
Test Selection for Unified Regression Testing
Shuai Wang, Xinyu Lian, Darko Marinov, Tianyin Xu

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{swang516, lian7, marinov, tyxu}@illinois.edu

Abstract—Today’s software failures have two dominating root
causes: code bugs and misconfigurations. To combat failure-
inducing software changes, unified regression testing (URT) is
needed to synergistically test the changed code and all changed
production configurations for deployment reliability. However,
URT could incur high cost, as it needs to run a large number
of tests under multiple configurations. Regression test selection
(RTS) can reduce regression testing cost. Unfortunately, no
existing RTS technique reasons about code and configuration
changes collectively.

We introduce Unified Regression Test Selection (uRTS) to
effectively reduce the cost of URT. uRTS supports project
changes on 1) code only, 2) configurations only, and 3) both code
and configurations. It selects regular tests and configuration tests
with a unified selection algorithm. The uRTS algorithm analyzes
code and configuration dependencies of each test across runs and
across configurations. uRTS provides the same safety guarantee
as the state-of-the-art RTS while selecting fewer tests and, more
importantly, reducing the end-to-end testing time.

We implemented uRTS on top of Ekstazi (a RTS tool for
code changes) and Ctest (a configuration testing framework).
We evaluate uRTS on hundreds of code revisions and dozens
of configurations of five large projects. The results show that
uRTS reduces the end-to-end testing time, on average, by 3.64X
compared to executing all tests and 1.87X compared to a
competitive reference solution that directly extends RTS for URT.

I. INTRODUCTION

Today’s software failures have two dominating root causes:
faults in program code (i.e., bugs) and errors in configuration
files (i.e., misconfigurations) [1]–[6]. Many software projects
include some default configuration together with the code
in the project repository. Modern continuous integration and
deployment (CI/CD) [7]–[10] aims to quickly check and
release project changes. To combat bugs and misconfigu-
rations introduced through project changes, modern CI/CD
environments widely use regression testing. Regression testing
checks that project changes do not break previously working
functionality. Traditional regression testing is mainly applied
to (potentially changed) code under the (potentially changed)
default configuration [11]–[13].

However, the deployed software uses production config-
urations that typically differ from the default configuration.
One limitation of traditional regression testing is that the code
changes are not tested under the production configurations;
likewise, changes in production configurations are not tested
with the code. Consequently, many code changes pass the
regression tests under the default configuration but lead to
failures in production. In fact, companies such as Google
and Meta change configurations frequently [2], [4], [14]–[18].

They report misconfigurations [1]–[4], [19], [20] as the main
cause of failures in production systems, even more frequent
than code bugs. While large software organizations have
started to treat configurations as important as code, e.g., using
version control for configurations and reviewing configuration
changes manually, much more remains to be done.

Recent research has proposed configuration testing to de-
tect erroneous changes to production configurations [21]–
[24]. A configuration test is a parameterized test [25], [26]
with input parameters being configuration parameters; it runs
by instantiating the input parameters with the values from
production configurations (§II-A). The key idea is to connect
configuration changes to tests, so that configuration changes
can be tested in the context of code affected by the changes.
Configuration testing can reason about the program behavior
under production configurations and detect sophisticated mis-
configurations that are missed by rule-based validation [14],
[15], [27]–[30] or data-driven approaches [4], [31]–[36]. How-
ever, a major limitation of prior work is that configuration
testing addresses only configuration changes of the same code
version—it assumes that the code does not change and has
only one production configuration (or if more, each production
configuration is tested in isolation).

Synergistically testing code and configuration changes re-
quires unified regression testing (URT). URT tests code
changes both under the default configuration and under pro-
duction configurations to increase deployment reliability. For
configuration changes, URT tests the changed configurations
against the latest code version, which may include code
changes since the previous test run. URT applies when project
changes are not only to code or configurations separately, but
also to both code and configurations together. In large soft-
ware organizations, code-configuration co-changes are com-
mon, partially due to the increasing popularity of monolithic
software repositories driven by the DevOps practice of main-
taining both code and production configurations [4], [37]–
[39]. Inconsistencies between code and configuration changes
constantly result in production failures, e.g., as Microsoft
reports [4]. So, the ability to test code-configuration co-
changes is important.

However, URT could be very costly because it has to run a
large number of tests under multiple configurations, including
the default configuration and several production configura-
tions. Note that it is a norm that multiple production con-
figurations co-exist in production deployments; for example,
production systems are constantly under staged deployments
with multiple versions of code or configurations [7], [24]. As a



reference, the cost of regression testing under only the default
configuration is already considered high [40]–[44]. If every
test needs to be run for every configuration, the regression
testing cost could become unaffordable.

Regression test selection (RTS) [11], [45]–[48] can effec-
tively reduce the cost of regression testing. RTS runs only a
subset of the regression tests that are affected by the project
changes; in other words, RTS does not run the tests whose
outcome cannot change due to the recent changes. RTS is
widely used in large software organizations, e.g., Google
and Meta publicly report on the practice [40]–[44]. RTS is
successful because project changes in CI/CD environment
are incremental—they typically change a small part of a
large software project, i.e., a small piece of code or a small
number of configuration values. It is well documented that
code changes are relatively small [49]–[51], and one study
reports that 49.5% of configuration changes alter only two
lines of configuration files.

Unfortunately, no existing RTS technique is tailored for
URT—existing RTS techniques are designed either for code
changes only [11] or for configuration changes only [21].
The former is done with regular tests and the latter with
configuration tests. We use the term “test” to generically
refer to either a regular test or a configuration test. No
RTS technique reasons about code and configuration changes
collectively, and no technique works with both regular tests
and configuration tests.

We introduce unified regression test selection (uRTS), the
first RTS technique for URT. uRTS works with project changes
on 1) code only, 2) configurations only, and 3) both code and
configurations. uRTS is based on the following observations:

• Configuration tests can be used to test code changes
under production configurations, in addition to testing
configuration changes (its original use case). In essence, a
configuration test exercises code under a specific (default
or production) configuration.

• A project change typically changes a small piece of code
or a small number of configuration values. Therefore,
only a subset of tests needs to be rerun for any change.

• The production configurations are typically largely simi-
lar. Therefore, a configuration test need not be repeatedly
run for every production configuration.

uRTS selects regular tests and configuration tests with a
unified algorithm. The algorithm analyzes code and configu-
ration dependencies of each test for all configurations. uRTS
first selects regular tests against the (potentially) changed code
under the (potentially) changed default configuration. Thus,
it checks for regression faults in the code under the default
configuration. It then selects configuration tests against the
(potentially) changed code under the (potentially) changed
production configurations. uRTS uses a two-dimensional com-
parison analysis—comparing dependencies to the previous
project revision, and comparing dependencies to the previously
run configurations—to select fewer configuration tests and thus
speed up testing. A configuration test is not selected iff both
its code and configuration dependencies remain unchanged.

Not selecting a test could, in general, lead to unsafe RTS that
misses a test failure.

uRTS provides the same safety guarantee as state-of-the-
art RTS for code-only (e.g., Ekstazi [12]) and configuration-
only changes (e.g., Ctest RTS [21]), and uRTS also guarantees
safety for code-configuration co-changes. Meanwhile, uRTS
is more effective than state-of-the-art RTS. Compared with
traditional RTS for code changes, e.g., Ekstazi, uRTS is aware
of changes on the parameter values. The parameter granularity
used by uRTS is more precise than the file granularity used by
Ekstazi, where any regular test that reads any default configu-
ration file needs to be rerun even if just one out of hundreds of
parameter values in the file is changed. Compared with Ctest
RTS for configuration changes, uRTS selects configuration
tests across multiple production configurations, while Ctest
RTS assumes only one production configuration.

We implemented uRTS for Java and JUnit on top of
Ekstazi [52], a state-of-the-art RTS tool, and Ctest [53], a
configuration testing framework. Specifically, our implemen-
tation employs Ekstazi to dynamically track file dependencies
of code changes and applies the instrumentation techniques of
Ctest to dynamically track configuration dependencies of each
test. It also uses Ctest to instantiate and run configuration tests.

We evaluate uRTS on a total of hundreds of code revisions
and dozens of configuration files of five large software projects
(HCommon, HDFS, HBase, Alluxio, and ZooKeeper). Some of
our experiments are the largest RTS experiments performed
on open-source projects, e.g., running all regression tests
in HDFS for just one project revision takes over 6 hours
on a powerful server machine. The results show that uRTS
reduces the end-to-end testing time, on average, by 3.64X
compared to executing all tests and 1.87X compared to a
competitive reference solution that directly extends RTS for
URT. Compared to unsafe RTS, uRTS increases the testing
time by 1.93X when run for three configurations.

In summary, this paper makes the following contributions:
• Concept: We introduce Unified Regression Testing

(URT) and motivate the need for RTS in URT.
• Algorithm: We develop uRTS, the first RTS for URT.

uRTS works with project changes on code, configura-
tions, or both. It provides the same safety guarantee as
existing RTS but is more effective and applicable.

• Implementation: We implement uRTS on the state-of-
the-art RTS tools for regular tests and configuration tests.

• Evaluation: We show the effectiveness of uRTS in re-
ducing the cost of URT with large-scale experiments.

• Data Availability: https://github.com/xlab-uiuc/uRTS-ae

II. BACKGROUND

A. Configuration Testing

The terms “configuration” and “testing” refer to different
concepts in different lines of work. Following Sun et al. [21],
we view configuration testing as a technique for detecting
erroneous configuration changes (manifesting as failing tests)
early, to prevent them from being deployed to production

2

https://github.com/xlab-uiuc/uRTS-ae


public void testGetMasterInfoPort() {...}
@Test @Ctest

The value of needed is 6,
larger than 5 in the change./* jetty-server-9.3.27.v20190418.jar */

protected void doStart() {
if (needed > max)
throw new IllegalStateException(String.format(
“Insufficient threads...”));

} 

max = conf.getInt(“hbase.http.max.threads”); 
/* http/HttpServer.java */

...

Production config change (for @Ctest)
- hbase.http.max.threads = 10
+ hbase.http.max.threads = 5

Source code

Configuration test

Default config in hbase-default.xml
(for @Test) 
hbase.http.max.threads = 16

Fig. 1: A configuration test instantiated by a changed produc-
tion configuration. The test fails as the code under the new
production configuration throws an exception.

systems. The original idea of configuration testing was to
connect configurations to software tests, so that configuration
changes can be tested in the context of code affected by the
changes. Unlike Sun et al. [21] who assumed that code does
not change, in this work we support the general case where
the code, as well as configurations, can change.

A configuration test t̂(P̂ ) is parameterized by a set of
configuration parameters P̂ . Running a configuration test
instantiates each input parameter from P̂ with a concrete value
from a production configuration. Like regular tests, configu-
ration tests exercise the program and check (via assertions)
certain properties (e.g., correctness, performance, security).
Fig. 1 illustrates a configuration test (annotated by @Ctest)
from prior work [21]. Note that when a configuration test is
instantiated by the default configuration, it is equivalent to a
regular test. This equivalence is the foundation of designing a
unified solution for both configuration tests and regular tests.

Sun et al. [21] showed that configuration tests can be
generated by transforming regular tests, similar to parameter-
izing existing unit tests [54]. The basic idea is to selectively
parameterize a regular test t by the configuration parameters P̂
that are 1) read by the test and 2) generic to the test logic. For
a configuration test t̂(P̂ ), P̂ is a subset of all the parameters
read by the test t.

Configuration testing differs from approaches that explore
multiple configurations, e.g., configuration-aware testing, com-
binatorial testing, or misconfiguration-injection testing [55]–
[62], which sample representative configurations or miscon-
figurations. A configuration test focuses only on the specific
configurations to be deployed to the production system.

B. Regression Test Selection (RTS) and Ekstazi

Regression testing is widely used as projects evolve to
test whether the recent changes break existing functionality.
Regression testing is important but also costly as many tests
are run for many changes.

Regression test selection (RTS) [11], [40]–[45] reduces the
cost of regression testing by selecting to run only a subset
of tests, based on the most recent code changes. Traditional
regression testing does not consider configuration changes.
A typical RTS technique finds dependencies of each test on
code parts and selects to run only the tests whose execution

can reach the changed parts. Various techniques compute
dependencies dynamically or statically, and code parts range
from statements and basic blocks to methods and classes to
entire modules and projects.

Ekstazi. Ekstazi [12] is an open-source RTS tool [52] for
Java programs. Ekstazi determines test dependencies dynam-
ically, at the level of files, including code .class1 files and
optionally other files. When a test runs, Ekstazi monitors
the execution to determine what files the test depends on.
The Ekstazi tool provides many options, but one is crucially
relevant—what files to track in the dependencies for each test.
The tool default, which we call Ekstazi−, tracks only .class
files, although that option is unsafe [12]. We also evaluate an
alternative, which we call Ekstazi+, that tracks .class files and
configuration files.

For the test in Fig. 1, Ekstazi− finds that testGetMasterInfo-
Port depends on the test class HttpServerTest, the HttpServer class
directly under test, and all other project and library classes
that the execution reaches, including Server that contains the
shown doStart method. Ekstazi+ additionally finds that test-
GetMasterInfoPort depends on hbase-default.xml when run under
the default configuration (or on the production configuration
file when run under it). When the project changes, Ekstazi
selects to run testGetMasterInfoPort (or rather, selects the entire
class HttpServerTest) if any of the dependent files (including
HttpServerTest itself) changes in any way.

If all the classes (and other tracked files) remain the same,
Ekstazi does not select a test because its behavior will be
the same as before the changes. Ekstazi operates at the level
of classes, not methods: 1) it is safer for object-oriented
code [12], and 2) it was shown to, somewhat surprisingly,
work faster end-to-end [12], [64]. A key aspect of RTS is
to consider testing time end-to-end, from the moment when
developers initiate testing (e.g., via mvn test) until they get the
result. The time, called AE(C) [12], includes the analysis
phase (A) that determines what tests to run, the execution
phase (E) that executes the tests, and (together with the
execution or separately) the collection phase (C) that collects
the dependencies for the next revision. Although class-level
RTS selects some more tests than method-level RTS, and thus
has a slower E phase, class-level RTS has a much faster (and
safer) A phase. Note that in the very first run of a test (e.g., on
the first run of Ekstazi, or when a new test is added), Ekstazi
has no dependency info, so it always selects to run the test.

An important point is that Ekstazi is not configuration aware
and does not handle configuration files in any special way:
Ekstazi− ignores configuration files, and Ekstazi+ tracks entire
configuration files.

C. RTS for Configuration Tests
Prior work [21] developed a RTS algorithm for configura-

tion tests but under a restrictive assumption that the code never

1Ekstazi tracks compiled .class files rather than source .java files because
different sources can result in the same compiled file (e.g., correcting a
misspelling in a comment), and the same source can result in different
compiled files (e.g., using a different compiler or linking to a different
library [63]). JVM executes the compiled code.

3



+ p1 = 2
+ p2 = true

- p1 = 0.1
- p2 = false

p1 = 0.1
p2 = false
p3 = foo
p4 = /data

t1(p1,p2)
t2(p2,p3)
t3(p3)
t4(p3,p4)

t1(p1,p2)
t2(p2,p3)

Production config Production config changeConfig test suite 

Selected tests

mvn test –Dtest=t1(p1=2,p2=true)
mvn test –Dtest=t2(p2=true,p3=foo)

Run selected configuration tests

Fig. 2: RTS of configuration tests for a configuration change.

changes. As typical configuration changes only update a small
number of configuration parameters [14], not all available
configuration tests need to run. A configuration test t̂(P̂ ) is
selected to run for a given configuration change if at least one
parameter in P̂ is changed. A configuration change passes
if all selected configuration tests pass, and it fails if any
selected configuration test fails. Fig. 2 shows an example RTS
of configuration tests for a configuration change.

Note that this prior RTS does not consider code changes.

III. UNIFIED REGRESSION TESTING

The goal of unified regression testing (URT) is to test code
changes and configuration changes collectively for production
reliability. We define a project change as a “diff” D that
updates the system code S, the default configuration Cdef ,
production configurations Cprod, the test suite T (for regular
tests), or the test suite T̂ (for configuration tests):

D : (S′, C ′
def ,C′

prod, T
′, T̂ ′) → (S,Cdef ,Cprod, T, T̂ )

Note that D can be one commit or a bundle of several commits,
depending on how the code/configuration repositories are
maintained and how the project changes are deployed [4], [14],
[37], [44], [49]. Table I lists the notation we use.

URT runs regression testing for the following combinations:
• Run regular tests T on the (changed) code S under the

(changed) default configuration Cdef ; and
• Run configuration tests T̂ on the (changed) code S under

every (changed) production configuration C ∈ Cprod.
The former tests code under the default configuration; the

latter tests code under production configurations.
URT generalizes traditional code-oriented regression testing

and configuration testing. On one hand, it generalizes tradi-
tional regression testing [11] by testing code changes under
not only the default configuration but also the production
configurations (§III-A). On the other hand, it generalizes
configuration testing [21] by testing configuration changes
against the new code (§III-B). Moreover, it handles diffs that
co-change both code and configurations, be they default or
production configurations (§III-C). We next discuss these three
cases one by one. For now, we assume no regression test
selection (RTS)—we are unaware of any prior RTS tailored
for URT.

A. Testing Code Changes

For a diff that only changes code or the default configu-
ration, URT tests the changed code S under 1) the default
configuration Cdef and 2) every production configuration

Notation Description

S The code (including test code) of the target system
Cdef The default configuration
Cprod The set of production configurations
t̂(P̂ ) A configuration test, where P̂ is its input parameter set
T̂ The configuration test suite of all configuration tests T̂ = {t̂(P̂ )}
T The regular test suite T = {t}, where each t only runs with Cdef

D A diff from (S′, C′
def ,C

′
prod, T

′, T̂ ′) to new (S,Cdef ,Cprod, T, T̂ )

TABLE I: Notations used in the paper and their descriptions.

C ∈ Cprod. The former is equivalent to traditional regression
testing: Basically, URT runs all the tests in the test suite T ;
URT passes iff all the tests pass and fails otherwise.

However, traditional regression testing does not test code
changes under production configurations. URT runs configu-
ration tests in T̂ to check whether the code can be deployed
under different production configurations. This checking is
viable because each configuration test essentially tests the
code under a specific configuration—a configuration test t̂(P̂ )
should pass for any correct values of parameters in P̂ . Thus,
a configuration test can check the correctness of not only
configuration changes but also code changes.

Without RTS, for a diff that only changes code or the default
configuration, URT runs |T |+ |T̂ | × |Cprod| tests.

B. Testing Production Configuration Changes

For a diff that only changes production configurations, URT
tests the code under the changed configurations Cprod. This
checking is done by running configuration tests T̂ against the
code S = S′ under each C ∈ Cprod. Specifically, URT runs
every configuration test t̂(P̂ ) in T̂ by instantiating P̂ with
values in each production configuration C. URT passes iff
every t̂(P̂ ) under every C passes. This part is equivalent to
the original configuration testing described in §II-A, except
that all prior work [21]–[23] assumes there is only one dis-
tinct production configuration, while we allow multiple. Note
that multiple production configurations are the norm in real-
world deployments, e.g., real-world production systems are
constantly under staged deployments with multiple production
configurations in place [7], [24].

Without RTS, for a diff that only changes production
configurations, URT needs to run |T̂ | × |Cprod| tests.

C. Testing Code-Configuration Co-Changes

For a diff that co-changes both code and production config-
urations, URT runs tests against the changed code S with all
changed configurations {Cdef}∪Cprod. URT runs all the tests
in T against S under Cdef . URT also runs all the configuration
tests in T̂ against S under every C ∈ Cprod.

Without RTS, for a diff that co-changes both code and
production configurations, URT runs |T | + |T̂ |× |Cprod| tests.

IV. THE URTS ALGORITHM

As discussed in §III, unified regression testing (URT) is very
expensive without effective regression test selection (RTS).
However, no existing RTS technique is directly tailored for

4



Change Type Run T Run T̂

S′ ̸= S ∨ C′
def ̸= Cdef , Prior workC′

prod = Cprod
Our work

S′ = S, C′
def = Cdef , Need not run Recent work [21] for |Cprod| = 1

C′
prod ̸= Cprod Our extension for |Cprod| > 1

S′ ̸= S ∨ C′
def ̸= Cdef ,

C′
prod ̸= Cprod

Our work Our work

TABLE II: Type of tests run for various types of changes.

URT due to not being able to reason about code and configu-
ration co-changes collectively and precisely. Table II presents
the types of tests run for different types of project changes,
which highlights our contributions over existing RTS.

We develop the unified regression test selection (uRTS) to
fill this important gap. The goal of uRTS is to reduce the
testing time by minimizing the number of tests (including both
regular tests from T and configuration tests from T̂ ) to run for
a given diff that could change code, configurations, or both.
We base uRTS on the following key observations:

• A diff typically changes a small piece of code or a
small number of configuration values [14]. Thus, only
a subset of T or T̂ needs to be run for any diff. The
basic assumption of any RTS is that a relatively cheap
analysis can select a subset of tests and, thus, save the
time that would have been spent running unselected tests.

• A production configuration typically changes only a
small number of configuration values from the default
values [65]. Assuming T̂ has been run against Cdef , a
configuration test t̂(P̂ ) ∈ T̂ need not be run for any
production configuration that changes none of p ∈ P̂
from the default.

• The n production configurations typically only differ in a
small number of configuration values [65]. A configura-
tion test t̂(P̂ ) need not be repeatedly run for production
configurations that share the same values of P̂ .

For a diff D:(S′, C ′
def ,C′

prod, T
′, T̂ ′)→(S,Cdef ,Cprod, T, T̂ ),

uRTS employs a two-step test selection algorithm:
1) Select a subset of regular tests from T to check the new

code S for the new default configuration Cdef .
2) Select a subset of configuration tests from T̂ to check the

new code S for each production configuration in Cprod.

A. Step 1: Selecting Regular Tests

If the target diff D changes the code (i.e., S′ ̸= S), uRTS
first selects regular tests from T to test the code changes. uRTS
applies the traditional RTS to select the tests, i.e., a test t is
selected as long as D changes some code exercised by t. Our
implementation uses Ekstazi, which checks for each t ∈ T
whether D changes any code file on which t depends.

If the target diff D changes the default configuration (i.e.,
C ′

def ̸= Cdef ), uRTS further selects from the remaining t ∈ T
every test that exercises at least one configuration parameter
whose values differ in C ′

def and Cdef , i.e., the change of
C ′

def → Cdef by D could affect the test results of t. We
discuss in §V-B1 how to track configuration parameters read

S′

S

𝐶′!"#

𝐶!"#

𝐶′$

𝐶$

𝐶′%

𝐶%
		𝐶	"

#

𝐶′$"
#𝑆′!"

	𝐶	" 2	𝑑𝑒𝑓	

Vertical
comparison
of code and 

configuration

Horizonal comparison of only configuration (not code)

Code Production configsDefault config

�̂�(𝑃')
𝑆#"
!"𝑆# 			

!
𝑑𝑒𝑓	

	𝐶	"
#
1	𝑆%$

&'

Old

New

Fig. 3: Illustration of Step 2: t̂(P̂ ) is not selected for S and
C2 if either vertical or horizontal comparison matches. One
optimization: not compare code dependencies horizontally.

by each test. Finally, uRTS runs every selected t against S
under Cdef .

Recall that a configuration test t̂(P̂ ) is parameterized by a
set of configuration parameters P̂ . Running t̂(P̂ ) against S
under Cdef is equivalent to running a regular test t against S.

B. Step 2: Selecting Configuration Tests

In this step, uRTS checks the new code S under every
new production configuration C ∈ Cprod. uRTS only selects
configuration tests from T̂ because not all tests in T can test
production configurations that differ from the default.

One can use file-level RTS, like Ekstazi+, to track the
(default or production) configuration but at the level of the
entire file(s). Configurations are stored in files, usually in a
standard format like INI or XML. Ekstazi+ can track for each
test what file(s) the test reads. However, tracking configuration
at the file granularity is rather inefficient. A configuration file
could include hundreds of parameters and their values, and be
several KBs or even MBs [14]. Even if a diff only changes
one configuration value, all the configuration tests need to be
run because they read the configuration file. So, uRTS works
at the granularity of configuration parameters instead of entire
configuration files.

For each C ∈ Cprod, uRTS selects a t̂(P̂ ) ∈ T̂ iff no prior
test run of t̂(P̂ ) exercises the same code under the same values
of all configuration parameters in P̂ . In other words, uRTS
unselects a configuration test t̂(P̂ ) as long as it has been run
against the same code dependencies and the same values of
all parameters from P̂ in either 1) Step 1, where a regular
test t is equivalent to a configuration test t̂ instantiated with
Cdef ; or 2) the last test round, on (S′, C ′

def ,C′
prod). Consider

a configuration test t̂(P̂ ) for a production configuration C ∈
Cprod, and let C<C

prod be the set of production configurations
that run before C. Effectively, the analysis for selecting a test
uses a two-dimensional comparison, illustrated in Fig. 3:

• Horizontal comparison: if the value of every parameter
p ∈ P̂ is the same in C as in another C∗ ∈ {Cdef} ∪
C<C

prod (i.e., the test was executed against S under C∗),
then t̂(P̂ ) is not selected to run for C, because running t̂
against S under C is equivalent to a prior test run. Note
that this case does not compare code dependencies; it is
an intentional optimization as code is the same.

• Vertical comparison: if the value of every parameter p ∈
P̂ is the same in C as in C ′ and every code dependency of

5



t̂ under C ′ has the same content in S′ as in S, then t̂(P̂ )
is not selected to run for C, because running t̂ against S
under C is equivalent to running t̂ against S′ under C ′,
which was done in the last test round.

C. Correctness

Safety. A critical property of RTS is safety [11], [45]—
selecting all tests whose results could change due to the
project changes. For diffs that only change code or the
default configuration, uRTS provides the same safety as tradi-
tional file-based RTS such as Ekstazi [12], in the Ekstazi+

mode, which implicitly considers the default configuration.
uRTS tracks configuration dependencies at the granularity of
configuration parameters instead of configuration files, thus
providing more efficient end-to-end testing. uRTS collects
configuration dependencies by making an over-approximate
estimate, which assumes that each configuration parameter
read by a test influences the execution of the test. This
approach simplifies the implementation and ensures that the
analysis is comprehensive.

For diffs that only change production configurations, uRTS
provides the same level of safety as the RTS for configuration
testing [21]; uRTS is more efficient than the prior work when
multiple production configurations exist. Thus, uRTS provides
the same safety guarantees when reduced to special cases.
Moreover, uRTS supports the most general case where both
code and configurations change.

Precision. For a regular test t, uRTS selects t iff the test
result could change due to the changed code S or Cdef . For
a configuration test t̂(P̂ ), uRTS selects t̂ iff the code and the
configuration parameters exercised by t̂ were not already run
in the current test round (“horizontal comparison”) or the last
test round (“vertical comparison”). In summary, t̂(P̂ ) runs only
once for the same code and the same set of configuration
values of P̂ .

V. THE URTS IMPLEMENTATION

We implemented uRTS for Java and JUnit on top of Ek-
stazi [12] and Ctest [21]. Ekstazi is a state-of-the-art RTS tool
which dynamically tracks files that each test depends on and
selects tests to run if any dependency file is changed. Ctest is
a configuration testing framework that intercepts configuration
APIs to assign production configuration values to instantiate
configuration tests. We use Ekstazi to track the code executed
by each test, be it a regular or configuration test. We integrate
Ctest into Ekstazi to support running configuration tests. More-
over, we extend Ekstazi’s dependency collection and analysis
to track configuration parameters and their values during each
test run; we also encode the configuration parameters and their
values in the dependency file format that Ekstazi stores for
each test [52].

Fig. 4 shows the workflow of our uRTS implementation.
uRTS first selects tests (§IV) during the analysis phase (§V-B).
To execute regular tests, uRTS uses the existing Ekstazi
integration with JUnit and Maven Surefire. For each test that is
not selected, uRTS reuses the test’s dependency file generated

Test selection

Analysis

Dep. checking

Execution

Ctest runner

Test runner

Collection

Dep. gen.

Dep. reuse

not selected

selected

D
ep. files

𝑡	or �̂�

compare for the next revision

Fig. 4: uRTS implementation uses Ekstazi’s integration with
JUnit; we added or enhanced the grayed components.

by an earlier equivalent run; for each test that is selected, uRTS
runs the test and generates the new dependency file (§V-C).

A. Dependencies

uRTS maintains two types of dependencies for each test
under each configuration C ∈ {Cdef} ∪ Cprod:

• Code dependency: the code files that the test depends
on, in the Ekstazi form of ⟨URI, checksum⟩ pairs, where
the file URI could be a .class file in a directory or in
a .jar archive, and the checksum is a hash of the file
content. Note that the same test could have different code
dependencies when run under different configurations.

• Configuration dependency: the names and values of
configuration parameters read by the test, in the form
of ⟨parameter, value⟩ pairs. For each configuration test
t̂(P̂ ), its configuration dependencies only include the
parameters in P̂ .

uRTS maintains a dependency file (with code and configu-
ration dependencies) for each pair of a test (identified by the
test name) and a configuration (with a separate directory for
dependency files for each configuration). Each dependency file
is 1) (re)generated during the test run if the test is selected, or
2) reused from a dependency file of an equivalent run if the
test is not selected.

B. Analysis Phase

The analysis phase of uRTS analyzes the latest code and
configuration dependencies for each test (§V-B1), and decides
whether or not to select the test to execute (§V-B2).

1) Analyzing Dependency Changes: As Ekstazi, uRTS
checks whether a file dependency changes between two code
versions by comparing the checksums of the file content
in S′ and S. To analyze configuration dependencies, uRTS
needs to obtain the value of each configuration parameter in
corresponding configuration C ∈ {Cdef}∪Cprod and compare
the current value with that recorded in a dependency file.

A seemingly easy solution is to simply parse the configura-
tion files based on their format, which is typically a standard
file format such as INI or XML. However, our experience
in implementing uRTS for real-world projects shows that
configurations could have complex representations, making it
difficult to understand how they are interpreted by the project.
Table III presents some examples from Hadoop, involving
configuration variables and complex dependencies based on
configuration values. It is hard to duplicate such sophisticated
logic for each project.

6



Type Parameter Value

Value hadoop.tmp.dir /tmp/hadoop-${user.name}
dep. io.seqfile.local.dir ${hadoop.tmp.dir}/io/local

Complex dfs.ha.namenodes.CID NN1,NN2
dep. dfs.namenode.rpc-address.CID.NN1 machine1.example.com:8020

dfs.namenode.rpc-address.CID.NN2 machine2.example.com:8020

TABLE III: Two examples of sophisticated configuration in
the Hadoop project which makes it difficult to analyze config-
uration changes by simply parsing a configuration file.

Rather than reverse-engineering sophisticated configuration
logic, our insight is to use a more general, cleaner solution to
obtain configuration parameter values by reusing the project’s
own configuration APIs for reading configuration parameter
values.2 uRTS instruments the same configuration APIs for
the collection phase (§V-C). Using the same interface to
collect and compare configuration dependencies ensures the
consistency of the analysis. Specifically, we implement a
configuration reader that invokes the Get API to read the
configuration values of a configuration parameter. The reader
returns all the configuration parameters and their values from
a given configuration file.

2) Test Selection: uRTS implements the test selection
algorithm (§IV) based on dependency analysis. If there is no
dependency file recorded (e.g., on the first run of uRTS, or
when a new test or a new production configuration is added),
the test is selected to run.

Step 1 (§IV-A) Selecting regular tests. For each test
t against S under Cdef , uRTS checks whether or not the
configuration dependencies of t (the default parameter values
read by t) change. If so, t is selected to run. Otherwise, uRTS
further checks whether any code-dependency changes. If so,
uRTS selects the test t to execute. Otherwise, if neither the
configuration nor the code dependencies change, uRTS does
not select t.

Step 2 (§IV-B) Selecting configuration tests. For each
configuration test t̂(P̂ ) under a given production configuration
file C ∈ Cprod, uRTS first “horizontally” checks whether
any value of the t̂’s input parameters P̂ in C differs from
the corresponding value in the configuration-dependency of
t̂ previously executed under both Cdef and other production
configurations. (Note that t̂ could read more parameters than
those in P̂ , but the values of parameters not in P̂ are the
same as in the default configuration.) If there is no such
configuration difference, uRTS does not select t̂.

Otherwise, uRTS further “vertically” compares 1) the cur-
rent values of P̂ in C against the prior configuration depen-
dency of C ′ and 2) the current code dependency against the
prior code dependency of t̂. uRTS selects t̂ iff either code or
configuration dependencies change.

2Modern software projects use uniform APIs for reading configurations,
which is the basis for recent configuration analysis techniques [21], [22],
[61], [66]–[73]. For example, in many Java projects, the Get APIs can be
abstracted as a method of the form String get(String parameter).
It takes a parameter name as the input and returns its value (which is further
typecast by higher level APIs). Many Get APIs are declared in wrapper
classes on top of java.util.Properties for Java projects. Ctest [21]
instruments the Get APIs to generate configuration tests from regular tests.

1 public String get(String name) {
2 + String urtParam = name;
3 String[] names = handleDeprecation(

deprecationContext.get(), name);
4 String result = null;
5 for(String n : names) {
6 + urtParam = n;
7 result = substituteVars(getProperty(n));
8 }
9 + ConfigListener.record(urtParam, result);

10 return result;
11 } /* .../hadoop/conf/Configuration.java */

Fig. 5: Instrumentation for the Get API in Hadoop. The get

method is the lowest level API used by high-level APIs, e.g., getInt
and getBool. handleDeprecation replaces deprecated names.

1 public static void recordConfig(String confFile) {
2 Configuration conf = new Configuration(confFile);
3 for(String parameter : conf.getAllKeys()) {
4 String value = conf.get(parameter);
5 ConfigListener.record(parameter, value);
6 }
7 }

Fig. 6: The method we added for the Hadoop project to read
all the configuration parameter values of a given file. Hadoop
code uses the Get API to read configuration values.

C. Collection Phase

1) Not selected tests: If a test under C ∈ {Cdef} ∪Cprod

is not selected, it means that uRTS finds an equivalent test
run with the same code and configuration dependencies during
horizontal/vertical comparison. In this case, uRTS copies cor-
responding dependency files to update current dependencies.

2) Selected tests: For tests that are selected to run, uRTS
executes the test and (re)generates the code and configuration
dependencies. uRTS uses Ekstazi to track code dependencies,
as the .class files on which the test execution depends (§II-B).
Ekstazi instruments class loading and other class uses (e.g.,
dereference of static fields) to track the classes, and then maps
each class name to the URI file location that stores the class.

uRTS collects configuration dependencies with the instru-
mentation of the configuration APIs. uRTS applies the tech-
niques of Ctest [21] to instrument the configuration APIs to
monitor the configuration parameters read by each test during
the test execution. Fig. 5 shows the instrumentation for the
Get API of the Hadoop project, which invokes the same record
method as in Fig. 6.

D. Optimizations

We apply several optimizations in the uRTS implementation
to reduce the analysis time.

First, the horizontal comparison only analyzes configuration
dependencies, not code dependencies. The reason is that the
code revision (and, thus, the content/checksum of the .class
files) does not change when testing Cdef and any C ∈ Cprod

(see Fig. 3); hence, if the configuration dependencies are
the same, the test executes the same, and both code and
configuration dependencies are the same. If the configuration
dependencies differ, then the test is selected to rerun anyway,
so both its code and configuration dependencies will be
updated. Recall that code dependencies for a configuration

7



test can differ when running the test under Cdef or some
C ∈ Cprod. This optimization reduces the analysis time,
because checking the new code dependencies is expensive due
to the need to recompute checksums of all the dependent files.

Moreover, because configuration dependency comparison is
computationally much cheaper than code dependency com-
parison (the former only involves string comparison without
checksum calculation), our implementation always analyzes
configuration dependencies before code dependencies. When
configuration dependencies differ, it saves the overhead of
comparing code dependencies (as the test is selected already).

VI. EXPERIMENTAL METHODOLOGY

Evaluating uRTS on open-source projects is challenging,
because most projects do not offer a DevOps-based environ-
ment with both code and production configuration changes.
RTS research often uses commits from the revision history
of open-source projects for code (and default configuration)
changes [12], [13], [74], but it is non-trivial to collect real-
world production configurations and their revision histories,
which are typically proprietary.

We create an evaluation set on top of the Ctest dataset [53]
which contains 100 deployed configurations collected from
public Docker images on DockerHub [75] for five large,
widely used open-source projects. We treat those deployed
configurations as production configurations and use multiple
deployed configurations as different, evolving revisions of
one production configuration. Moreover, we use the most
recent compilable commits as our evaluation project changes.
Table IV shows the evaluated projects, the statistics of code
commits and configurations, and the test suites.

Evaluated Projects and Commits. We use the same set
of open-source projects as recent work on configuration test-
ing [21], [22]: HCommon, HDFS, HBase, Alluxio, and ZooKeeper.
As all these projects use JUnit as their testing framework,3 we
integrated Ekstazi and uRTS into their build and test systems.
All the projects use Apache Maven for building source code
and the Maven Surefire plugin for running tests.

For each project, our evaluation uses 50 recent commits.
Specifically, we used the newest released version as of January
2022 of each project as the last commit and checked out 49
prior compilable commits that each modifies relevant code
or configuration. Among these commits, some in HCommon,
HDFS, and Alluxio change the default configuration included
as a part of the codebases. No commit in HBase and ZooKeeper
changes the default configuration.

Production Configs. We use real-world configurations of
each project from public Docker images as the production
configurations in our evaluation. Those configurations were
collected in the Ctest dataset [53]. We treat each project
as having two production configurations in the evolution,
to represent the simplest case of multiple configurations. In
general, the more production configurations a system deploys,
the more benefits uRTS brings.

3The Ekstazi tool that we obtained [52] supported only JUnit 4 (and 3);
we extended Ekstazi to support JUnit 5 to evaluate ZooKeeper.

Project Module LOC # Rev. # Conf. # Rev. on # Test Classes [avg]
files Cprod Regular Config

HCommon hadoop-common 256K 50 20 18 510 259
HDFS hadoop-hdfs 371K 50 20 18 751 751
HBase hbase-server 427K 50 20 17 295 158
Alluxio core 154K 50 20 17 247 118
ZooKeeper zookeeper-server 101K 50 20 19 299 187

TABLE IV: Projects, commits, configuration files, and tests
(regular and configuration) used in the evaluation.

Unfortunately, Docker images do not provide a revision
history of the deployed configurations. Therefore, we use the
configurations to simulate changes in the production config-
urations. For each project, we divide all the configurations
into two groups to represent two production configurations.
For each group with n configurations, we assume they are n
revisions of one configuration.

We associate each configuration change with randomly
chosen project commits; each commit could change either
code (with default configuration) or both code (with default
configuration) and some production configuration(s). For each
of the two groups of n configurations, we independently
choose commits, so some commits change both configuration
files. The number of commits with at least one production
configuration change is 18 for HCommon, 18 for HDFS, 17 for
HBase, 17 for Alluxio, and 19 for ZooKeeper (Table IV). We
have no commit that changes only a production configuration;
for such commits, uRTS would bring even more benefits.

Configuration Tests. The evaluated projects do not come
with explicit configuration test suites. We use Ctest [53] to
transform existing tests into configuration tests by parameter-
izing those tests with configuration parameters (§II-A). While
the Ctest dataset [53] provides the configuration tests for the
five evaluated projects, those provided configuration tests were
generated for only one version of each project (as the Ctest
work did not consider code evolution [21]), and the version
is older than all the versions used in our evaluation. Thus,
we generate all the configuration tests for each commit in our
evaluation following Sun et al. [21].

Hardware and System Settings. All the experiments
are run on Azure VMs with dual-core CPUs and 14GB
of RAM [76], Ubuntu 20.04.2, and Java 64-bit 1.8.0. The
experiments spent 2000+ hours of machine time in total.

Baseline. We compare uRTS with the ReTestAll baseline
that conducts URT without RTS (§III). ReTestAll is a common
baseline used in RTS research [45]. ReTestAll runs all the
regular tests in T if the target commit changes the code or the
default configuration; it also runs all the configuration tests
in T̂ for each production configuration. With the setup of
two production configurations, ReTestAll runs |T | + 2 × |T̂ |
tests for every commit. To limit the machine time used in our
experiments, we do not measure ReTestAll time for all 50
commits but only run the first and last commit in the range
and use their average time for all the commits. The difference
between the time for the first and last commit is, on average,
just 1.0%. For the number of test classes, we extract the precise
number for every commit, but the difference is again small,

8



Project ReTestAll Ekstazi+ uRTS
T+R% N+R% TUR% NUR% TU+% NU+%

Ekstazi−
TU−% NU−%time [sec] # classes time [sec] # classes time [sec] # classes time [sec] # classes

HCommon 4467.06 1030.50 1303.06 133.40 542.01 51.12 29.17% 12.94% 12.13% 4.96% 41.60% 38.32% 220.67 14.82 245.62% 345.03%
HDFS 65283.01 2049.00 45346.87 759.27 30614.97 478.44 69.46% 37.06% 46.90% 23.35% 67.51% 63.01% 13818.32 199.58 221.55% 239.72%
HBase 2844.60 611.00 1303.90 105.76 652.03 45.27 45.84% 17.31% 22.92% 7.41% 50.01% 42.81% 381.32 31.38 170.99% 144.27%
Alluxio 1831.13 485.50 1401.36 212.22 998.18 97.53 76.53% 43.71% 54.51% 20.09% 71.23% 45.96% 529.78 73.65 188.42% 132.43%
ZooKeeper 3168.50 677.00 1624.30 208.54 701.71 69.21 51.26% 30.80% 22.15% 10.22% 43.20% 33.19% 458.92 46.59 152.91% 148.53%

Σ/avg 5451.09 842.33 2810.57 216.35 1499.39 94.34 51.56% 25.69% 27.51% 11.20% 53.35% 43.61% 776.72 50.19 193.04% 187.98%

TABLE V: Test run results of ReTestAll, Ekstazi+, uRTS, and Ekstazi−. The average reduction of testing time and the number
of selected test classes are denoted by T+R%, N+R% when comparing Ekstazi+ to ReTestAll; TUR%, NUR% when comparing uRTS to
ReTestAll; TU+%, NU+% when comparing uRTS to Ekstazi+; and TU−%, NU−% when comparing uRTS to Ekstazi−.

on average, just 0.6% between the min and max.
References. We compare uRTS with two reference so-

lutions, Ekstazi+ and Ekstazi− (§ II-B). For Ekstazi+, we
integrated Ctest with Ekstazi, and configured Ekstazi to track
for each configuration test its file dependencies that include
both code and configuration files. If a configuration test
depends on a configuration file that had any change from a
previous run, then the test is selected. We expect Ekstazi+ to
be less effective than uRTS because file granularity is rather
coarse for configuration dependencies—a configuration file
could include hundreds of configuration values [65], while a
configuration change typically modifies only a small number
of parameters [14]. In contrast, uRTS tracks configuration
dependencies at the parameter granularity.

We also evaluate Ekstazi−, the Ekstazi default that does not
track configuration files and only concerns code changes. The
goal is to understand the cost of URT and uRTS over unsafe,
code-driven regression testing.

Granularity. We select tests at the granularity of test classes
(not test methods). The reasons are: 1) selecting classes is
safer than methods (e.g., due to code changes that affect
dynamic dispatch) [12], and 2) selecting classes was shown
to outperform selecting methods [12], [64], [77].

Metrics. To evaluate RTS, we measure two main metrics:
1) the end-to-end testing time, and 2) the number of selected
test classes. For the testing time, we measure the time to
execute the build command that developers use to execute
tests, specifically mvn test for all the evaluated projects. For
the commonly running tests, we did not modify any build
configuration in any project’s build files; hence, the speedup
that we observe in our experiments reflects what developers
would have experienced.

VII. EVALUATION RESULTS

Our evaluation aims to answer the following questions:
1) How effective is uRTS?
2) What is the overhead to support URT?
3) How much does uRTS save for configuration changes?
4) Are both of the two-dimensional comparisons needed?

A. RQ1: Savings of Testing Time and The Number of Tests

End-to-end testing time is the key metric to measure the
effectiveness of RTS in reducing the testing costs; as an
additional metric, we use the number of selected test classes.
Table V shows the RTS results, in terms of the two metrics,

of uRTS, compared with ReTestAll and Ekstazi+. (uRTS
provides the same safety guarantees as Ekstazi+.)

For each project, Table V shows the average number of
all revisions; lower numbers are better. We compare uRTS
over ReTestAll and Ekstazi+ in terms of testing time (TUR%,
TU+%) and the number of test classes (NUR%, NU+%),
respectively. We compute the ratio for each commit, average
the ratios via geometric mean over all commits, and then
average the results across all projects, obtaining an unweighted
average that equally treats all projects (so the results from the
largest project do not dominate the overall average).

Main Results. On average, uRTS only takes 53.35% of test-
ing time compared with Ekstazi+ and 27.51% of testing time
compared with ReTestAll. Stated differently, uRTS reduces the
end-to-end testing time by 1.87X compared with Ekstazi+ and
3.64X compared with ReTestAll.

In terms of the number of test classes, uRTS only selects
43.61% and 11.20% of test classes compared with Ekstazi+

and ReTestAll, respectively. It is not uncommon for RTS to
select a smaller percentage of tests than the percentage of
the overall time savings [12], [13], for two reasons: 1) the
overall time includes not just the test execution time but also
the building overhead that is the same both with and without
RTS; and 2) the test execution time itself is not proportional
to the number of selected tests because the selected tests are
typically longer-running and larger, with more dependencies,
than the unselected tests.

For example, for Alluxio, the test class FileSystemFactory-
Test runs significantly longer than others. If it is selected,
its running time dominates the overall testing time. It is
selected often in our evaluation (104 times by uRTS and
135 times by Ekstazi+, out of 150=50×3 cases), which
explains the gap between TU+% of 71.23% and NU+%
of 45.96%. For HDFS, both TU+% and NU+% are higher
than for the other projects due to a configuration parame-
ter, dfs.namenode.datanode.registration.ip-hostname-check. 584 test
classes depend on this parameter, so when it is changed, all
584 tests are selected.

The T+R%, N+R% results of Ekstazi+ show the effective-
ness of RTS in reducing the test cost of URT. We can see
that even a coarse-grained RTS technique like Ekstazi+ can
effectively reduce the testing time to 51.56%, on average,
and the number of test classes to 25.69%, compared with
the baseline (ReTestAll). The TU+%, NU+% results of uRTS
show the further effectiveness of configuration-aware RTS for

9



50 40 30 20 10 0
Revision

0

1000

2000

3000

4000

5000

Ti
m

e 
[s

ec
]

ReTestAll Ekstazi + uRTS Ekstazi

50 40 30 20 10 0
Revision

0

200

400

600

800

1000

# 
Te

st
 C

la
ss

es

(a) HCommon (Time) (b) HCommon (# Tests)

50 40 30 20 10 0
Revision

0
10000
20000
30000
40000
50000
60000
70000

Ti
m

e 
[s

ec
]

50 40 30 20 10 0
Revision

0
250
500
750

1000
1250
1500
1750
2000

# 
Te

st
 C

la
ss

es

(c) HDFS (Time) (d) HDFS (# Tests)

50 40 30 20 10 0
Revision

0
500

1000
1500
2000
2500
3000
3500

Ti
m

e 
[s

ec
]

50 40 30 20 10 0
Revision

0

100

200

300

400

500

600

# 
Te

st
 C

la
ss

es

(e) HBase (Time) (f) HBase (# Tests)

50 40 30 20 10 0
Revision

0
250
500
750

1000
1250
1500
1750

Ti
m

e 
[s

ec
]

50 40 30 20 10 0
Revision

0

100

200

300

400

500

# 
Te

st
 C

la
ss

es

(g) Alluxio (Time) (h) Alluxio (# Tests)

50 40 30 20 10 0
Revision

0
500

1000
1500
2000
2500
3000
3500

Ti
m

e 
[s

ec
]

50 40 30 20 10 0
Revision

0
100
200
300
400
500
600
700

# 
Te

st
 C

la
ss

es

(i) ZooKeeper (Time) (j) ZooKeeper (# Tests)

Fig. 7: End-to-end testing time in seconds (a,c,e,g,i) and
number of selected test classes (b,d,f,h,j) for all five projects.

URT—tracking configuration dependencies at the parameter
granularity can further reduce the testing time to 53.35%, on
average, and the number of test classes to 43.61%, compared
with the RTS at the file granularity (Ekstazi+). In brief,
Ekstazi+ almost halves the time of ReTestAll, and uRTS further
almost halves the time of Ekstazi+. The results indicate that
with uRTS, URT is substantially cheaper.

Fig. 7 visualizes the RTS results per commit across the
evaluated projects. Ekstazi+ has an even higher testing cost
than ReTestAll in the initial commits, because Ekstazi+ needs
to run the entire test suites (both T and T̂ ) and collect
test dependencies. Collecting dependencies is also the reason
why the testing time of Ekstazi+ is sometimes higher than
of ReTestAll for later commits (e.g., Fig. 7e). In contrast,
uRTS can reduce the testing time effectively compared with
Ekstazi+ and ReTestAll from the very first commit by avoiding
redundant test runs via the “horizontal” selection across the
configurations (more discussion in §VII-D).

Project Ekstazi+ [sec] uRTS [sec] TU+%
C1 C2 C1 C2 C1 C2 C1 + C2

HCommon 1555.20 1471.42 260.01 255.73 16.72% 17.38% 17.04%
HDFS 22215.74 19965.39 13748.08 3978.08 61.88% 19.92% 42.02%
HBase 1154.25 1127.30 183.58 88.16 15.90% 7.82% 11.91%
Alluxio 555.61 535.49 276.40 206.85 49.75% 38.63% 44.29%
ZooKeeper 1011.87 985.09 61.51 52.98 6.08% 5.38% 5.73%

Σ/avg 1862.64 1771.97 406.92 250.32 21.85% 14.13% 18.50%

TABLE VI: Test time for Ekstazi+ and uRTS, with production
configuration change in every commit.

B. RQ2: Overhead of URT

To understand the overhead of URT over unsafe regression
testing that ignores configuration changes, we compare the
end-to-end testing time (TU−%) and the number of selected
test classes (TU−%) of uRTS over the unsafe Ekstazi−.
Note that Ekstazi− only tests code changes under the default
configuration, while uRTS tests three different configurations
(one default and two production).

Table V and Fig. 7 show the results. On average, uRTS for
three different configurations takes 1.93X of testing time and
1.88X test classes over Ekstazi−. With uRTS, testing three
configurations (the default configuration and two production
configurations) does not even double the testing costs. The
results indicate that with uRTS, the cost of URT is close to
traditional regression testing.

C. RQ3: Focus on Configuration Changes

uRTS is expected to reduce more testing costs over Ekstazi+

when configuration changes are more frequent. For example,
Meta reported that configuration changes are even more fre-
quent than source-code changes [14]. We next focus on RTS
results with more frequent production configurations. To better
understand how uRTS works for configuration changes, we
focus on the subset of commits with at least one production
configuration change. Table VI shows the RTS results in terms
of the testing time but broken down for each of the two
production configurations separately (we omit the ReTestAll
results due to the space limitation). uRTS takes 21.85% and
14.13% of the time of Ekstazi+ for production configurations
C1 and C2, respectively. The testing time of uRTS is ≈ 1/4
for C1 and ≈ 1/7 for C2 of the time spent by Ekstazi+,
across all projects. If we consider both C1 and C2, uRTS
takes only 18.50%. We can contrast the overall average for
these configuration-related commits, 18.50% (Table VI), vs.
the overall average for all commits, 53.35% (Table V); the
percentage is substantially lower, as expected.

D. RQ4: Effectiveness of Two-Dimensional Comparison

For each configuration test, uRTS makes the selection
decision by two-dimensional comparisons (§IV-B). It “hori-
zontally” compares the dependencies with early test run of
the same code version but different configuration(s), while
“vertically” compares with the previous code version but
(potentially) the same configuration. We analyzed uRTS per-
formance with only horizontal and only vertical comparison;

10



the results show that the comparisons in both dimensions are
necessary—neither dimension subsumes the other. On average,
uRTS selects 330 test classes by vertical comparison, 164
by horizontal comparison, and only 108 by two-dimensional
comparisons. We omit detailed per-project information due to
the space limitation.

VIII. THREATS TO VALIDITY

The threats to external validity mainly lie in the evaluated
projects and datasets. To reduce such threats, we use recent
releases of real-world projects and deployed configuration
files from the Ctest dataset [21]. However, we synthesized
configuration changes using different configuration files from
DockerHub as different versions. Future work should consider
more diverse datasets.

The threats to internal validity mainly lie in the potential
bugs in our implementations and experimental scripts. We
extensively review the code and carefully check the results.

The threats to construction validity mainly lie in the metrics.
We consider not only the number of selected tests but chiefly
the end-to-end testing time. The time that the developers wait,
from initiating a test-suite run for a new code revision until all
the test outcomes are available, is the most relevant for RTS.

IX. DISCUSSION

Generality. Our uRTS implementation builds on Ekstazi
with dynamic RTS. We chose Ekstazi because it is open
source [52], robust, and was used in several studies [12], [64],
[78]–[80]. However, the key principles of uRTS—1) tracking
configuration dependencies at the level of configuration pa-
rameters rather than configuration files, 2) performing both
horizontal and vertical comparisons, 3) comparing parame-
ter values across multiple production configurations not just
against the default—can be applied to other dynamic RTS,
whether at a finer granularity of code dependencies (e.g.,
method) or coarser (e.g., modules).

In fact, we can view the idea of tracking configuration
parameters rather than configuration files as an application of
a general idea to track dependencies at a finer rather than
coarser granularity whenever it provides a benefit, i.e., the
somewhat higher cost of collection and analysis provides an
even higher savings by unselecting tests. Nanda et al. [81]
discuss tracking configuration files, like Ekstazi+, but not
the granularity of tracking configuration parameters instead
of files. For any novel application of RTS, it is important to
evaluate what granularity level provides a better end-to-end
time, even if it selects more tests to run (e.g., class-level RTS
is better than method-level RTS despite selecting more tests).
Our experiments show that uRTS provides a better end-to-end
time than Ekstazi+ and also selects fewer tests.

Selection granularity. Our evaluation uses test class as the
selection granularity. uRTS supports other selection granularity
such as test method—both Ekstazi and Ctest can select tests
at the method granularity. Although prior studies [12], [64],
[77] found that RTS based on class dependencies was more
effective, recent work [64] shows that RTS can potentially

benefit from a hybrid approach that uses different granularities.
We leave the hybrid approach for uRTS as future work.

Nondeterministic tests. One concern, especially for large
codebases, is that tests may be nondeterministic and have a
different outcome even for the same code and configuration
dependencies. An RTS technique is still safe if it unselects a
test when its executions observed in prior runs do not change,
even if the test may have other executions that could change.
If developers want to check more executions of a test, they
need to run the test multiple times.

X. OTHER RELATED WORK

RTS has been studied for 25+ years since seminal work
in the late 1990’s [45], [82]. Several surveys [11], [46]–[48]
provide a broad overview. Early research focused on selecting
as few tests as possible from the regression test suites, but later
work focused on reducing the end-to-end regression testing
time. While early techniques tracked test dependencies at fine
granularity levels (e.g., basic blocks [45], [83]), over time
the dependencies got coarser (e.g., methods [84], classes [12],
[64], [77], [80], [85], and modules [13], [86]). RTS is widely
used in practice [40]–[44], [87], [88].

RTS for configuration-aware regression testing [57], [89]
focuses on the generation of configurations and prioritiza-
tion of configurations during regression testing, while uRTS
focuses on production configurations and selection of tests.
The prior work implicitly assumes that all regular tests can be
used as configuration tests (i.e., T̂ = T ) and aims to generate
(or “select”) configurations from the large configuration space.
However, bugs that manifest for generated configurations may
not manifest for real production configurations. Likewise,
bugs (and misconfigurations) that manifest for production
configurations may be missed with generated configurations.

XI. CONCLUDING REMARKS

We have presented test selection uRTS for unified regression
testing (URT) for both code and configuration changes. uRTS
selects a subset of tests to run and provides the safety
guarantees as traditional RTS. uRTS reduces the end-to-end
testing time by 1.87X, on average, compared to Ekstazi+,
and by 3.64X compared to executing all tests. uRTS is a step
toward making URT practical and widely adopted.

Data Availability: https://github.com/xlab-uiuc/uRTS-ae

ACKNOWLEDGMENTS

We thank Runxiang Cheng and Xudong Sun for their con-
tinuous help and discussion on configuration testing. We thank
Lilia Tang, Tyler Gu, and Yinfang Chen for valuable feedback.
This work was partially supported by NSF grants CCF-
1763788, CCF-1956374, and CNS-2145295. We acknowledge
support for research from Microsoft, Qualcomm, and Meta.

REFERENCES

[1] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter as a
Computer: An Introduction to the Design of Warehouse-scale Machines,
2nd ed. Morgan and Claypool Publishers, 2013.

[2] B. Maurer, “Fail at Scale: Reliability in the Face of Rapid Change,”
Communications of the ACM, vol. 58, no. 11, 2015.

11

https://github.com/xlab-uiuc/uRTS-ae


[3] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why Do Internet
Services Fail, and What Can Be Done About It?” in USITS, 2003.

[4] S. Mehta, R. Bhagwan, R. Kumar, B. Ashok, C. Bansal, C. Maddila,
C. Bird, S. Asthana, and A. Kumar, “Rex: Preventing Bugs and Mis-
configuration in Large Services using Correlated Change Analysis,” in
NSDI, 2020.

[5] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. Eliazar, “Why Does the Cloud Stop Computing?
Lessons from Hundreds of Service Outages,” in SoCC, 2016.

[6] T. Xu and Y. Zhou, “Systems Approaches to Tackling Configuration
Errors: A Survey,” ACM Computing Surveys, vol. 47, no. 4, Jul. 2015.

[7] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm,
“Continuous Deployment at Facebook and OANDA,” in ICSE, 2016.

[8] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover,
J. Holman, J. Micco, B. Murphy, T. Savor, M. Stumm, S. Whitaker, and
L. Williams, “The Top 10 Adages in Continuous Deployment,” IEEE
Software, vol. 34, no. 3, 2017.

[9] C. Rossi, E. Shibley, S. Su, K. Beck, T. Savor, and M. Stumm,
“Continuous Deployment of Mobile Software at Facebook,” in FSE,
2016.

[10] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
Costs, and Benefits of Continuous Integration in Open-Source Projects,”
in ASE, 2016.

[11] S. Yoo and M. Harman, “Regression Testing Minimisation, Selection and
Prioritization: A Survey,” Software Testing, Verification, and Reliability,
vol. 22, no. 2, 2012.

[12] M. Gligoric, L. Eloussi, and D. Marinov, “Practical Regression Test
Selection with Dynamic File Dependencies,” in ISSTA, 2015.

[13] A. Shi, P. Zhao, and D. Marinov, “Understanding and Improving
Regression Test Selection in Continuous Integration,” in ISSRE, 2019.

[14] C. Tang, T. Kooburat, P. Venkatachalam, A. Chander, Z. Wen,
A. Narayanan, P. Dowell, and R. Karl, “Holistic Configuration Man-
agement at Facebook,” in SOSP, 2015.

[15] P. Huang, W. J. Bolosky, A. Sigh, and Y. Zhou, “ConfValley: A
Systematic Configuration Validation Framework for Cloud Services,”
in EuroSys, 2015.

[16] “Google Configuration Specifics,” https://sre.google/workbook/
configuration-specifics/.

[17] L. Hochstein, “Why Do Config Changes Keep Coming Up
in Major Incidents?” https://surfingcomplexity.blog/2021/05/29/
why-do-config-changes-keep-coming-up-in-major-incidents/.

[18] “How AWS Config Works,” https://docs.aws.amazon.com/config/latest/
developerguide/how-does-config-work.html.

[19] S. Kendrick, “What Takes Us Down?” USENIX ;login:, vol. 37, no. 5,
2012.

[20] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S. Pa-
supathy, “An Empirical Study on Configuration Errors in Commercial
and Open Source Systems,” in SOSP, 2011.

[21] X. Sun, R. Cheng, J. Chen, E. Ang, O. Legunsen, and T. Xu, “Testing
Configuration Changes in Context to Prevent Production Failures,” in
OSDI, 2020.

[22] R. Cheng, L. Zhang, D. Marinov, and T. Xu, “Test-Case Prioritization
for Configuration Testing,” in ISSTA, 2021.

[23] T. Xu and O. Legunsen, “Configuration Testing: Testing Configuration
Values as Code and with Code,” arXiv:1905.12195, 2019.

[24] S. Ma, F. Zhou, M. D. Bond, and Y. Wang, “Finding Heterogeneous-
Unsafe Configuration Parameters in Cloud Systems,” in EuroSys, 2021.

[25] N. Tillmann and W. Schulte, “Parameterized Unit Tests,” in ESEC/FSE,
2005.

[26] N. Tillmann and W. Schulte, “Unit Tests Reloaded: Parameterized Unit
Testing with Symbolic Execution,” IEEE Software, vol. 23, no. 4, 2006.

[27] S. Baset, S. Suneja, N. Bila, O. Tuncer, and C. Isci, “Usable Declarative
Configuration Specification and Validation for Applications, Systems,
and Cloud,” in Middleware, 2017.

[28] R. Potharaju, J. Chan, L. Hu, C. Nita-Rotaru, M. Wang, L. Zhang, and
N. Jain, “ConfSeer: Leveraging Customer Support Knowledge Bases for
Automated Misconfiguration Detection,” in VLDB, 2015.

[29] Q. Chen, T. Wang, O. Legunsen, S. Li, and T. Xu, “Understanding
and Discovering Software Configuration Dependencies in Cloud and
Datacenter Systems,” in ESEC/FSE, 2020.

[30] J. Zhang, R. Piskac, E. Zhai, and T. Xu, “Static Detection of Silent
Misconfigurations with Deep Interaction Analysis,” in OOPSLA, 2021.

[31] N. Palatin, A. Leizarowitz, A. Schuster, and R. Wolff, “Mining for
Misconfigured Machines in Grid Systems,” in KDD, 2006.

[32] M. Santolucito, E. Zhai, R. Dhodapkar, A. Shim, and R. Piskac,
“Synthesizing Configuration File Specifications with Association Rule
Learning,” in OOPSLA, 2017.

[33] M. Santolucito, E. Zhai, and R. Piskac, “Probabilistic Automated Lan-
guage Learning for Configuration Files,” in CAV, 2016.

[34] O. Tuncer, N. Bila, S. Duri, C. Isci, and A. K. Coskun, “ConfEx:
Towards Automating Software Configuration Analytics in the Cloud,”
in DSN-W, 2018.

[35] D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Verbowski, and A. Kumar,
“Context-based Online Configuration Error Detection,” in ATC, 2011.

[36] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and
Y. Zhou, “EnCore: Exploiting System Environment and Correlation
Information for Misconfiguration Detection,” in ASPLOS, 2014.

[37] R. Potvin and J. Levenberg, “Why Google Stores Billions of Lines of
Code in a Single Repository,” Communications of the ACM, vol. 59,
no. 7, 2016.

[38] M. Sayagh, N. Kerzazi, B. Adams, and F. Petrillo, “Software Config-
uration Engineering in Practice: Interviews, Surveys, and Systematic
Literature Review,” TSE, vol. 46, no. 6, 2020.

[39] C. Jaspan, M. Jorde, A. Knight, C. Sadowski, E. K. Smith, C. Winter,
and E. Murphy-Hill, “Advantages and Disadvantages of a Monolithic
Repository: A Case Study at Google,” in ICSE, 2018.

[40] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for Improving Re-
gression Testing in Continuous Integration Development Environments,”
in FSE, 2014.

[41] Z. Mi, “Mobile Performance: Tooling Infrastructure at
Facebook,” https://engineering.fb.com/2015/04/10/developer-tools/
mobile-performance-tooling-infrastructure-at-facebook, 2015.

[42] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco, “Taming Google-Scale Continuous Testing,” in ICSE-
SEIP, 2017.

[43] C. Leong, A. Singh, J. Micco, M. Papadakis, and Y. le Traon, “Assessing
Transition-based Test Selection Algorithms at Google,” in ICSE-SEIP,
2019.

[44] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive Test
Selection,” in ICSE-SEIP, 2019.

[45] G. Rothermel and M. J. Harrold, “A Safe, Efficient Regression Test
Selection Technique,” ACM Trans. Softw. Eng. Methodol., vol. 6, no. 2,
1997.

[46] E. Engström, P. Runeson, and M. Skoglund, “A Systematic Review
on Regression Test Selection Techniques,” Information and Software
Technology, vol. 52, no. 1, 2010.

[47] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran, “Regression Test
Selection Techniques: A Survey,” Informatica, vol. 35, 2011.

[48] R. Kazmi, D. N. A. Jawawi, R. Mohamad, and I. Ghani, “Effective
Regression Test Case Selection: A Systematic Literature Review,” ACM
Comput. Surv., vol. 50, no. 2, 2017.

[49] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How Do
Centralized and Distributed Version Control Systems Impact Software
Changes?” in ICSE, 2014.

[50] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu, “The
Impact of Continuous Integration on Other Software Development
Practices: A Large-Scale Empirical Study,” in ASE, 2017.

[51] H. L. Nguyen and C.-L. Ignat, “An Analysis of Merge Conflicts and
Resolutions in Git-Based Open Source Projects,” Comput. Supported
Coop. Work, vol. 27, no. 3–6, 2018.

[52] M. Gligoric, L. Eloussi, and D. Marinov, “Ekstazi: Lightweight Test
Selection,” in ICSE (Demo), 2015.

[53] “openctest,” https://github.com/xlab-uiuc/openctest, 2022.
[54] S. Thummalapenta, M. R. Marri, T. Xie, N. Tillmann, and J. de Halleux,

“Retrofitting Unit Tests for Parameterized Unit Testing,” in FASE, 2011.
[55] H. Srikanth, M. B. Cohen, and X. Qu, “Reducing Field Failures in

System Configurable Software: Cost-Based Prioritization,” in ISSRE,
2009.

[56] C. H. P. Kim, D. Marinov, S. Khurshid, D. Batory, S. Souto, P. Barros,
and M. D’Amorim, “SPLat: Lightweight Dynamic Analysis for Re-
ducing Combinatorics in Testing Configurable Systems,” in ESEC/FSE,
2013.

[57] X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-Aware Regres-
sion Testing: An Empirical Study of Sampling and Prioritization,” in
ISSTA, 2008.

[58] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. L.
Traon, “Bypassing the Combinatorial Explosion: Using Similarity to

12

https://sre.google/workbook/configuration-specifics/
https://sre.google/workbook/configuration-specifics/
https://surfingcomplexity.blog/2021/05/29/why-do-config-changes-keep-coming-up-in-major-incidents/
https://surfingcomplexity.blog/2021/05/29/why-do-config-changes-keep-coming-up-in-major-incidents/
https://docs.aws.amazon.com/config/latest/developerguide/how-does-config-work.html
https://docs.aws.amazon.com/config/latest/developerguide/how-does-config-work.html
https://engineering.fb.com/2015/04/10/developer-tools/mobile-performance-tooling-infrastructure-at-facebook
https://engineering.fb.com/2015/04/10/developer-tools/mobile-performance-tooling-infrastructure-at-facebook
https://github.com/xlab-uiuc/openctest


Generate and Prioritize T-Wise Test Configurations for Software Product
Lines,” TSE, vol. 40, no. 7, 2014.

[59] M. Mukelabai, D. Nešić, S. Maro, T. Berger, and J.-P. Steghöfer,
“Tackling Combinatorial Explosion: A Study of Industrial Needs and
Practices for Analyzing Highly Configurable Systems,” in ASE, 2018.

[60] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel, “A
Comparison of 10 Sampling Algorithms for Configurable Systems,” in
ICSE, 2016.

[61] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and
S. Pasupathy, “Do Not Blame Users for Misconfigurations,” in SOSP,
2013.

[62] L. Keller, P. Upadhyaya, and G. Candea, “ConfErr: A Tool for Assessing
Resilience to Human Configuration Errors,” 2008.

[63] J. Dietrich, K. Jezek, and P. Brada, “What Java Developers Know About
Compatibility, And Why This Matters,” Empirical Software Engineering,
vol. 21, no. 3, 2016.

[64] L. Zhang, “Hybrid Regression Test Selection,” in ICSE, 2018.
[65] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey,

You Have Given Me Too Many Knobs! Understanding and Dealing with
Over-Designed Configuration in System Software,” in ESEC/FSE, 2015.

[66] M. Lillack, C. Kästner, and E. Bodden, “Tracking Load-time Configu-
ration Options,” TSE, vol. 44, no. 12, 2018.

[67] M. Lillack, C. Kästner, and E. Bodden, “Tracking Load-time Configu-
ration Options,” in ASE, 2014.

[68] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy, “Early
Detection of Configuration Errors to Reduce Failure Damage,” in OSDI,
2016.

[69] A. Rabkin and R. Katz, “Static Extraction of Program Configuration
Options,” in ICSE, 2011.

[70] A. Rabkin and R. Katz, “Precomputing Possible Configuration Error
Diagnosis,” in ASE, 2011.

[71] F. Behrang, M. B. Cohen, and A. Orso, “Users Beware: Preference
Inconsistencies Ahead,” in ESEC/FSE, 2015.

[72] S. Zhang and M. D. Ernst, “Automated Diagnosis of Software Config-
uration Errors,” in ICSE, 2013.

[73] S. Zhang and M. D. Ernst, “Which Configuration Option Should I
Change?” in ICSE, 2014.

[74] D. Elsner, F. Hauer, A. Pretschner, and S. Reimer, “Empirically Eval-

uating Readily Available Information for Regression Test Optimization
in Continuous Integration,” in ISSTA, 2021.

[75] T. Xu and D. Marinov, “Mining Container Image Repositories for
Software Configuration and Beyond,” in ICSE-NIER, 2018.

[76] “Azure Linux Virtual Machines Pricing,” https://azure.microsoft.com/
en-us/pricing/details/virtual-machines/linux/#pricing.

[77] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An
Extensive Study of Static Regression Test Selection in Modern Software
Evolution,” in FSE, 2016.

[78] A. Celik, M. Vasic, A. Milicevic, and M. Gligoric, “Regression Test
Selection Across JVM Boundaries,” in ESEC/FSE, 2017.

[79] C. Zhu, O. Legunsen, A. Shi, and M. Gligoric, “A Framework for
Checking Regression Test Selection Tools,” in ICSE, 2019.

[80] A. Shi, M. Hadzi-Tanovic, L. Zhang, D. Marinov, and O. Legunsen,
“Reflection-Aware Static Regression Test Selection,” in OOPSLA, 2019.

[81] A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and A. Orso, “Regression
Testing in the Presence of Non-Code Changes,” in ICST, 2011.

[82] G. Rothermel and M. Harrold, “Analyzing Regression Test Selection
Techniques,” TSE, vol. 22, no. 8, 1996.

[83] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. A. Spoon, and A. Gujarathi, “Regression Test Selection for
Java Software,” in OOPSLA, 2001.

[84] L. Zhang, M. Kim, and S. Khurshid, “FaultTracer: A Change Impact and
Regression Fault Analysis Tool for Evolving Java Programs,” in FSE,
2012.

[85] A. Orso, N. Shi, and M. J. Harrold, “Scaling Regression Testing to Large
Software Systems,” in FSE, 2004.

[86] M. Vasic, Z. Parvez, A. Milicevic, and M. Gligoric, “File-level vs.
Module-level Regression Test Selection for .NET,” in ESEC/FSE, 2017.

[87] A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjorner, and J. Czerwonka,
“Optimizing Test Placement for Module-level Regression Testing,” in
ICSE, 2017.

[88] D. Elsner, S. Kacianka, S. Lipp, A. Pretschner, A. Habermann,
M. Graber, and S. Reimer, “BinaryRTS: Cross-language Regression Test
Selection for C++ Binaries in CI,” in ICST, 2023.

[89] M. B. Cohen, J. Snyder, and G. Rothermel, “Testing across Configu-
rations: Implications for Combinatorial Testing,” in Proceedings of the
2nd Workshop on Advances in Model Based Testing (A-MOST), 2006.

13

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/#pricing
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/#pricing

	Introduction
	Background
	Configuration Testing
	Regression Test Selection (RTS) and Ekstazi
	RTS for Configuration Tests

	Unified Regression Testing
	Testing Code Changes
	Testing Production Configuration Changes
	Testing Code-Configuration Co-Changes

	The uRTS Algorithm
	Step 1: Selecting Regular Tests
	Step 2: Selecting Configuration Tests
	Correctness

	The uRTS Implementation
	Dependencies
	Analysis Phase
	Analyzing Dependency Changes
	Test Selection

	Collection Phase
	Not selected tests
	Selected tests

	Optimizations

	Experimental Methodology
	Evaluation Results
	RQ1: Savings of Testing Time and The Number of Tests
	RQ2: Overhead of URT
	RQ3: Focus on Configuration Changes
	RQ4: Effectiveness of Two-Dimensional Comparison

	Threats to Validity
	Discussion
	Other Related Work
	Concluding Remarks
	References

