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Abstract
This paper studies how today’s cloud storage services support
collaborative file editing. As a tradeoff for transparency/user-
friendliness, they do not ask collaborators to use version con-
trol systems but instead implement their own heuristics for
handling conflicts, which however often lead to unexpected
and undesired experiences. With measurements and reverse
engineering, we unravel a number of their design and im-
plementation issues as the root causes of poor experiences.
Driven by the findings, we propose to reconsider the col-
laboration support of cloud storage services from a novel
perspective of operations without using any locks. To enable
this idea, we design intelligent approaches to the inference
and transformation of users’ editing operations, as well as
optimizations to the maintenance of files’ historic versions.
We build an open-source system UFC2 (User-Friendly Collab-
orative Cloud) to embody our design, which can avoid most
(98%) conflicts with little (2%) overhead.

1 Introduction

Computer-supported collaboration allows a group of geo-
distributed people (i.e., collaborators) to cooperatively work
online. To enable this, the most common technique is Ver-
sion Control Systems (VCSes) like Git, SVN and Mercurial,
which require the mastery of complex operations and thus are
not suited to non-technical users [58]. In contrast, dedicated
online editors, such as Google Docs and Overleaf, provide
web-based easy-to-use collaboration support, but with limited
functions and “walled-garden” concerns [8, 10, 13, 68]. As an
alternative approach, cloud storage services (e.g., Dropbox,
OneDrive, Google Drive, and iCloud) have recently evolved
their functionality from simple file backup to online collabora-
tion. For example, over 300,000 teams have adopted Dropbox
for business collaboration, submitting ⇠4000 file edits per
second [62]. For ease of use, collaboration is made transparent
by almost every service today through automatic file synchro-
nization. When a user modifies a file in a “sync folder” (a
local directory created by the service), the changed file will
be automatically synchronized with the copy maintained at
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Pattern 1: Losing updates
Alice is editing a file. Suddenly, her file is overwritten All studied
by a new version from her collaborator, Bob. Sometimes, cloud storage
Alice can even lose her edits on the older version. services

Pattern 2: Conflicts despite coordination
Alice coordinates her edits with Bob through emails to All studied
avoid conflicts by enforcing a sequential order. Every cloud storage
edit is saved instantly. Even so, conflicts still occur. services

Pattern 3: Excessively long sync duration Dropbox,
Alice edits a shared file and confirms that the edit has OneDrive,
been synced to the cloud. However, Bob does not SugarSync,
receive the updates for an excessively long duration. Seafile, Box

Pattern 4: Blocking collaborators by opening files Seafile
Alice simply opens a shared Microsoft Office file with- (only for
out making any edits. This mysteriously disables Microsoft
Bob’s editing the file. Office files)

Table 1: Common patterns of unexpected and undesired collabora-
tive editing experiences studied in this paper.

the cloud side. Then, the cloud will further distribute the new
version of the file to the other users sharing the file.

Collaboration inevitably introduces conflicts – simultane-
ous edits on two different copies of the same file. However, it
is non-trivial to automatically resolve conflicts, especially if
the competing edits are on the same line of the file. Instead of
requiring users to learn complex diff-and-merge instructions
to solve conflicts in VCSes, all of today’s cloud storage ser-
vices opt for transparency and user-friendliness – they devise
different approaches to preventing conflicts or automatically
resolving conflicts. Unfortunately, these efforts do not work
well in practice, often resulting in unexpected results. Table 1
describes four common patterns of unexpected/undesirable
collaborative experiences caused by cloud storage services.

To “debug” these patterns from the inside out, we study
eight widely-used cloud storage services based on traffic anal-
ysis with trace-driven experiments and reverse engineering.
The studied services include Dropbox, OneDrive, Google
Drive, iCloud Drive, Box [2], SugarSync [20], Seafile [16],
and Nutstore [11]. Also, we collect ten real-world collabora-
tion traces, among which seven come from the users of differ-
ent services and the other three come from the contributors
of well-known projects hosted by Github. Our study results
reveal a number of design issues of collaboration support in
today’s cloud storage services. Specifically, we find:
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Figure 1: Working principle for merging two versions of the same file at the cloud side: (a) inferring the operation sequences S1 and S2 that
respectively change V0 to V1 and V2 using edit graphs; (b) transforming and merging S1 and S2 into Sr with the minimal conflict, based on a
conflict graph and topological sorting when necessary; (c) executing Sr on V0 to generate the merged version V1,2.

• Using file-level locks to prevent conflicts is difficult due to
the unpredictability of users’ real-time editing behavior (as
cloud storage services can neither designate nor monitor
the editor) and the latency between clients and the server.

• Existing conflict-resolution solutions are too coarse-
grained and do not consider user intention – they either
keep the latest version based on the server-side timestamp
or distribute all the conflicting versions to the users.

Most surprisingly, we observe that the majority of “con-
flicts” reported by these cloud storage services are not true
conflicts but are artificially created. In those false-positive
conflicts (or false conflicts), the collaborators were editing
different parts of a shared file. This is echoed by the com-
mon practice of mitigating false conflicts in cloud storage
service-based collaborative editing by intentionally dividing
an entire text file into multiple separate files [18, 23]. Such
false conflicts can be automatically resolved at the server side
without user intervention.

In this paper, we show that it is feasible to provide effective
collaboration support in cloud storage services by intelligently
merging conflicting file versions using the three-way merge
method [54, 63], where two conflicting versions are merged
based on a common-context version. This is enabled by the in-
ference and transformation of users’ editing operations; mean-
while, no lock is used so as to achieve the transparency and
user-friendliness. As depicted in Figure 1, our basic idea is to
first infer the collaborators’ operation sequences [1(a)], and
then transform these sequences based on their true conflicts
(if any) [1(b)] to generate the final version [1(c)]. Compared
to a file-level or line-level conflict resolution (e.g., adopted by
Dropbox or Git), our solution is more fine-grained: modifica-
tions on different parts of the same file or even the same line
can be automatically merged.

Building a system with the above idea, however, requires
us to address two technical challenges. First, inferring opera-
tion sequences in an efficient way is non-trivial, since it is a
computation-intensive task for cloud storage services1. As il-
lustrated in Figure 1(a), when two versions V1 and V2 emerge,
we need to first find the latest common-context version V0

1In contrast, it is straightforward and lightweight to acquire a user’s
operation sequences in Google Docs [7], Overleaf [15], and similar services,
where a dedicated editor is used and monitored in real time.

hosted at the cloud, and then infer two operation sequences
S1 and S2 that convert V0 to V1 and V2, respectively. The com-
mon approach using dynamic programming [33, 44, 57] may
take excessive computing time in our scenario, e.g., ⇠30 sec-
onds for a 500-KB file. To address the issue, we leverage an
edit graph [4, 55] to organize V0 and V1, and thus essentially
reduce the inference time, e.g., ⇠200 ms for a 500-KB file.

The second challenge is how to transform and merge S1 and
S2 into Sr with minimal conflict, i.e., 1) simplifying manual
conflict resolution of text files by sending only one merged
version (V1,2) to the collaborators; and 2) retaining the collab-
orators’ editing intentions while minimizing the amount of
conflicts to be manually resolved in V1,2. As illustrated in Fig-
ure 1(b), it is easy to directly transform and merge S1 and S2,
via operation transformation [39], if there is no true conflict.
To address the challenging case (of true conflicts), we utilize
a conflict graph [53] coupled with topological sorting to reor-
ganize all operations, so as to prioritize the transformation of
real conflicting operations and minimize their impact on the
transformation of other operations.

Besides solving the above challenges, we facilitate conflict
resolution by maintaining each shared file’s historic versions
at the cloud with CDC (content-defined chunking [59]) dedu-
plication. For a user-uploaded version, we adopt full-file sync
for small files and delta sync for larger files to achieve the
shortest upload time. For a server-merged version, we design
operation-based CDC (OCDC) which exploits the implicit
operations inferred during conflict resolution to accelerate
CDC – only the boundaries of those chunks affected by the
operations need recalculation.

We build UFC2 (User-Friendly Collaborative Cloud) on top
of Amazon EFS (Elastic File System) and S3 to implement
our design. Our evaluation using real-world traces indicates
that conflicts generated during collaboration are significantly
reduced by 98% on average (the remainder are true conflicts).
Meanwhile, the incurred time overhead by a conflict resolu-
tion is usually between 10 and 80 ms, which is merely 0.6%–
4% (2% on average) of the delivery time for a file update.
In addition, our designed OCDC optimization outpaces the
traditional CDC by ⇠3 times, thus reducing the data chunk-
ing time from 30–400 ms to 10–120 ms for a common file.
Finally, we have made all the source code and measurement
data publicly available at https://UFC2.github.io.
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Trace Timespan # Col-s # Files # Versions Avg. File Size Major File Types
Dropbox-1 11/2/2018–2/6/2019 5 305 3527 86 KB tex (52%), pdf (16%), Matlab src (24%) & fig (4%)
Dropbox-2 4/3/2019–5/14/2019 6 216 2193 67 KB tex (57%), pdf (21%), Matlab fig (9%)
OneDrive 3/15/2019–5/31/2019 5 253 2673 83 KB tex (61%), pdf (15%), Matlab fig (7%)

iCloud Drive 2/1/2019–4/30/2019 6 301 3211 59 KB tex (53%), pdf (22%), Matlab fig (12%)
Box 3/21/2019–5/2/2019 8 273 2930 60 KB tex (66%), pdf (27%)

SugarSync 4/11/2019–5/26/2019 9 325 3472 89 KB tex (49%), pdf (25%), Matlab src (19%) & fig (3%)
Seafile 2/17/2019–4/30/2019 7 251 2823 71 KB tex (55%), pdf (19%), Matlab fig (10%)

Spark-Git 1/15/2018–3/27/2019 58 15181 129957 4 KB Scala (78%), Java (6%), py (5%)
TensorFlow-Git 7/24/2018–3/27/2019 86 16754 246016 9 KB py (30%), C header (14%) & src (29%), txt (20%)

Linux-Git 9/9/2018–3/30/2019 87 63865 901167 13 KB C header (31%) & src (42%), txt (16%)
Table 2: Statistics of the ten real-world collaboration traces. “Col-s” means collaborators, “src” means source code, and “py” means python.

2 Design Challenges

In this section, we employ trace-driven experiments, special
benchmarks, and reverse engineering to deeply understand the
design challenges of collaborative support in today’s cloud
storage services. In particular, we analyze the root causes of
poor experiences listed in Table 1.

2.1 Study Methodology
In order to quantitatively understand how today’s cloud stor-
age services behave under typical collaborative editing work-
loads, we first collected ten real-world collaboration traces as
listed in Table 2. Among them, seven are provided by users
(with informed consent) that collaborate on code/document
writing using different cloud storage services. The other three
are extracted from well-known open-source GitHub projects.
Each trace contains all the file versions uploaded by every
involved user during the collection period.

For the first seven traces, relatively few (i.e., 5–9) collabo-
rators work on a project for a couple of months. Each of their
workloads is unevenly distributed over time: during some pe-
riods collaborators frequently edit the shared files, whereas
during the other periods there are scarcely any edits to the
shared files. By contrast, in the last three traces, a large num-
ber of collaborators constantly submit their edits for quite a
few months, and thus generate many more file versions. In
addition, the collaborators involved in all the ten traces are
located across multiple continents.

Using these traces, we conducted a comparative measure-
ment study of eight mainstream cloud storage services: Drop-
box, OneDrive, Google Drive, iCloud Drive, Box, SugarSync,
Seafile, and Nutstore. For each service, we ran its latest PC
client (as of Jul. 2019) on Windows-10 VMs rented from Ama-
zon EC2; these VMs have the same hardware configuration
(a dual-core CPU@2.5 GHz, 8 GB memory, and 32 GB SSD
storage) and network connection (whose downlink/uplink
bandwidth is restricted to 100 / 20 Mbps by WonderShaper to
resemble a typical residential network connection [1, 19]).

We deployed puppet collaborators on geographically dis-
tributed VMs across five major regions to replay a trace, with
one client software and one puppet collaborator running on

one VM. Specifically, we rented AWS VMs in South America,
North America, Europe, the Middle-East, and the Asia-Pacific
(including East Asia and Australia). We instructed the puppet
collaborators to upload different file versions (as recorded
in the trace) to the cloud. To safely reduce the duration of
the replay, we skipped the “idle” timespan in the trace dur-
ing which no file is edited by any collaborator. In addition,
we strategically generated some “corner cases” that seldom
appear in users’ normal editing, so as to make a deeper and
more comprehensive analysis. For example, we edited fix-
sized small (KB-level) files to measure cloud storage services’
sync delay, so as to avoid the impact of file size variation;
we edited a random byte on a compressed file to figure out
their adoption of delta sync mechanisms; and we performed
specially controlled edits to investigate their usage of locks,
as well as their delivery time of lock status.

We captured all the IP-level sync traffic in the trace-driven
and benchmark experiments via Wireshark [25]. From the
traffic, we observe that almost all the communications during
the collaboration are carried out with HTTPS sessions (using
TLS v1.1 or v1.2). By analyzing the traffic size and occur-
rence time of respective HTTPS sessions, we can understand
the basic design of these eight mainstream cloud storage ser-
vices, e.g., using full-file sync or delta sync mechanisms to
deliver a file update.

To reverse engineer the implementation details, we at-
tempted to reverse HTTPS by leveraging man-in-the-middle
attacks with Charles [3], and succeeded with OneDrive, Box,
and Seafile. For the three services, we are able to get the
detailed information of each synced file (including its ID, cre-
ation time, edit time, and to our great surprise the concrete
content), as well as the delivered lock status and file update.
Furthermore, since Seafile is open source, we also read the
source code to understand the system design and implementa-
tion, e.g., its adoption of FIFO message queues and the CDC
delta sync algorithm.

For the remaining five cloud storage services, we are unable
to reverse their HTTPS sessions, as their clients do not accept
the root CA certificates forged by Charles. For these services,
we search the technical documentation (including design doc-
uments and engineering blogs) to learn about their designs,
such as locks and message queues [5, 9, 12, 14, 21, 22, 31].
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Cloud Storage Service Lock Mechanism Conflict Resolution Message Queue File Update Method
Dropbox No lock Keep all the conflicting versions LIFO rsync
OneDrive No lock Keep all the conflicting versions Queue Full-file sync

Google Drive No lock Keep only the latest version - Full-file sync
iCloud Drive No lock Ask users to choose among multiple versions - rsync

Box Manual locking Keep all the conflicting versions Queue Full-file sync
SugarSync No lock Keep all the conflicting versions Queue rsync

Seafile Automatic/manual⇤ Keep all the conflicting versions FIFO CDC
Nutstore Automatic locking Keep all the conflicting versions - Full-file & rsync

Table 3: A brief summary of the collaboration support of the eight mainstream cloud storage services in our study. “⇤”: Seafile only supports
automatic locking for Microsoft Office files. “-”: we do not observe obvious queuing behavior.

2.2 Results and Findings
Our study quantifies the occurrence of conflicts in different
cloud storage services, and uncovers their key design princi-
ples as summarized in Table 3.

Occurrence probability of conflicts. When the ten traces
are replayed with each cloud storage service, we find con-
siderable difference (ranging from 0 to 4.8%) in the ratio of
conflicting file versions (generated during a replay) over all
versions, as shown in Table 4. Most notably, Google Drive
appears to have never generated conflicts, because once it
detects conflicting versions of a file (at the cloud) it only
keeps the latest version based on their server-side timestamps.
In contrast, the most conflicting versions are generated with
iCloud Drive, because its sync delay (i.e., the delivery time of
a file update) is generally longer than that of the other cloud
storage services (as later indicated in Figure 3 and Table 5).
In comparison, for each trace Nutstore generates the fewest
conflicting versions (with Google Drive not considered), as
its automatic locking during collaboration can avoid a portion
(7.6%–19.1%) of conflicts.

Locks. We observe that the majority of the studied cloud
storage services (Dropbox, OneDrive, Google Drive, iCloud
Drive, and SugarSync) never use any form of locks for files
being edited. As a consequence, collaboration using these
products can easily lead to conflicts. Box, Seafile, and Nut-
store use coarse-grained file-level locks; unfortunately, we
find that their use of locks is either too early or too late2,
leading to undesired experiences. This is because cloud stor-
age services are unable to acquire users’ real-time editing
behaviors and thus cannot accurately determine when to re-
quest/release locks. Specifically, locking too early leads to
Pattern 4 in Table 1, locking too late (locking after editing)
leads to Pattern 1, and unlocking too early leads to Pattern 2.

Box only supports manual locks on shared files. When
Alice attempts to lock a shared file f and Bob has not opened
it, f is successfully locked by Alice and then Bob cannot edit
it (until it is manually unlocked by Alice). However, if Bob

2Ideally, a file should be locked right before the user starts editing, and
unlocked right after the user finishes the editing.

has already opened f when Alice attempts to lock it, he can
still edit it but cannot save it, because when Bob attempts
to save his edit the file editor (e.g., MS Word) will re-check
the permission of f . In essence, Box implements locks by
creating a process on Bob’s PC, which attempts to “lock” a
file by changing the file’s permission as read-only. In this
case, if Bob is using an exclusive editor (not allowing other
applications to write the file it opened), Alice’s edits cannot
be synced to Bob, thus leading to Pattern 3; otherwise, Bob’s
edits will be overwritten by Alice’s, leading to Pattern 1.

Seafile automatically locks a shared file f when f is opened
by an MS Office application, and f will not be unlocked
until it is closed. This locking mechanism is coarse-grained
and may lead to Pattern 4. For non-MS Office files, Seafile
supports manual locks in the same way as Box, and thus they
have the same issue in collaboration.

Nutstore attempts to lock a shared file f automatically,
when Alice saves her edit. At this time, if Bob has not opened
f , f is successfully locked by Alice and Bob cannot edit it;
after Alice’s saved edit is propagated to Bob, f is automati-
cally unlocked. However, if Bob opened the shared file before
Alice saves the file, Nutstore has the same problems as Box
and Seafile (Patterns 1 and 3 in Table 1).

Finally, we are concerned with the delivery time of a
lock status (i.e., whether a file is locked). According to our
measurements, the lock status is delivered in real time with
⇠100% success rates. As in Figure 2, the delivery time ranges
from 0.7 to 1.6 seconds, averaging at 1.0 second. This indi-
cates that today’s cloud storage services implement dedicated
infrastructure (e.g., queues) for managing locks.

In summary, implementing desirable locks in cloud storage
services is not only complex and difficult but also somewhat
expensive. Therefore, we feel it wiser to give up using locks.
Conflict resolution. We find three different strategies for
resolving the conflicts. First, Google Drive only keeps the
latest version (defined by the timestamp each version arrives
at the cloud). All the older versions are discarded and can
hardly be recovered by the users (Google Drive does not
reserve a version history for any file). Note that this notion
of “latest” may not reflect the absolute latest (which depends
on the client-side time), e.g., when the real latest version
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Trace DB OD GD ID Box SS SF NS
DB1 4.4% 4.4% 0 4.5% 4.3% 4.3% 4.3% 3.6%
DB2 4.7% 4.7% 0 4.8% 4.6% 4.7% 4.6% 3.8%
OD 4.1% 4.1% 0 4.2% 4.0% 4.0% 4.1% 3.5%
ID 4.1% 4.0% 0 4.1% 4.1% 4.1% 4.1% 3.4%

Box 4.3% 4.3% 0 4.4% 4.2% 4.3% 4.3% 3.7%
SS 4.2% 4.1% 0 4.2% 4.2% 4.1% 4.2% 3.7%
SF 4.5% 4.5% 0 4.6% 4.5% 4.5% 4.5% 3.8%
SG 1.3% 1.3% 0 1.3% 1.3% 1.3% 1.3% 1.2%
TG 3.5% 3.5% 0 3.5% 3.5% 3.5% 3.5% 3.2%
LG 4.0% 4.0% 0 4.0% 4.0% 4.0% 4.0% 4.0%

Table 4: Ratio of conflicting file versions (over all versions) when the
ten traces are replayed with each of the studied cloud storage services.
DB=Dropbox, OD=OneDrive, GD=Google Drive, ID=iCloud
Drive, SS=SugarSync, SF=Seafile, NS=Nutstore, SG=Spark-Git,
TG=TensorFlow-Git, and LG=Linux-Git.

arrives earlier due to network latency. Second, iCloud Drive
asks the user to choose one version from all the conflicting
versions. The user has to compare them by hand, and then
make a decision (which is often not ideal). Third, a more
common solution is to keep all the conflicting versions in the
shared folder, and disseminate them to all the collaborators.
This solution is more conservative (which does not cause
data loss), but leaves all burdens to users. Moreover, given
the distributed nature, merging efforts from the collaborators
could cause further conflicts if not coordinated well.

Given the difficulties in resolving conflicts, we advocate
that cloud storage services should make more effort to proac-
tively avoid, or at least significantly reduce, the conflicts.

Delivery latency and message queue. Delivery latency of a
file (update) prevalently exists in cloud storage at both infras-
tructure (e.g., S3 and Azure Blob) and service (e.g., Dropbox)
levels [34, 35, 43, 64, 67, 74]. It stems from multiple factors
such as network jitter, system I/O, and load balancing in the
datacenter [43, 50]. We measure the delivery time of a file up-
date regarding the eight cloud storage services. As in Figure 3
and Table 5, some services always have reasonable delivery
time. On the other hand, in a few services, the maximum

Cloud Service Min Median Mean P99 Max
Dropbox 1.6 2.0 141.2 312 17751
OneDrive 1.6 4.0 33.4 106 4415

Google Drive 10.9 11.7 11.7 12.9 18.1
iCloud Drive 8.1 11.8 11.9 11.9 16.9

Box 4.4 5.1 41.8 115 6975
SugarSync 2.0 6.8 51.3 124 7094

Seafile 2.7 4.0 53.8 99 9646
Nutstore 4.2 5.0 5.0 5.0 5.6

Table 5: Statistics (in unit of second) of the delivery time of a file
update, where the file is several KBs in size.

delivery time reaches several hours for a KB-level file, and
the 99-percentile (P99) delivery time can reach hundreds of
seconds. The unpredictability and long tail latency can some-
times break the time order among file updates, which is the
main root cause of Patterns 2 and 3.

Additionally, we find that the implementation of message
queues in some cloud storage services aggravates the delivery
latency. Specifically, different services have very different
message queue implementations, leading to different queue-
ing behaviors. For a FIFO queue (used by Seafile), when the
server is overloaded, many requests for file/fetch updates are
processed by the server but not accepted by the client due
to client-side timeout, thus wasting the server’s processing
resources. This problem can be mitigated by using LIFO
queues (used by Dropbox). However, for a LIFO queue, the
requests from “unlucky” users (who encounter the server’s
being overloaded after issuing fetch update requests) wait for
a long duration. We suspect that the services with excessively
long delivery time are using big shared queues with no QoS
consideration, and may benefit from using a dedicated queue
like QJUMP [41].

File update methods. Collaboration results in frequent,
short edits to files. Delta sync is known to be efficient in updat-
ing short edits, compared with full-file sync where the whole
file has to be transferred [49]. To understand the file update
method, we let Alice modify a Z-byte highly compressed file,
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where Z 2 {1,1K,10K,100K,1M}, and observed the traffic
usage in delivering the file update. By comparing the traffic
usages in uploading and downloading an update, we find that
OneDrive, Google Drive, and Box adopt full-file sync, and
the others adopt delta sync (rsync [72] or CDC [59]). Espe-
cially, we confirm Seafile’s adoption of CDC from its source
code [17]. In terms of Nutstore, it adopts a hybrid file update
method: full-file sync for small (64 KB) files and delta sync
for the other files, so as to achieve the highest update speed,
because small and large files are more suitable for full-file and
delta sync, respectively (full-file sync requires fewer rounds
of client-server message exchanges).

2.3 Implications
Our study results show that today’s cloud storage services
either do not use any locks or use coarse-grained file-level
locks to prevent conflicts. The former would inevitably lead
to conflicts. The latter, however, is hard to prevent conflicts
in practice for two reasons: 1) it is hard to accurately pre-
dict user’s editing behaviors in real time and therefore to
determine the timing of applying the lock, and 2) the latency
between the client and the server can vary significantly, so
file-level conflicts are generally inevitable. Furthermore, the
study shows that full-file and delta sync methods can be com-
bined to accelerate the delivery of a file update. To address
the revealed issues, we explore the possibility of developing
lock-free conflict resolution by inferring fine-grained user in-
tentions. We also explore a hybrid design of full-file and delta
sync methods for efficient file update and synchronization.

3 Our Solution

This section aims to address the challenges uncovered in §2.
Our key idea is to model file editing events as insert or
delete operations (§3.2). Based on the operation model, we
infer the collaborators’ operation sequences (§3.3), and then
transform these sequences (§3.4) based on their conflicts to
generate the final version. We explain the above procedure
with a simple case of two file versions, and demonstrate its
applicability to the complex case of multiple versions (§3.5).
We also design optimizations to the maintenance of shared
files’ historic versions (§3.6),

3.1 True and False Conflicts
We examine the conflicting file versions as listed in Table 4
in great detail. We find that ⇠1/3 of them come from non-text
(e.g., PDF or EXE) files, which, as mentioned in §1, are typ-
ically generated based on text files and thus can be simply
deleted or regenerated from text files for pretty easy conflict
resolution. The remainder relate to text files, the vast majority
of which, to our surprise, only contain “false positive” con-

flicts as the collaborators in fact operated on different parts of
a shared file.

Take the Dropbox-1 collaboration trace as an example.
When it is replayed with Dropbox or OneDrive, among the
3,527 file versions hosted at the cloud side, 154 text files
are considered (by Dropbox and OneDrive) to be conflicting
versions and then distributed to all the collaborators. Actually,
152 out of the 154 apparently conflicting versions can be
correctly merged at the cloud side. The remaining two cannot
be correctly merged as two collaborators happen to edit the
same part of the shared file in parallel, thus generating 9 true
conflicts. In other words, the vast majority of the (coarse-
grained) file-level conflicts are false (positive) conflicts when
seen at the (fine-grained) operation level.

3.2 Explicit and Implicit Operations
We model operation as the basic unit in collaborative file
editing. A shared file can be regarded as a sequence of char-
acters, and an explicit operation is a user action that has truly
occurred to the shared file, modifying some of its characters.
In detail, an explicit operation O consists of seven properties:
• There are two possible operation types: insert and
delete; O.type represents the operation type of O.

• The targeted string is the string that will be inserted or
deleted by O, which is denoted by O.str.

• The length of O is the (character) length of O.str, which is
denoted by O.len.

• The position of O is where O.str will be inserted to or
deleted from in the shared file, which is denoted by O.pos.

• O must be performed on a context (file version), which is
called the base context of O, or denoted as O.bc.

• O is performed on O.bc to generate a new context, which
is called the result context of O, or denoted as O.rc.

• The range of characters impacted by O in O.bc is the impact
region of O, denoted as O.ir. It is calculated as:

O.ir =

(
[O.pos,O.pos+1) if O.type = insert;
[O.pos,O.pos+O.len) if O.type = delete.

This formula tells that when a string is inserted to O.bc, the
insert operation only affects the position (in O.bc) where the
string is inserted; but when a string is deleted from O.bc,
the positions where all the characters of the string formerly
appear at O.bc are affected.

Automatically acquiring a user’s explicit operations is triv-
ial and lightweight when the editor can be monitored, e.g., in
Google Docs [7] and Overleaf [15]. In these systems, users
are required to use a designated online file editor, by moni-
toring which all the collaborators’ explicit operations can be
directly captured in real time.

In contrast, our studied cloud storage services are supposed
to work independently with any editors and support any types
of text files, thus bringing great convenience to their users
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(especially non-technical users). Therefore, we do not attempt
to monitor any editors or impose any restrictions on the file
types, and thus cloud storage services cannot capture users’
explicit operations. Instead, we choose to analyze users’ im-
plicit operations based on the numerous file versions hosted
at the cloud side. For a shared file f , implicit operations repre-
sent the cloud-perceived content changes to f (i.e., the even-
tual result of a user’s editing actions), rather than the user’s
editing actions that have actually happened to f . Obviously,
implicit operations, as well as their various properties, have to
be indirectly inferred from the different versions of f . Since
we focus on implicit operations in this work, we simply use
“operations” to denote “implicit operations” hereafter.

3.3 Operation Inference (OI)
When no conflict happens, inferring the operations from two
consecutive versions of a file is intuitive, so in this part we
only consider the OI when two conflicting versions emerge at
the cloud. Note that when there are more than two conflicting
versions, our described algorithms below still apply.

When two conflicting versions of a file, V1 and V2 (of n1
and n2 bytes in length) are uploaded to the cloud by two
collaborators, the cloud first pinpoints their latest common-
context version V0 (of n0 bytes in length) hosted in the cloud.
Generally, the cloud knows which version is consistent with
a collaborator’s local copy during her last connection to the
cloud. When the collaborator uploads a new version, this
“consistent” version is regarded as the base context (version)
of the new version, so that all versions of a shared file consti-
tute a version tree, in which the parent of a version is its base
context. Therefore, to pinpoint V0 is to find the latest common
ancestor of V1 and V2 in the version tree.

After pinpointing V0, the cloud starts to infer the operation
sequences (S1 and S2) that change V0 to V1 and V2, respec-
tively. To infer S1, the common approach is to first find the
longest common subsequence (LCS) between V0 and V1 us-
ing dynamic programming [33, 44, 57]. Then, by comparing
the characters in V0 and the LCS one by one, a sequence of
delete operations can be acquired, which changes V0 to the
LCS; in a similar manner, a sequence of insert operations
that changes the LCS to V1 can be acquired. After that, the ac-
quired delete and insert operations are combined to consti-
tute S1 (S2 is constituted in a similar manner). Unfortunately,
this common approach requires O(n0 ⇤n1) computation com-
plexity, which may require considerable time for a large file,
e.g., ⇠30 seconds for a 500-KB file.

To address this problem, we leverage an edit graph [4, 55]
to organize V0 and V1. Figure 4 exemplifies how to calculate
the LCS between two words “properly” (V0, on the horizontal
axis) and “purple” (V1, on the vertical axis) using an edit
graph, where a diagonal edge has weight 0 and a horizontal
or vertical edge has weight 1. Accordingly, finding the LCS
between V0 and V1 is converted to finding a minimum-cost

path that goes from the start point (i.e., (0,0) in Figure 4) to
the end point (i.e., (8,6) in Figure 4). With an edit graph, the
problem can be solved with O((n0 +n1)⇤d) complexity [55],
where d = n0+n1�2l is the number of horizontal and vertical
edges (i.e., the length of difference between V0 and V1) and l
is the number of diagonal edges (i.e., the length of the LCS).
Note that d is usually much smaller than n0 and n1 in practice:
in our collected traces, the median and mean values of d

n0+n1
are merely 0.12% and 2.19%. Thus, the cloud can infer S1
and S2 efficiently using the edit graph, e.g., for a 500-KB file
the inference time is typically optimized from ⇠30 seconds
to ⇠200 ms, resulting in a 150⇥ reduction.

3.4 Operational Transformation (OT)
After the operation sequences S1 and S2 are inferred, which
contain s1 and s2 operations respectively (all operations in
a sequence are sorted by their position and have the same
base context V0), the cloud first detects whether there exist
true conflicts, and then constructs a conflict graph [53] (as
shown in Figure 5) if there are any. A conflict graph is a
directed acyclic graph that has s1 + s2 vertices representing
the aforementioned s1 + s2 operations. After that, operation
transformation (OT) [39] is adopted to transform and merge
S1 and S2 into a result sequence Sr, which can be executed on
V0 to generate the merged file version V1,2.

Detecting true conflicts. In order to detect true conflicts
between S1 and S2, the cloud first merges S1 and S2 into
a temporary sequence Stemp sorted by the operations’ posi-
tion, and initializes the conflict graph G with s1 + s2 vertices
and 0 edges. Then, for each operation in Stemp, the cloud
checks whether the operations behind it conflict with it – this
is achieved by checking whether the impact regions of two
operations overlap each other. If two operations Stemp[i] and
Stemp[ j] are real conflicting operations, an edge ei, j connect-
ing vi to v j (denoted by solid arrows in Figures 5a and 5b)
is added to G to represent a true conflict. If there are no true
conflicts between any two operations, G is useless and sim-
ply discarded. The detection, in the worst case (where each
operation in S1 conflicts with each operation in S2), bears
O((s1 + s2)2) complexity. However, in common cases there
exist only a few conflicts, and thus the detection can be quickly
carried out with O(s1 + s2) complexity.

Basics of OT. As the de facto technique for conflict res-
olution in distributed collaboration, OT [39] has been well
studied [40,61] and used (e.g., Google Docs [7], Overleaf [15],
Wave [24], and Etherpad [6]). It resolves conflicts by trans-
forming parallel operations on a shared file to equivalent
sequential operations (if possible). A very simple example of
OT is shown in Figure 6. More details and examples of OT
can be found at https://UFC2.github.io

OT when there are no true conflicts. According to our
detection results on the ten collaboration traces (cf. Table 2),
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Figure 5: Reordering conflicting operations with a conflict graph.
(a) In the two operation sequences S1 and S2, a dashed line denotes a
sequence, while a solid arrow represents a true conflict. (b) S1 and S2
are reorganized into a conflict graph, where conflicting operations are
linked with directed edges. (c) In the result sequence Sr, operations
are sorted by their topological order in the conflict graph.
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Figure 6: An example of OT that merges V1 and V2, in which O2 is
transformed to O0

2 to resolve the conflict between O1 and O2.

when a file-level conflict occurs there are no true conflicts
with a very high (>95%) probability, which is consistent
with the results of our manual examination in §3.1. When
there are no true conflicts detected, the cloud directly applies
OT on S1 and S2 to generate Sr and V1,2. Traditionally, the
computation complexity of OT is deemed as O((s1+ s2)2). In
our case, since there are no true conflicts and Stemp are already
sorted by the operations’ position, we choose to transform the
operations in Stemp in their descending order of position, thus
achieving a much lower complexity of O(s1 + s2). After the
transformation, we get Sr and execute Sr on V0 to generate
the merged version.

OT in the presence of true conflicts. If there are true con-
flicts detected, it is impossible to directly and correctly resolve
the conflicts as in the above case. Consequently, we choose to
prioritize the mitigation of user intervention while preserving
potentially useful information, so as to facilitate users’ man-
ual conflict resolution. Specifically, two principles should be
followed: 1) the cloud should send only one merged version
V1,2 to the collaborators for easy manual conflict resolution;
and 2) users’ editing intentions should be retained as much
as possible, while the number of conflicts that have to be
manually resolved in V1,2 had better be minimized.

To realize the two principles, our first step is to utilize
topological sorting [46] to reorganize and help transform S1

and S2 (via their conflict graph G) following two rules. First,
real conflicting operations should be transformed and put
into Sr in the ascending order of their position, so that their
conflicts can be resolved at one time and thus do not negatively
impact the transformation of other operations. Second, non-
conflicting operations should be put into Sr in the descending
order of their position, so that they can be quickly transformed
like in the case of no true conflicts.

After S1 and S2 are topologically sorted and put into Sr
(see Figure 5c), we apply our customized OT scheme to em-
body the aforementioned two principles for resolving true
conflicts. First of all, we classify true conflicts into differ-
ent categories that are suited to different processing strate-
gies. Given two conflicting operations O1 and O2 working
on the same base context (V0), there seem to be four differ-
ent categories of conflicts in the form of “O1.type/O2.type”:
1) delete/delete, 2) delete/insert, 3) insert/delete,
and 4) insert/insert. Here “/” means O1.pos  O2.pos.
However, by carefully examining the impact regions of O1
and O2 (O1.ir and O2.ir) in each category, we find that
insert/delete conflicts are never true conflicts, because
an insert operation only affects the targeted string at the po-
sition it appears, and never affects a to-be-deleted string that
starts behind this position. Thus, we only need to deal with
the other three categories as follows.

• For a delete/delete conflict, all the characters deleted
by the users (say, Alice and Bob) are O1.str[O2.str. To
retain both users’ editing intentions as much as possible,
we choose to delete only the characters both users want
to delete (i.e., O1.str\O2.str), while preserving the other
characters with related information. For example, let V0 =
“We need foods, water, clothes, and books.”; O1 made by
Alice is to delete “foods, water, ” at position 8, whereas
O2 made by Bob is to delete “water, clothes, ” at posi-
tion 15. In this case, O1 is transformed to insert “[Al-
ice delete:foods, ]” at position 8, and O2 is transformed
to insert “[Bob delete:clothes, ]” at position 30 (= 8+
the length of “[Alice delete:foods, ]”). After the two trans-
formed operations are executed on V0, the merged version
V1,2 is “We need [Alice delete:foods, ][Bob delete:clothes,
]and books.” This is not a perfect result, but is pretty easy
to be manually resolved by Alice and Bob.

• For a delete/insert conflict, we notice that the charac-
ters deleted by Alice might be the literal context of the
characters inserted by Bob. Thus, the deleted characters
should be preserved to facilitate (mostly Bob’s) manual
conflict resolution. For example, let V0 = “There is a cat
in the courtyard.”; O1 is to delete “ in the courtyard” at
position 14, changing V0 to V1 (“There is a cat.”), whereas
O2 is to insert “spacious ” at position 22, changing V0 to
V2 (“There is a cat in the spacious courtyard.”). Without
appropriate transformation, the merged version is “There
is a catspacious .”, which is obviously confusing. In this
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Trace # File Versions # Conflicting Versions # MV Conflicts # Conflicts # True Conflicts Reduction of Conflicts
Dropbox-1 3527 154 8 501 9 98.2%
Dropbox-2 2193 104 12 257 5 98.1%
OneDrive 2673 109 10 284 7 97.5%

iCloud Drive 3211 133 9 402 8 98.0%
Box 2930 125 5 374 8 97.9%

SugarSync 3472 147 13 523 11 97.9%
Seafile 2823 126 11 411 9 97.8%

Spark-Github 129957 1728 133 6724 167 97.5%
TensorFlow-Github 246016 8621 845 66231 1097 98.3%

Linux-Github 901167 36048 3210 216584 2882 98.7%
Table 6: Measurement statistics when the ten collaboration traces are replayed with UFC2. “MV Conflicts” denote the conflicts of multiple
versions, i.e., � 3 conflicting versions are generated from the same base version.

case, O1 is split into two operations: one is to insert
“[Alice delete: in the ]” at position 14, and the other is to
insert “[Alice delete: courtyard]” at position 37 (= 14+
the length of “[Alice delete: in the ]”); and O2 is trans-
formed to insert “[Bob insert: spacious ]” at position 37.
Afterwards, V1,2 is “There is a cat[Alice delete: in the ][Bob
insert: spacious ][Alice delete: courtyard].”, which is also
imperfect but easy to be manually resolved.

• For an insert/insert conflict, except when O1.str =
O2.str (which rarely happens), we choose to preserve both
O1.str and O2.str by inserting O2.str after O1.str, mean-
while adding the related information. For example, let V0 =
“We need foods and books.” O1 is to insert “, water,” at
position 13, whereas O2 is to insert “, clothes,” at the
same position. In this case, V1,2 is “We need foods, [Alice
insert:water][Bob insert:clothes], and books.”

3.5 Merging Conflicts of Multiple Versions

Our above-designed scheme, despite being described with
a simple case of two versions, is also applicable to solving
conflicts between multiple versions. Multi-version conflicts
do not often happen in practice, e.g., we can calculate from
Table 6 that they only account for 9% of the total conflicts.

In this complex case, suppose multiple collaborators (say
n � 3) simultaneously edit the same base version V0 and then
generate n conflicting versions V1, V2, V3, ... , Vn. To resolve
such conflicts, we first figure out the operation sequences (i.e.,
S1, S2, S3, ..., Sn) for each version using edit graphs, which
represent the changes in each version relative to their common
base version V0. Afterwards, with our devised operation trans-
formation method, all the operation sequences are merged
one by one, so as to generate the result operation sequence
Sr1,2,3,...,n . Specifically, S1 and S2 are first merged to generate
Sr1,2 , and then S3 are merged with Sr1,2 to generate Sr1,2,3 . This
procedure is repeated until all the operation sequences are
merged, resulting in Sr1,2,3,...,n . Finally, similar to the simple
case of two versions , Sr1,2,3,...,n is executed on V0 to generate
the final version V1,2,3,...,n.

Insert Delete

Mark Mark Mark

New boundary

�D� Chunks in V0 and 
two operations

�E� Mark the Dffected 
chunks in V1,2

(c) Recalculate boundaries
for the marked chunks

New boundary

① ④  ② ③

① ② ③ ④

① ⓑ ⓓⓒ ⓔ

Figure 7: Boundary recalculation in OCDC. Chunk 2� is split into
b� and c� as its size exceeds the size limitation of a single chunk
after the characters are added. Chunks 3� and 4� are re-partitioned
as d� and e� as the total sizes of their remaining parts exceed the
size limitation of a single chunk (otherwise, they will be combined).

3.6 Maintenance of Historic Versions
The merged version V1,2 of a shared file, as well as the pre-
vious versions, should be kept in the cloud so that 1) users
can retrieve any previous versions as they wish, and 2) the
cloud can pinpoint V0 from historic versions in future conflict
resolutions. To save the storage space for hosting historic ver-
sions, we break each version into variable-sized data chunks
using CDC [59] for effective chunk-level deduplication.

For a user-uploaded file version, guided by the findings in
§2.2, we adopt full-file sync for small (64 KB) files and
CDC delta sync for larger files to achieve the (expected) short-
est upload time. Here we adopt CDC delta sync rather than
the more fine-grained rsync to make our delta sync strategy
compatible with the aforementioned CDC-based version data
organization. In other words, we allow a little extra network
traffic to save expensive computation cost.

For a server-merged version V1,2, we exploit the implicit op-
erations inferred during the aforementioned conflict resolution
to accelerate CDC, which is referred to as operation-based
CDC (OCDC). Specifically, for each operation in the result
sequence Sr, we examine whether its impact region overlaps
the boundaries of any chunks of V0 (see Figure 7 (a)); if yes,
we mark the boundary (or boundaries) as “changed” (see Fig-
ure 7 (b)). After examining all operations in Sr, we use the
unchanged boundaries to split V1,2 into multiple parts, and
recalculate the block boundaries of those parts that contain
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Figure 8: Time overhead incurred by our de-
vised operation inference. Here R is the corre-
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flict resolution vs. the delivery time of a file
update (using the hybrid full-file/delta sync
method).

“changed” boundaries (see Figure 7 (c)). OCDC is especially
effective when there is only small difference between V1/V2
and V0 (which is the usual case in practice).

4 Implementation and Evaluation

To implement our design, we build a prototype system UFC2
(User-Friendly Collaborative Cloud) on top of Amazon Web
Services (AWS) with 5,000 lines of Python code, and evaluate
UFC2 using real-world workloads in multiple aspects.

4.1 Implementation
At the infrastructure level of UFC2, we host the (hierarchical)
metadata of historic versions in Amazon EFS for efficient file
system access, and the (flat) data chunks in Amazon S3 for
economic content storage – note that the unit storage price
of EFS (⇠$0.3/GB/month) is around 10⇥ higher than that of
S3 [38]. Besides, the web service of UFC2 runs on a standard
VM (with a dual-core CPU @2.5 GHz, 8-GB memory, and 32-
GB SSD storage) rented from Amazon EC2. Moreover, the
employed EFS storage, S3 storage, and EC2 VM are located
at the same data center in Northern Virginia, so there is no
bottleneck among them. At the client side, we deploy puppet
collaborators on geo-distributed VMs rented from Amazon
EC2 to replay our collected ten real-world collaboration traces
(cf. Table 2). Details of these VMs and the replay processes
are the same as those described in §2.1.

4.2 Experiment Results
Ratio of conflicts resolved. Our first metric to evaluate the
collaboration support of cloud storage services is the num-
ber of conflicts. We replay the ten traces with UFC2, and
observe that the file versions generated by UFC2 (at the cloud
side) are slightly different from those generated by Drop-
box/OneDrive/iCloud Drive/Box/SugarSync/Seafile (cf. §2.2)
due to the variation (esp., in latency) of network environments;
also, the resulting conflicts are slightly different. Notably, all
the false conflicts are automatically resolved by UFC2. The

remaining conflicts are all true conflicts that should be manu-
ally resolved by the collaborators, assisted with the helpful
information automatically added by UFC2. As listed in Ta-
ble 6, the ratio of conflicts is reduced by 97.5%–98.7% for
different traces, i.e., an average reduction by 98%.

Time overhead of conflict resolution. Conflict resolution
in UFC2 consists of two steps: operation inference (OI, §3.3)
and operation transformation (OT, §3.4). Thus, we first exam-
ine the time overhead incurred by the two steps separately, and
then analyze the total time of conflict resolution (compared
to the delivery time of a file update).

First, we record the time of OI in every conflict resolu-
tion when replaying the ten traces with UFC2. The results
are plotted as a scatter diagram shown in Figure 8, together
with a linear fitting. The correlation coefficient (R) between
the measurements and the linear fitting results is as large as
0.9236, indicating that the time of OI is generally proportional
to the file size. This is because by leveraging an edit graph,
we reduce the computation complexity of OI from O(n0 ⇤n1)
to O((n0 +n1)⇤d) (refer to §3.3 for the details).

Second, we record the time of OT in every conflict resolu-
tion, and find it is very small (<1 ms) compared to the time
of OI. As shown in Figure 9, the time of OT is highly pro-
portional to the number of operations; in addition, the perfor-
mance is quite similar with or without true conflicts. Accord-
ing to §3.4, the complexity of our devised OT is O(s1 + s2),
which explains the experiment results.

Further, we calculate the total time of a conflict resolution,
and record the delivery time of the corresponding file update
(using the hybrid full-file/delta sync method). As shown in
Figure 10, the total time of a conflict resolution is 10–80
ms, while the delivery time of a file update is 1.5–3 seconds.
The former is merely 0.6%–4% (on average 2%) of the latter,
showing that our conflict resolution brings negligible perfor-
mance overhead to the collaboration in cloud storage.

Time overhead of OCDC vs. traditional CDC. We record
the time spent in breaking a merged file version into data
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mon file, using OCDC vs. traditional CDC.
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tative cloud storage services for a file update
when there are no file-level conflicts.
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sentative cloud storage services for a file up-
date when there exist file-level conflicts.
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Figure 16: Normalized storage overhead of
historic file versions for the ten real-world
collaboration traces.

chunks with OCDC when replaying the ten traces with UFC2.
For comparison, we also break the same merged file version
into data chunks with traditional CDC.

As shown in Figure 11, for both OCDC and traditional
CDC, the data chunking time is highly proportional to the
file size. This is quite intuitive because a larger file is usually
broken into more chunks. Additionally, we notice that OCDC
outperforms traditional CDC by ⇠3 times, reducing the data
chunking time from 30–400 ms to 10–120 ms.

Network overhead. We compare the sync traffic of UFC2
with those of Dropbox, Google Drive, iCloud Drive, and Nut-
store, for a file update. We only select the four cloud storage
services since Dropbox, Google Drive, and iCloud Drive each
represent a typical strategy for conflict resolution adopted by
existing cloud storage services (i.e., keep all conflicting ver-
sions, only keep the latest version, and force users to choose
one version, cf. §2.2) while Nutstore is the only service that
combines full-file sync and delta sync to enhance the file
update speed.

As shown in Figure 12, when there are no file-level con-
flicts, the sync traffic of Google Drive is close to the file size,
as Google Drive adopts full-file sync. In contrast, Dropbox
and iCloud Drive always consume nearly 10 KB and 30 KB
of sync traffic respectively due to their adoption of delta sync;

we infer that the sync granularity of Dropbox is finer than
that of iCloud Drive. In contrast, Nutstore and UFC2 resem-
ble Google Drive for small (64 KB) files and Dropbox for
larger files, as they both adopt full-file sync for small files and
delta sync for larger files to achieve the shortest sync time
(see Figure 13). This hybrid sync method results in substantial
savings of sync traffic for Nutstore and UFC2 after the turning
point (64 KB) in Figures 12 and 14.

As shown in Figure 14, when there exist file-level conflicts,
the sync traffic of Google Drive is nearly twice of the file size.
This is because (the client of) Google Drive first uploads the
local version, and then downloads the cloud-hosted newer ver-
sion to overwrite the local version. In contrast, the sync traffic
consumed by Dropbox or iCloud Drive is close to the file
size; this is because the client of Dropbox (or iCloud Drive)
renames one of the conflicting versions, and the renamed one
is uploaded as a newly-created file using full-file sync (which
usually consumes more traffic than necessary since delta sync
can still be applied).

The case of Nutstore in Figure 14 is a bit complex: for small
files, its sync traffic is nearly twice of the file size (similar
to Google Drive); for larger files, the traffic is slightly larger
than the file size (similar to Dropbox/iCloud Drive). This
is because Nutstore renames one of the conflicting versions
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when a file-level conflict occurs – if the file is small (64
KB), the two files are both uploaded to the cloud using full-file
sync; otherwise, the renamed file is uploaded using full-file
sync (which usually consumes unnecessary traffic) whereas
the original file is uploaded using delta sync.

Finally, we examine the case of UFC2 in Figure 14. Its
client first uploads a conflicting version and then downloads
the merged version from the cloud. For a small file, the two
versions are both delivered using full-file sync, so the sync
traffic is nearly twice of the file size; for a larger file, the two
versions are both delivered using delta sync (which is more
traffic-saving than what Nutstore does for a larger file), so the
sync traffic is always as small as ⇠20 KB. This is why UFC2
achieves the shortest sync time, as shown in Figure 15.

Storage Overhead. For the maintenance of a file’s historic
versions, the straightforward approach is to store all versions
separately without data deduplication; its storage overhead
is taken as the baseline and normalized as 1.0, as shown in
Figure 16. Utilizing CDC-based deduplication, the storage
overhead of UFC2 is normalized between 0.43 and 0.59 (0.49
on average) with respect to the ten traces. In comparison, the
storage overhead of Google Drive is normalized as small as
0.05–0.1, because Google Drive only stores the latest version
and discards all previous versions. We do not quantify the stor-
age overhead of the other mainstream cloud storage services
since we do not know their cloud-side storage organization.

5 Related Work
Various schemes have been proposed to address the collabo-
ration conflicts in distributed file systems (DFS) and version
control systems (VCSes). In this section, we survey the typical
schemes and compare them to our design choices.

Conflict resolution in DFSes. LOCUS [73], Coda [47] and
InterMezzo [32] mark files with unresolved conflicts as incon-
sistent, so that these files are inaccessible until users manually
rename and merge them. These schemes prevent users from
accessing the conflicting files before conflicts are resolved,
and the idea of restrictive access is inherited by some recent
cloud-backed file systems such as SCFS [30].

In contrast, Ficus [60] and Rumor [42] attempt to design
specific conflict resolvers (using semantic knowledge of cer-
tain file types or user-made rules), so as to automatically
merge conflicts of specific kinds. Bayou [69] preserves all
conflicting files and allows users to access them. Similar
approaches are adopted by recent large-scale systems like
Dynamo [36], TierStore [37], Depot [52], and COPS [51],
where all conflicting file versions are preserved, and users are
forced to manually resolve all file-level conflicts. In fact, the
above described strategies are also adopted (in part) by our
studied popular cloud storage services.

Our work essentially differs from the aforementioned
schemes by providing not only effective but also transpar-
ent and user-friendly collaboration support for replicated files

in distributed environments. The desired features are enabled
by our novel perspective and intelligent technical approaches
in addressing the concurrent conflicts.

Conflict resolution in VCSes. Popular VCSes, such as
SVN, CVS, Git, RCS [71], and SunPro [26], generally oper-
ates at a (text) line level. To resolve the conflicts between two
versions of a shared file, they use delta algorithms like bdiff
[70] and UNIX diff [45] to find the modified lines, which
are then simply combined to form a merged version. However,
if two users’ modifications are made on the same line, they
have to manually pick which line to retain. Recently, a more
advanced approach called structured merge [27,28,48,75] has
emerged in the software engineering community, which takes
the syntactic structure of a program into account and thus
can resolve very detailed conflicts happening to non-essential
elements (e.g., comments, tabs, and blanks) of a program. Dif-
ferent from VCSes’ line-level or syntactic approaches that is
mostly designed for developers, our work studies conflict res-
olution for general-purpose cloud storage services designed
for regular end users.

6 Conclusion

Despite a rich body of techniques for resolving conflicts in
collaborative systems [29, 40, 56, 65, 66], today’s mainstream
cloud storage services still use the simplest form, i.e., coarse-
grained file-level conflict detection and resolution. Given that
collaboration has become a major use case of cloud storage
services, existing mechanisms, as revealed in this paper, are
deficient, inconvenient, and sometimes frustrating.

To address the issue, we make a series of efforts towards
understanding and improving collaboration in cloud storage
services from a novel perspective of operations without using
any locks. We find that the vast majority of conflicts reported
by today’s cloud storage services are false conflicts, and de-
sign intelligent approaches to efficient operation inference,
user-friendly operation transformation, and judicious mainte-
nance of historic versions. We implement all the approaches
in an open-source prototype system that can significantly
reduce collaboration conflicts and meanwhile preserve the
transparency and user-friendliness of cloud storage services.
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