoting as

tl — {p17p27p37"'} (41>

After all tests finish, we map each configuration parameter to a set of tests that uses it,

in the form of
{p1 = {tin, tiz, s tii}, 02 = {tar, tag, .o, tas ), oo} (4.2)

For the purpose of finer grained analysis, we separate all tests associate with a parameter
into two categories: getter-only test, which only gets the value for this parameter and po-
tentially other parameters without any modification to the configuration file throughout the
test lifetime; and getter-setter test, which not only gets the value for this parameter, but
also sets the value of some other parameters. To further clarify, If there is a test that sets
the value of p;, and later gets the value of p;, the test is not included in the associated test
suite for p;.

This way, we map two test suites for each configuration parameter, and dump the mapping

for all parameters to disk.
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4.2 VALUE GENERATION AND INJECTION

The second step is to generate representative configuration values, including both correct
and erroneous values, and to run the tests using these values instead of the hardcoded values
in the original test code. The purpose is to evaluate whether the tests can be directly reused
for configuration testing after parameterizing the hardcoded values. If it cannot be reused,

we need to identify the root cause.

4.2.1 Generating Representative Values

For each parameter, we study its specifications using the combined knowledge from the
parameter description and online examples. Based on the specification, we then choose 3
good (correct) values, and 3 bad (incorrect) values for this parameter. If any of the associated
tests fail for any of the incorrect values we generate, we count that parameter as being able
to be effectively tested through reusing existing tests, and it follows that those tests able to
single out that incorrect value is reusable for configuration testing purpose.

The subtlety here is how to choose the correct and incorrect values for a parameter, and
here are the general guidelines we followed:

- If the parameter is of numeric type (int, float, long):
Correct values could be:
a. default number as specified in *-default.xml;
b. a reasonably large number (maybe MAXINT but does not always make sense);
c. 0 if specification allows, otherwise 1;
Incorrect values could be:
a. a random string;
b. a very small number (often use -10 but does not always make sense);
c. 0if specification does not allow, otherwise use a float not allowed by the specification
(often use -0.5 but does not always make sense).
- If the parameter is of string type, this is much harder and should be dealt with on
a case by case basis. A general rule of thumb is to add more special characters when
choose incorrect values.

The above guidelines are only meant to serve as suggestions, although they do cover a lot of
cases for numeric types. String types are indeed harder and require more manual work. We
tried to make the best decision possible when choosing these values, but admittedly, this is
still a overall error-prone process, as the correct value we choose might actually be incorrect

and the incorrect value we choose might actually be correct due to our misunderstanding
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of the specification. Having some way of automatically generating high-quality correct and

incorrect values could be an attractive research project, but is not the goal of this thesis.

4.2.2  Injecting New Configuration Values

We build a tool to inject values we choose for each parameter before we run the tests.
For Hadoop Common, it always uses org.apache.hadoop.conf.Configuration class to load,
get and set the configuration parameter values. It loads values from core-default.xml
and core-site.xml by default, and the values loaded from the later will overwrite the for-
mer one. We create a customized configuration file (ctest-core-default.xml) and make
Configuration load this file with the highest precedence, so that the values from the cus-
tomized XML can overwrite the values from the two default XML files (Section 3.1). Every
time before we run associated tests for a parameter, we write the key-value pair of that pa-
rameter in the correct format (Section 3.1) into ctest-core-default.xml so we can make
sure the tests will be running with the values we choose.

For HDFS, both Configuration and HdfsConfiguration are used to load configuration
values. HdfsConfiguration loads hdfs-default.xml and hdfs-site.xml in a similar way as
Configuration does. We also create a ctest-hdfs-default.xml, which is the last resource
to load, and write the injected values into this file.

One caveat is that some tests from HDFS only use Configuration to load the configu-
ration values, which means only injecting into ctest-hdfs-default.xml will not correctly
return the value injected. To fix this, we make an observation that all tests need either
Configuration or HdfsConfiguration to load configuration values, and decide to inject val-

ues into both ctest-core-default.xml and ctest-hdfs-default.xzml.

4.3 RUN TESTS AND INTERPRET RESULTS

We build a fully automated test runner in about 500 lines of Python code. For each
parameter, we first inject one of the chosen values for that parameter (Section 4.2.2), then
run all the tests associate with this parameter using Maven Surefire plugins’s command line
utilities. Finally, we collect Maven surefire logs and record the test results (either PASS or
FAIL) for each test run.

Notably, we use a few options to improve test running accuracy and efficiency. First,
the test is running one by one to rule out potential flakiness caused by order-dependent
flaky tests. Second, given running test one by one is extremely time consuming. we use the

mvn surefire:test option for each test run to reduce runtime. This option skips the build
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stage that would have incur addtional time (about 10 seconds) for every test before it starts
running. The option can reduce runtime by at least 50% on average. Third, for each run
of associated test set of a parameter on an injected incorrect value, we will abort the run
immediately when one test fails. The motivation here is also to reduce runtime. Since the
purpose is to determine whether a test set is effective in determining the correctness of a
value, and the failing of any test is already a indication of this test set being effective, there

is no need to continue running other tests in the set for this particular value.

Test efficiency optimizations. We observe that for some parameters with a large number
(more than 2000) of tests associated, running all tests takes way too long and does not
scale. We found this to be true for more than half of the HDFS configuration parameters.
Therefore, reducing the number of tests while preserving the testing effectiveness is desired.

We find that the test redundancy in HDFS is mostly attributed to a special class —
org.apache.hadoop.hdfs.MiniDFSCluster. Owing to the distributed nature of HDF'S a large
percentage of its tests are using this MiniDFSCluster to setup a cluster, before continuing
the actual test steps. Instantiating this class results in invoking getter function on 75% of
the total HDFS configuration parameters. That is to say, 75% of HDFS parameters has a
large number of associated tests only because these tests instantiated MiniDFSCluster during
setup, which is a similar process for different tests. Based on this information, we use an
aggressive test reduction approach: for a set of tests {¢;1, ..., t;;} associated with a parameter
p;, if all tests in this set only use p; in setting up the MiniDFSCluster and nowhere else, only
one test in this should be kept in the final mapping for p;.

Adopting this reduction plan, we are able to reduce the number of tests for some pa-
rameters from around 2500 to around 300, immensely shortening the time takes to run the

process described at the start of this section.
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CHAPTER 5: RESULTS AND FINDINGS

This chapter presents the results and findings of our study on 127 configuration parameters
from Hadoop Common and 90 configuration parameters from HDFS (randomly selected),

with the methodology described in Section 4.

5.1 EFFECTIVENESS

We first show the effectiveness of directly reusing existing software tests for configuration
testing. The analysis is at the granularity of each configuration parameter. Recall that a
configuration parameter p corresponds to a set of tests T' = {t1, s, ..., 1, }, referred to as the
test suite for the parameter. We generate six configuration values, three correct and three
incorrect, for each test to run against.

We define the following categories regarding reusing existing software tests for a given

parameter.

e Effective: For each correct value, all tests in the test suite T" of the parameter pass.

For each erroneous value, at least one test in the test suite T fails.

e Useful: Among all tests in the test suite T, there exists at least one test that fails

upon at least one erroneous value while passes upon all the correct value.

e No Useful Test: The parameter does not have any tests, or the test suite is not
useful (defined above), i.e., none of the tests can capture one of the erroneous values

while does not fail on the correct values.

We show the distribution of each category above in Figure 5.1 for all the parameters we
studied in both Hadoop Common and HDFS. And we show in Figure 5.1 the percentage of

parameters, among all available parameters, have at least one test associated. To summarize:

Hadoop Common has 270 parameters in total, among which 228 parameters are each
associated with at least one test. Among the 228 parameters, we randomly selected
and studied 127 parameters, and 53 of them are effective, yielding an effective rate of

41.7%. There are in total 17 parameters with “useful” tests, yielding a useful rate of

13.4%.

HDF'S has 296 parameters in total, among which 278 parameters are each associated

with at least one test. And among the 278 parameters, we randomly selected and
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studied 90 parameters, and 44 of them are effective, yielding an effective rate of 48.8%.

There are in total 13 parameters with “useful” tests, yielding a useful rate of 14.4%.

Hadoop Common HDFS

No Useful Test
Effective
No Useful Test
Effective
Useful

Useful
Figure 5.1: Parameter category distribution among studied ones

Hadoop Common HDFS

No Test

No Test
If
84.4%
Have Test

Have Test

Figure 5.2: Parameters have at least one test associated

Notice that our counts on “useful” category are a bit off, since we only count parameters

exhibiting false negative behavior on two or less of the three incorrect values we choose, effec-

tively counting all parameters that exhibit false positive behavior as “not useful”. In reality,

since the false positive behavior is only due to a subset of all associated tests, these parame-

ters could still have tests that capture one or more incorrect values while not exhibiting false

positive behavior. Essentially, we are under-counting instead of over-counting the number

of parameters having useful tests. Accurate counting of the “useful” category requires false

negative and false positive analysis on a test level instead of the current parameter level,

and we leave this as future work.

For those parameters not categorized as effective, their test suite has either false positive(s)

or false negative(s), or both, defined as follows:

e False Negative (FN): One or more of the erroneous value passes all the tests in the

test suite 7. Note that as long as one test can catch the error, we treat the test suite
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as effective (we do not require every test in 7" can capture all the errors as different

tests can exercise different aspects of the values).

e False Positive (FP): One or more of the correct values fail at least one test in the
test suite T'. Similar as false negatives, false positives are counted at the level of the

entire test suite instead of the individual test in the test suite.

For the rest of this chapter, we give in-depth analysis of both False Negatives (Section 5.2)
and False Positives (Section 5.3), providing detailed examples from Hadoop Common and

HDFS. Table 5.1 give a summarize of the overall distribution of false negatives and false

positives.
Total Both
Module | g4 died ¥ FP pNgFP
Common 127 59 19 4
HDEFS 90 19 29 2

Table 5.1: General statistics for Hadoop Common and HDF'S

5.2 FALSE NEGATIVES

This section explains the root causes of false negatives by providing detailed explanation
and concrete code snippets. Note that false negatives are at the level of a test suite for a
configuration parameter instead of an individual test. One parameter’s test suite could fall
in multiple categories, i.e., different tests in the test suite fail for different reasons. This is
relatively rare but by all means possible.

The code patterns contributing to false negatives can be categorized as follows:

A. Shallow Tests Only

Test performs simple or no operation on parameters.

B. Fallback or Auto-correction

Code catches and handles Execption by resetting the Exception-causing value.

C. Incomplete Validation.

Test includes some, but not all, validation logic.

D. Not Reaching Validation.

Test does not reach the validation logic contained in program.
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E. Swallowed Exception.

Exception handler log error without aborting execution.

F. Non-functional Symptoms.

Consequence of having the parameter misconfigured is non-functional.

We show in table 5.2 the distribution of different false negative categories for Hadoop
Common and HDFS among the parameters we studied, in the form of number of parameters

in each category.

Module ‘ Total A B C D
Common 59 20 7 4 8
HDFS 19 0O 2 1 5

= o

F
14
7

Table 5.2: False negative statistics for Hadoop Common and HDFS

5.2.1 Shallow Tests Only

We observe that there are a couple tests that gets a list of configuration parameters, but
perform only simple or no operations on these parameters (e.g., looping through and printing
the values), instead of actually using them in ways that corresponds to the original intention
of having them as configurations. We call these tests shallow test. Configuration parameters
only having these tests will certainly exhibit false negative behavior, as the erroneous values
do not fail the tests. For example, net.topology.impl is one of the configuration parameters
only having these shallow tests.

Figure 5.3 shows such a shallow test named testGetChangedProperties. This test is
checking if changes of a configuration file could be reflected. The getChangedProperties
method loops through getting each key value pair in the configuration for finding new
changes, and this is why lots of parameters are associated with this test. Since this test does
nothing but looping through these parameters, it cannot check if the value a parameter is
incorrect, and thus result in the false negative behavior. There are 8 shallow tests in Hadoop
Common and 3 in HDF'S, all listed in Table 5.2.1 (test name ignoring the org.apache.hadoop
prefix). Among the 127 Hadoop Common parameters we studied, 20 of them only have such

tests, and among 90 HDFS parameters we studied, none of them only have such tests.
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@Before

public void setUp O {
confl = new Configuration();
conf2 = new Configuration();

// set some test properties
confl.set (PROP2, VAL1);

// different value as confl
conf2.set (PROP2, VAL2);

QTest
public void testGetChangedProperties() {
Collection<ReconfigurationUtil.PropertyChange> changes =
ReconfigurationUtil.getChangedProperties(conf2, confl);

assertTrue("expected 1 changed properties but got " + changes.size(),
changes.size() == 1);

public static Collection<PropertyChange>
getChangedProperties(Configuration newConf, Configuration oldConf) {
Map<String, PropertyChange> changes = new HashMap<String, PropertyChange>();

// iterate over old configuration

for (Map.Entry<String, String> oldEntry: oldConf) {
String prop = oldEntry.getKey();
String oldVal = oldEntry.getValue();
String newVal = newConf.getRaw(prop);

if (newVal == null || !'newVal.equals(oldVal)) {
changes.put(prop, new PropertyChange(prop, newVal, oldVal));
}
}
return changes.values();

}

Figure 5.3: Simplified code snippet for a shallow test in Hadoop Common

5.2.2 Fallback or Auto-correction

We find that Hadoop Common and HDFS have fallback and auto-correction logic for
a small number of configuration parameters. When the configuration value is erroneous,
the program would either (1) catch and handle the exception and then use the default
value instead of the erroneous configuration value, or (2) change the value to the up-
per/lower bound value if the error is an out-of-bound error. In these two cases, the test

will pass upon erroneous values (because the value is corrected) and lead to false nega-
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Hadoop Common

conf. TestCommonConfigurationFields#testCompareConfigurationClassAgainst Xml

conf. TestCommonConfigurationFields#testCompareXmlAgainst ConfigurationClass
conf.TestCommonConfigurationFields#test XmlAgainst Default ValuesInConfigurationClass
conf. TestConfiguration#test DumpConfiguration

conf.TestConfServlet#test WriteJson

conf.TestReconfiguration#testConflsUnset Async

conf. TestReconfiguration#testConflsUpdatedOnSuccessAsync
conf.TestReconfiguration#test GetChangedProperties

HDFS

tools. TestHdfsConfigFields#test CompareXmlAgainst ConfigurationClass
tools. TestHdfsConfigFields#test CompareConfigurationClass A gainst Xml,
tools. TestHdfsConfigFields#test XmlAgainst Default ValuesInConfigurationClass

Table 5.3: The lists of shallow tests in Hadoop Common and HDF'S.

tive behavior. For example, net.topology.table.file.name in Hadoop Common has a test
org.apache.hadoop.net.TestTableMapping#testNoFile which calls into the logic, as shown
in Figure 5.4.

In this example, the code is expected to load a mapping specified by a file with the con-
figuration value as its path. If the filename defined by the parameter is not set or the
file does not exist, the code falls back to the auto-correction logic using the predefined
NetworkTopology.DEFAULT_RACK and an empty map instead of crashing. Thus, a misconfig-
ured mapping file path that does not exist will not cause the associated test to fail.

Fallback logic are auto-correction are considered good practice towards resilience to con-
figuration errors, as long as clear log messages are provided to inform users about the value
changes [22, 5, 23, 24]. With the fallback/auto-correction in place, one could argue that
the erroneous values are acceptable as it will be corrected anyway. On the other hand,
we believe that it is important to report the behavior as false negatives as it is known
the fallback/auto-correction could potentially mask errors (which could lead to unexpected,

more severe Consequences) .

5.2.3 Incomplete Validation

A common case is that a given test includes certain validation logic for the target config-
uration values, but not all. Therefore, some erroneous values can be exposed during testing,
while the others (often more tricky errors) cannot.

For example, as the Hadoop project uses specialized getter APIs (such as getInt() and
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1 public synchronized List<String> resolve(List<String> names) {
2 if (map == null) {
3 map = load();
if (map == null) {
5 LOG.warn("Failed to read topology table. " +
6 NetworkTopology .DEFAULT_RACK + " will be used for all nodes.");
7 map = new HashMap<String, String>();
8 }
9 }
10 // Finish resolve...

11 }

13 private Map<String, String> load() {
14 Map<String, String> loadMap = new HashMap<String, String>();

16 String filename = getConf () .get (NET_TOPOLOGY_TABLE_MAPPING_FILE_KEY, null);
17 if (StringUtils.isBlank(filename)) {

18 LOG.warn(NET_TOPOLOGY_TABLE_MAPPING_FILE_KEY + " not configured. ");

19 return null,;

20 }

22 try (BufferedReader reader =

23 new BufferedReader (new InputStreamReader(

24 new FileInputStream(filename), StandardCharsets.UTF_8))) {
25 // Handle file reading omitted.

26 } catch (Exception e) {

27 LOG.warn(filename + " cannot be read.", e);
28 return null;

29 3

30 return loadMap;

31 T

Figure 5.4: Simplified code snippet for fallback logic

getClass()), the use of these specialized APIs is effective in catching type errors directly.
However, not all the errors are type errors.

Consider the parameter io.map.index.interval. It is intended to be used for keeping two
files (a data file and an index file) in sync. Namely, for every io.map.index.interval records
written in the data file, an entry is written in the index file. Intuitively, a value 0 should be
a incorrect value for this configuration parameter, since it makes no sense to say “for every
0 records.”

This parameter has 21 tests associated, but all use the parameter in a same way as shown
in Figure 5.5. For any type errors, the tests will fail because the getter APIs will catch
those errors. However, for the value 0, all the tests will pass. As shown in Figure 5.5, when
the configuration value is used for constructing a branch condition, when a writer performs

the append() operation. The consequence of using the value 0 is that the index file will be
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updated for each data file written, which could be unexpected to the user.

1 QTest
2 public void testMidKey() throws Exception {
3 MapFile.Writer writer = null;

! try {
5 // conf comes from the test class setup.
6 writer = new MapFile.Writer(conf, ...);
7 writer.append(new IntWritable(l), new IntWritable(1));
8 writer.close();
9 // Reader and relevant assertion omitted.
10 T

11 ¥
12 public synchronized void append(WritableComparable key, Writable val)
13 throws IOException {

15 long pos = data.getLength();

16 // indexInterval take value from the configuration parameter.

17 if (size >= lastIndexKeyCount + indexInterval && pos > lastIndexPos) {
18 // Update position and index file omitted.

19 }

1 // Update data file omitted.
2 }

Figure 5.5: Simplified code snippet for partial validation

5.2.4 Not Reaching Validation

In some other cases, the program contains comprehensive validation code to check the cor-
rectness of the configuration value; however, none of the tests associated with that parameter
reaches the validation logic, resulting in false negatives when the values are erroneous.

Figure 5.6 shows such an example. The configuration parameter hadoop.http.authentication.type
has a well defined validation logic as shown in Figure 5.6. However, none of its associated
tests actually exercises this validation logic, verified by adding a log in the logic, running all
associated tests, and observing no test outputing that log line.

In Figure 5.6, the authentication type is read from configuration file and put into authHandlerName.
It is used in getAuthenticationHandlerClassName() to construct the authHandlerClassName,
and later used in initializeAuthHandler () to load a class. If we have a random string that
cannot be loaded as a class, this part of the code will throw an exception. Since none of the

test code actually uses such logic, this parameter exhibits false negative behavior.
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1 public void init(FilterConfig filterConfig) throws ServletException {
2 // Irrelevant part of init() omitted.
3 // config construction omitted.
String authHandlerName = config.getProperty(AUTH_TYPE, null);
5 String authHandlerClassName;
6 if (authHandlerName == null) {
7 throw new ServletException("Authentication type must be specified: " +
8 PseudoAuthenticationHandler.TYPE + "|" +
9 KerberosAuthenticationHandler.TYPE + "|<class>");
10 }
11 authHandlerClassName = AuthenticationHandlerUtil
12 .getAuthenticationHandlerClassName (authHandlerName) ;

14 initializeAuthHandler (authHandlerClassName, filterConfig) ;

15 }

16

17 protected void initializeAuthHandler(String authHandlerClassName, FilterConfig
filterConfig)

18 throws ServletException {

19 try {

20 Class<?> klass = Thread.currentThread()

21 .getContextClassLoader () .loadClass (authHandlerClassName) ;
22 authHandler = (AuthenticationHandler) klass.newInstance();
23 authHandler.init(config);

! } catch (ClassNotFoundException | InstantiationException |

25 IllegalAccessException ex) {

26 throw new ServletException(ex);

27 }

28 )

Figure 5.6: Simplified code snippet for unreached validation

5.2.5 Exception Swallowed

In this category, the erroneous configuration value triggers an exception; and the excep-
tion is caught by the program or the test code, but the exception handler “swallowed” the
exception (e.g., printing out a log message without terminating or aborting the execution).
This is a normal pattern in production systems, as often times developers do not want the
system to crash upon having certain errors that they considered non-fatal.

Figure 5.7 shows an example. The configuration parameter is fs.trash.checkpoint.interval
and the test is org.apache.hadoop.fs.TestFsShellCopy#testDirectCopy. The parameter is
expected to be a numeric type; however setting its value to be a random string do not fail
the test. This is because when the IllegalArgumentException is caught, the system only
prints out the error. The shell command -rm does fail, but testDirectCopy still passes, as
it does not depend on the file being removed correctly. So the parameter still exhibits false

negative behavior, despite being caught by the try-catch logic.
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1 // Omit code and assertions irrelevant to this parameter.

3 QTest
public void testDirectCopy() throws Exception {
5 FsShell shell = new FsShell(conf);
6 shell.run(new String[] { "-rm", target_File.toString() 1});
T}

9o // Inside FsShell.java, executed when we call shell.run()
10 public int run(String argv[]) throws Exception {
11 Command instance = null;

12 try {

13 instance = commandFactory.getInstance(cmd);

14 try {

15 exitCode = instance.run(Arrays.copyOfRange(argv, 1, argv.length));
16 } finally {

17 scope.close();

18 }

19 } catch (IllegalArgumentException e) {

20 // Only print out the error!

21 displayError(cmd, e.getLocalizedMessage());
22 printUsage(System.err) ;

23 T

24 return exitCode;

25 }

27 // Inside TrashPolicyDefault.java when the parameter is read.

25 public void initialize(Configuration conf, FileSystem fs) {

29 this.emptierInterval = (long) (conf.getFloat(

30 FS_TRASH_CHECKPOINT_INTERVAL_KEY, FS_TRASH_CHECKPOINT_INTERVAL_DEFAULT)
31 * MSECS_PER_MINUTE) ;

Figure 5.7: Simplified code snippet for exception caught but swallowed

5.2.6 Non-functional Symptoms

Sometimes, the consequence of having a misconfiguration is non-functional. The code will
use that misconfigured value as it is, yet resulting in security or performance issues.

As an example, parameter dfs.namenode.audit.log.debug.cmdlist specifies the list of
HDFS NameNode command that are written to NameNode audit log only if the log level is
debug. Figure 5.8 shows how source code uses this parameter.

If we set the value of this parameter to any random string that is not a valid NameNode
command, the consequence would be that !'debugCmdSet.contains(cmd) always evalutes to
true, and all the commands are logged even if the log level is info. This could hurt perfor-
mance as logging often involves file IO and is slow, but such misconfigured value does not

hurt the correct functioning of the system, and does not result in test failure as well.
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I // Irrelevant code omitted.

2 public void initialize(Configuration conf) {

3 debugCmdSet.addAll(Arrays.asList (conf.getTrimmedStrings(
DFSConfigKeys.DFS_NAMENODE_AUDIT_LOG_DEBUG_CMDLIST)));

5 }

7 public void logAuditEvent(...) {

8 if (auditLog.isDebugEnabled() ||

9 (auditLog.isInfoEnabled() && !debugCmdSet.contains(cmd))) {
10 // Logic for logging the command.

o)
o

Figure 5.8: Simplified code snippet for non-functional symptoms

5.2.7 A Note on False Errors

One of the key challenge of the study is that we do not have the complete specifications
of the configuration parameters [25]. The configuration value generation is done manually
and does not guarantee soundness (see Section 4.2). As a result, it is possible that the value
that we believe to be erroneous is actually valid, and have a semantic meaning that is not

mentioned anywhere in its specification.

1 public static DataTransferThrottler getThrottler(Configuration conf) {
2 long transferBandwidth =

3 conf .getLong (DFSConfigKeys.DFS_IMAGE_TRANSFER_RATE_KEY,

1 DFSConfigKeys.DFS_IMAGE_TRANSFER_RATE_DEFAULT) ;

5 DataTransferThrottler throttler = null;

6 if (transferBandwidth > 0) {

7 throttler = new DataTransferThrottler (transferBandwidth);

8 }

9 return throttler;

10 }

12 // Usage of throttler. Irrelevant code omitted.

13 private static void copyFileToStream(..., DataTransferThrottler throttler,
14 ...) throws IOException {

15 if (throttler != null) {

16 throttler.throttle(num, canceler);

17 }

18 }

Figure 5.9: Simplified code snippet for false error

Figure 5.9 shows an example. We use a negative integer as an erroneous value of the con-
figuration parameter, dfs.image.transfer.bandwidthPerSec. A negative value is expected

to be incorrect because the bandwidth cannot be negative. However, tests associated with
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this parameter uses the value in a special way—only creating a throttler if this parameter
is greater than 0. So a negative value that we believe to be incorrect for this parameter

actually has a meaning, which is never do throttle.

5.3 FALSE POSITIVES

The code patterns contributing to false positives can be categorized as follows:

A. Test Timeout.

Configuration value slow down test run, resulting in timeout.

B. Hardcoded Test Code.

Test setup assuming certain default configuration value.

C. Unreliable Code.

Code handle technically correct but less ideal configuration values poorly.

D. Code Bugs.

Configuration value trigger dormant code bug.

We show in table 5.4 the distribution of different false positive categories for Hadoop
Common and HDFS among the parameters we studied, in the form of number of parameters

in that category.

Module ‘ Total A B C D B&C A&C
Common 19 3 8 8 0 0 0
HDFS 29 0 14 10 1 3 1

Table 5.4: False positive statistics for Hadoop Common and HDFS

5.3.1 Test Timeout

Some tests has a test-level timeout constraint that would result in test failure if not
satisfied. The timeout is set by developers based on their knowledge of the max possible
(or allowable) duration for the test to run. However, such test-level timeout is independent
from configurations related to this test. Changing the configuration value-even to a valid
one—could potentially slow down the test run, and result in failing the test due to timeout.

For example, the configuration parameter ha.zookeeper.session-timeout.ms has a default
value of 10,000, and setting it to 500,000 fails the test ha.TestZKFailoverController#testNoZK.
The test is shown in Figure 5.10.
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1 @Rule
public Timeout testTimeout = new Timeout(3 * 60 * 1000);

0N

QTest
5 public void testNoZK() throws Exception {
6 stopServer () ;
7 DummyHAService svc = cluster.getService(1l);
8 assertEquals(ZKFailoverController .ERR_CODE_NO_ZK,
9 runFC(svc));

Figure 5.10: Test snippet for timeout characteristic change

The test is expecting the correct error code when Zookeeper is not running, and has a
@Rule restricting the execution time. Setting ha.zookeeper.session-timeout.ms to 500,000
results in retry connecting for 500,000 ms before reporting connection error, which is longer
than the timeout 180,000 for this test class, thus failing the test and resulting in false positive

behavior.

5.3.2 Hardcoded Test Code

When writing tests, developers often use hardcoded values for simplicity of test setup.
These hardcoded values are normally picked with the assumption of using default configu-
ration values. Once the default configuration is change to anything else, these tests will no
longer pass. Thus, even a correct configuration value would result in test failure (i.e., false
positives).

In some cases, the test has an assertion that directly expects a default configuration value.
An example is with parameter net.topology.table.file.name, which we analyzed in Sec-
tion 5.2.2 for its false negative behavior. Interestingly, the test method, org.apache.hadoop.
net.TestTableMapping#testNoFile, is the only test associated with this parameter, and hap-
pen to result in false positive behavior as well. The test is shown in Figure 5.11

The test is expecting default value for net.topology.table.file.name, which is empty
(null), and asserts that the rack being set is equal to the default value. If, however, the
value is not empty, the rack will no longer being set to default value, but to what is specified
in the mapping file. Thus, even when we set the parameter to a correct file path that
points to a correct mapping file, this test will still fail, as that is not the same as the the
DEFAULT_RACK.

In other cases, the test has an assert that expects some objects or states whose construction

relies on the default configuration value. For example, parameter io.map.index.skip is used
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@Test
public void testNoFile() {

TableMapping mapping = new TableMapping() ;

Configuration conf = new Configuration();
mapping.setConf (conf) ;

List<String> names = new ArrayList<String>();
names .add (hostNamel) ;
names.add (hostName2) ;

// resolve() implementation omitted. It returns NetworkTopology.DEFAULT_RACK
// if net.topology.table.file.name is not set.

List<String> result = mapping.resolve(names);

assertEquals(names.size(), result.size());
assertEquals(NetworkTopology.DEFAULT_RACK, result.get(0));
assertEquals(NetworkTopology.DEFAULT_RACK, result.get(1));

Figure 5.11: Test snippet for relying on hardcoded configuration value directly

to specify the number of index entries to skip between each entry in an index file, and has

a test org.apache.hadoop.io.TestMapFile#testMidKey as shown in Figure 5.12. We looked

at this test before in Section 5.2.3, but now we looked at it for a different purpose.

QTest
public void testMidKey() throws Exception {

Path dirName = new Path(TEST_DIR, "testMidKey.mapfile");
FileSystem fs = FileSystem.getLocal(conf);
Path qualifiedDirName = fs.makeQualified(dirName) ;

MapFile.Writer writer = null;
MapFile.Reader reader null;
try {
writer = new MapFile.Writer(conf, fs, qualifiedDirName.toString(),
IntWritable.class, IntWritable.class);
writer.append(new IntWritable(l), new IntWritable(1));
writer.close();

reader = new MapFile.Reader(qualifiedDirName, conf);
assertEquals(new IntWritable(l), reader.midKey());

} finally {
I0Utils.cleanup(null, writer, reader);

}

3

Figure 5.12: Test snippet for relying on hardcoded configuration value indirectly

The parameter, io.map.index.skip, represents the number of index entries to skip between
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each entry and is default to 0. This test writes an online file and tries to verify that the
midkey is indeed the only line written. However, if we set the value of io.map.index.skip
to anything higher than 0, the midkey will be null as it will be skipped, and the assertion
will fail. The specification of this parameter definitely allows a positive value, but the test

is written assuming the default value 0, and thus resulting in a false positive behavior.

5.3.3 Unreliable Code

Some of the values we choose are technically correct but not ideal and thus unlikely to
be used in production. We analyzed one example in Section 5.3.1. Sometimes however,
the consequence of having these less ideal values could be more severe than just changing
the test timeout characteristics — sometimes the software will misbehave, potentially crash
or hang indefinitely. This is different from having a source code bug, because this exposes

reliability issues instead of correctness issues.

1 private long bytesPerPeriod;

public synchronized void setBandwidth(long bytesPerSecond) {
bytesPerPeriod = bytesPerSecond*period/1000;

3

N

¢ public synchronized void throttle(long numOfBytes, Canceler canceler) {
7 while (curReserve <= 0) {

8 long now = monotonicNow();

9 long curPeriodEnd = curPeriodStart + period;

1
11 if ( now < curPeriodEnd ) {
12 try {

13 wait( curPeriodEnd - now );

14 } catch (InterruptedException e) {

15 // Handle interrupt omitted.

16 }

17 } else if ( now < (curPeriodStart + periodExtension)) {
18 curPeriodStart = curPeriodEnd;

19 curReserve += bytesPerPeriod;

0 } else {

// Discard the prev period omitted.

[

3
X
X

NN N NN

=

Figure 5.13: Simplified code snippet for unreliable implementation

Figure 5.13 shows such an example. The parameter dfs.image.transfer.bandwidthPerSec
has a logic in code where result of an integer division is rounded to 0, causing no byte getting

sent. The consequence is that the test timeout would be reached. As shown in Figure 5.13,
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bytesPerSecond takes the configured value from dfs.image.transfer.bandwidthPerSec and
is used to calculate bytesPerPeriod, which is then used to increment curReserve for exiting
the while loop. However, if bytesPerSecond is set to 1 and period takes the default 500,
bytesPerPeriod will be rounded to 0, resulting in curReserve never gets incremented, and
the while loop hang indefinitely.

While setting throttling bandwidth to 1 bytes per second is abnormal, it is still technically
a correct value and we argue that the system should not just hang on this input. The test
TestTransferFsImage#testImageUploadTimeout which calls the above logic has a timeout
value of 100000, and thus hanging on throttling logic, causing the test to fail and resulting

in false positive behavior.

5.3.4 Code Bugs

Sometimes, the reason for having test fail on a correct configuration is simple: there is a
bug in source code. Developers did not handle some cases that are tied to a configurable
value correctly. As an example, the value of parameter dfs.namenode.audit.loggers should
be any implementation of org.apache.hadoop.hdfs.server.namenode.AuditLogger, one of
which is org.apache.hadoop.hdfs.server.namenode.top.TopAuditLogger. However setting
to TopAuditLogger fails because of the logic described in Figure 5.14 during logger construc-

tion.

I private List<AuditLogger> initAuditLoggers(Configuration conf) {

2 Collection<String> alClasses =

3 conf.getTrimmedStringCollection (DFS_NAMENODE_AUDIT_LOGGERS_KEY) ;
for (String className : alClasses) {

5 try {

6 AuditLogger logger;

7 if (DFS_NAMENODE_DEFAULT_AUDIT_LOGGER_NAME.equals(className)) {

8 logger = new DefaultAuditLogger();

9 } else {

0 logger = (AuditLogger) Class.forName(className).newInstance();
}

1
11

12 } catch (Exception e) {

13 throw new RuntimeException(e);
14 }

15 }

T

Figure 5.14: Simplified code snippet for code bugs

The existing implementation for TopAuditLogger does not have a default constructor, thus

failing the newInstance() call and the test, resulting in false positive behavior.
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5.4 TEST REWRITES

Now that we understand all the test patterns preventing directly reuse existing tests for
configuration testing, we make a first-step attempt to rewrite some of the tests, aiming to
make them reusable for capturing a misconfiguration while not fail on a correct configuration.

We find that scenarios in Section 5.2.5 and Section 5.2.4 are easier to rewrite. As an ex-
ample, recall that parameter fs.trash.checkpoint.interval mentioned in Section 5.2.5
passes all associated tests on any value even a random string. This is due to the excep-
tion handler swallow the exception by only printing out the error. Besides, while the shell

operation
shell.run(new String[] { "-rm", target_File.toString() 1});

does not finish successfully, the correctness of this test doesn’t depend on this shell opera-
tion’s successful finish, and thus the test doesn’t fail. Our goal is thus to make the test fail
when the shell operation fail, that is, when this parameter is not set correctly. The approach
we take is to check the return status of the shell operation, and assert failure if it is an error

(non-zero) status. We do this by modifying the shell execution line to:

assertEquals("Shell operation fail.", shell.run(

new String[] { "-rm", target_File.toString() }), 0);

Now this test fails if the parameter is set to a string. However, since there’s fall back
logic for this parameter when it’s smaller than zero, as shown in Figure 5.15, this test then
falls into the fallback or auto-correction category (Section 5.2.2), which is harder to rewrite,
and one could even argue that further rewriting is not necessary given the presence of an

auto-correction logic.

1 // In TrashPolicyDefault#Emptier.

// deletionInterval take the value of parameter fs.trash.interval.
if (emptierInterval > deletionInterval || emptierInterval <= 0) {
! LOG.info("The configured checkpoint interval is " +

5 (emptierInterval / MSECS_PER_MINUTE) + " minutes." +

6 " Using an interval of " +

7 (deletionInterval / MSECS_PER_MINUTE) +

8 " minutes that is used for deletion instead");

9 this.emptierInterval = deletionInterval;

10 }

w N

Figure 5.15: Code snippet for auto-correction logic

We show another example where we transfer a parameter from “no useful test” cate-

gory to “useful” category by utilizing the existing but non-reaching validation logic. Recall
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the parameter hadoop.http.authentication.type we looked at in Section 5.2.4, which
could take values from "simple", "kerberos", "ldap", "multi-scheme", or a valid class-
name. The parameter belongs to “no useful test” category if we just directly reuse the
associated test, since its test code is using mock (through Java Mockito and does not reach
any actual valiation logic, passing on any invalid value. A bit more digging reveals that
in TestAuthenticationFilter. java, there are lots of tests related to the authentication
parameters, including this one. A general pattern of these tests is that they use Mockito
to return some hard-coded value on getting a configuration parameter or calling a function,
and then test some operation related to these authentication configuration parameter. For

example, testFallbackToRandomSecretProvider () has the following code:

1 // AuthenticationFilter.AUTH_TYPE take the value of
hadoop.http.authentication.type.

FilterConfig config = Mockito.mock(FilterConfig.class);

3 Mockito.when(config.getInitParameter (AuthenticationFilter.AUTH_TYPE))

| .thenReturn("simple");

N

Figure 5.16: Useful logic in testFallbackToRandomSecretProvider()

A straightforward idea would be to change the .thenReturn("simple") to return whatever
is in the configuration file, and call the init() method (see Section 5.2.4) method, fail
the test run if an error is thrown. We take this approach and write a test modeled after
the testFallbackToRandomSecretProvider () method (about 40 lines), with the core logic
shown in Figure 5.17.

However this is not a complete solution: this works for detecting incorrect values, which
make the parameter has useful tests, but introduces False Positives. The current rewrite
passes "simple" and fail on all bogus class names, which is good. But, "kerberos", "ldap",
and "multi-scheme" also fail, which is an false positive behavior. The reason they fail is
because certain setups are not done properly for those authentication types. We acknowledge
that setting up the necessary context for these three type to pass test might be non-trivial,
and could require hard coding other configuration values.

We see from the above examples that rewritting test to make them effective could take
more than one step, and seems to be a manual process in its nature. We call for developer
support here, as we belive that developers of the software could easily do such rewrite with

these additional validation logic we mined through associating parameters with tests.
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QTest
public void testHTTPAuthenticationType() {
try {
FilterConfig config = Mockito.mock(FilterConfig.class);
Configuration conf = new Configuration();
Mockito.when(config.getInitParameter (AuthenticationFilter.AUTH_TYPE))
.thenReturn(conf.get ("hadoop.http.authentication.type"));

// Some other Mockito setup code omitted.

filter.init(config);
Assert.assertTrue(true);

} catch (ServletException ex) {
LOG.error("hadoop.http.authentication.type is misconfigured!");
Assert.fail(ex.toString());

} catch (Exception ex) {

LOG.error("Something else mysteriously failed!");
Assert.fail(ex.toString());

} finally {
filter.destroy();

}

}

Figure 5.17: Simplified rewritten test snippet for non-reaching validation
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CHAPTER 6: FUTURE WORK

6.1 ADDRESSING LIMITATIONS

Our methodology described in chapter 4 has a couple limitations that we would like to

address and refine in the near future:

Not handling flaky tests. Flaky test has significant impact on our test running results.
Since when a test fail on a presumably correct value, we do not know if it is due to the test
being flaky, or the parameter actually exhibits false positive behavior. Currently we rely on
a manually maintained blacklist to filter out flaky tests, which reduces the efficiency of our
process. Flaky tests has its own line of research [26, 27] and is not the focus of the thesis,

but we could use the existing research results to refine our infrastructure.

Not considering dependencies. The methodology we adopted runs associated tests for
each configuration parameter in isolation, but in reality multiple configuration parameters
could have dependencies. While our current infrastructure does a decent job reporting test
results for each parameters without considering dependencies, our manual code inspection
reveals a handful of cases where parameter dependencies result in false errors (Section 5.2.7).
Dependency in configuration parameters is another line of research [25] as well, and we plan

to take it into consideration when we refine our infrastructure.

Potentially biased value generation. Our value generation process (Section 4.2) is
manual and error-prone. Ideally the process of generating correct and incorrect values should
be automated, or at least more disciplined. We plan to do type inferencing on parameters,
divide them into finer-grained groups, and have representative correct and incorrect values

per group. Another option is to use values collected from container or VM images [28].

6.2 TOWARDS A STANDARDIZED PRACTICE

We believe configuration testing should be a standardized testing practice just like source
code tests, and achieving this vision needs support from the software development com-
munity. To incentivize developers to provide support, extensions should be developed to
existing unit test framework that allow developers to write unit tests with testing configura-

tions in mind, and make it easy for them to report information such as whether a test could
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be reused, how to best reuse it, etc. Taking a step forward, we envision developing a new
framework for configuration testing, which should allow developers or system administrators

to write new tests from scratch specifically for configuration.
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CHAPTER 7: CONCLUSION

To conclude, this thesis presents a case study of the Hadoop project, evaluating oppor-
tunities and challenges in reusing software source code test for configuration testing. We
explain the methodology adopted, and show quantitative analysis on the effectiveness of
directly reusing existing tests, with yields an effective rate of 41.7% and 48.8%, for Hadoop
Common and HDFS module, respectively. We then give in-depth analysis on why some of
the tests cannot be effectively reused, and explore possibilities to make these tests reusable
by manually rewriting them.

We believe configuration testing is a missing piece in nowadays software development
practices. We hope that the thesis could serve as a first attempt to test configuration with
source code, and inspire future research in this topic. Further, we hope developers could
view examples in this thesis as an indication of the benefit of as well as the efforts needed
from them to write software tests with testing configurations in mind, which is by no means

prohibitive.
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