
Taiji: Managing Global User Traffic for Large-Scale
Internet Services at the Edge

David Chou Tianyin Xu∗ Kaushik Veeraraghavan Andrew Newell Sonia Margulis Lin Xiao
Pol Mauri Ruiz Justin Meza Kiryong Ha Shruti Padmanabha Kevin Cole Dmitri Perelman

{davidchou,tianyin,kaushikv,newella,frumious,lxiao,pol,jjm,krha,shrupad,kbcole,dmitrip}@fb.com
Facebook Inc. ∗UIUC

Abstract
We present Taiji, a new system for managing user traffic for
large-scale Internet services that accomplishes two goals: 1)
balancing the utilization of data centers and 2) minimizing
network latency of user requests.
Taiji models edge-to-datacenter traffic routing as an as-

signment problem—assigning traffic objects at the edge to
the data centers to satisfy service-level objectives. Taiji uses
a constraint optimization solver to generate an optimal rout-
ing table that specifies the fractions of traffic each edge node
will distribute to different data centers. Taiji continuously
adjusts the routing table to accommodate the dynamics of
user traffic and failure events that reduce capacity.
Taiji leverages connections among users to selectively

route traffic of highly-connected users to the same data cen-
ters based on fractions in the routing table. This routing
strategy, which we term connection-aware routing, allows
us to reduce query load on our backend storage by 17%.
Taiji has been used in production at Facebook for more

than four years and routes global traffic in a user-aware
manner for several large-scale product services across dozens
of edge nodes and data centers.

1 Introduction
Modern Internet services operate on a bipartite architecture
with dozens of data centers interconnecting with edge nodes,
also known as point-of-presence [46, 60]. Data centers host
a majority of the computing and storage capacity of most
Internet services. Edge nodes are much smaller in size and
are situated close to the end users for two major functions:
(1) reverse proxies for terminating user connections close to
their ISPs, and 2) caching and distribution of static content
such as images and video.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6873-5/19/10.
https://doi.org/10.1145/3341301.3359655

 0

 500000

 1x106

 1.5x106

 2x106

 2.5x106

 3x106

 3.5x106

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

00:00
02:00

04:00
06:00

R
P
S

Time (hours)

Edge Node 1
Edge Node 2
Edge Node 3
Edge Node 4
Edge Node 5
Edge Node 6

Figure 1. User requests per second (RPS) received at six edge
nodes in different geo-locations over a 24-hour day. Observe that
peak load differs substantially from trough at every edge node.

Static content is served predominantly from edge nodes.
In case of a miss in the edge node, user requests for static
content are then fetched from data centers. We leverage
existing wide area network (WAN) traffic engineering so-
lutions designed for content distribution networks to serve
user requests for static content [8, 13, 14, 32, 33, 56, 61].

User requests for dynamic content, such as real-time mes-
sages and search queries, are the predominant source of
network traffic from edge nodes to data centers. It is com-
mon practice for major Internet services to build private
backbone networks or peering links that connect edge nodes
to their data centers to avoid unpredictable performance
and congestion on public WANs [19, 20, 22, 24, 29, 44]. Our
focus in this paper is on how we can serve user requests for
dynamic content while optimally utilizing our data center
capacity and minimizing network latency.
For the first decade of Facebook’s existence, we used a

static mapping to route user requests from edge nodes to data
centers. The static mapping became increasingly difficult to
maintain as our services expanded globally. Figure 1 plots
user traffic received at six edge nodes in different geographic
regions over the course of a 24-hour day in March 2019.
Observe that: 1) for each edge node, the traffic volume varies
significantly during a day, and 2) the magnitude and peak
time for edge nodes differ significantly. Taking Edge Node 1
as an example, daily peak traffic is 7× more than the trough.
The dynamism and heterogeneity of global user traffic brings
the following challenges:

430

https://doi.org/10.1145/3341301.3359655

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada D. Chou, T. Xu, K. Veeraraghavan, A. Newell, S. Margulis, L. Xiao, et al.

 0

 20

 40

 60

 80

 100

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

00:00

U
til

iz
at

io
n

(%
)

Time (hours)

Deployment Safety

Each line represents
a single cluster

Figure 2. The normalized frontend utilization for Facebook’s main
web service on a day in April 2015 using static edge-to-datacenter
traffic mapping. Each line denotes the utilization for one frontend
cluster composed of several thousand web servers; each data center
houses one or more frontend clusters. Observe that four clusters
were nearly idle at 10% utilization, while seven were above 60% uti-
lization. The black line denotes the “Deployment Safety” threshold
above which we cannot safely rollout software updates that require
restarting web servers.

• Capacity crunch. If a service’s popularity and capac-
ity needs outpace capacity acquisition plans, we might
be unable to service all user requests. Concurrently,
the sheer volume of user requests emanating from
some locales experiencing explosive growth implies
that a static edge-to-datacenter mapping would lead to
capacity shortage in data centers serving some edges,
and over-provisioned capacity in other data centers as
depicted in Figure 2. This imbalance might result in
load shedding or failures during peak load time.
• Product heterogeneity. As products evolved, the na-
ture of user requests changed. We found that a larger
fraction of our user traffic originated from products
that provided an interactive experience that wished to
maintain sticky routing between a user’s device and
our data centers. The stickiness makes it harder for a
static mapping to manage user traffic, as static map-
ping cannot account for unmovable user sessions that
are dynamically established.
• Hardwareheterogeneity.The underlying infrastruc-
ture is constantly evolving as server generations are
updated, capacity is added or removed and network in-
frastructure is improved, all of which affect how much
traffic a data center can service. A traffic management
system must be flexible and adapt routing strategies
to infrastructure evolution.
• Fault tolerance.As the infrastructure footprint grows,
it becomes increasingly likely that some fraction of
edge and data center capacity becomes unavailable
due to network failures, power loss, software miscon-
figuration, bad software releases etc, or other myriad
causes [9, 16, 17, 28, 35, 36, 41, 58, 59]. A static edge to
data center routing strategy is rigid and susceptible to
failures when operational issues arise.

Our initial response was to develop operational tools for
balancing the dynamics of traffic load, dealing with the daily

chaos of peak demands, responding to failures, and maintain-
ing good user experience. However, these manual operations
were often inefficient and error prone.

We leveraged our operational experience to design and
implement Taiji, a new system for managing global user
traffic for our heterogeneous product services. Taiji was built
with two goals in mind: 1) balancing the utilization of data
centers and 2) minimizing network latency of user requests.
Taiji models edge-to-datacenter traffic routing as an as-

signment problem—assigning traffic objects at the edge to
the data centers to satisfy the service-level objectives of bal-
ancing utilization and minimizing latency. Taiji uses a con-
straint optimization solver to generate a routing table that
specifies the fractions of traffic each edge node will distrib-
ute to different data centers to achieve its configured goals.
The utilization of a data center is aggregated over the fron-
tend servers and represents a service’s resource consumption
characteristics. Taiji continuously adjusts the routing table
to accommodate the dynamics of user traffic and the failure
events that reduce capacity.

Taiji’s routing table is a materialized representation of how
user traffic at various edge nodes ought to be distributed over
available data centers to balance data center utilization and
minimize latency. The strawman approach is to leverage
consistent hashing [31]. Instead, we propose that popular
Internet services such as Facebook, Instagram, Twitter and
YouTube leverage their shared communities of users. Our in-
sight is that sub-groups of users that follow/friend/subscribe
each other are likely interested in similar content and prod-
ucts, which can allow us to serve their requests while also
improving infrastructure utilization.

We build on the above insight to propose connection-aware
routing, a new strategywhere Taiji can group traffic of highly-
connected users and then route the traffic to the same data
centers based on fractions specified in the routing table. By
leveraging locality of user traffic (in terms of the content),
we can improve cache hit rates and achieve other backend
optimizations such as minimizing shard migration [1]. We
find that connection-aware routing achieves a 17% query load
reduction on our backend storage over an implementation
based on social graph partitioning [26, 47].
This paper makes the following contributions:

• To the best of our knowledge, Taiji is the first system
that manages user requests to dynamic content for
Internet services in a user-aware manner.
• We describe how to model user traffic routing as an
assignment problemwhich can be solved by constraint
optimization solvers.
• We present connection-aware routing, which routes
traffic from highly-connected users to the same data
centers to achieve substantial improvements in caching
effectiveness and backend utilization.

431

Taiji: Managing Global User Traffic for Large-Scale Internet Services at the Edge SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

Taiji has been in production at Facebook for more than
four years and routes global traffic in a user-aware manner
for several large-scale product services across dozens of edge
nodes and data centers.

2 Background
Facebook’s user traffic serving infrastructure is similar to
other Internet services [15, 32, 34, 38, 44, 53, 54].

Figure 3 depicts the serving path for a user request towww.
facebook.com. The user’s browser or mobile app sends the
request to an ISPwhichmaps the domain name to a Virtual IP
(VIP) address using a DNS resolver. This VIP address points
to one of the dozens of globally deployed edge nodes. An
edge node consists of a small number of servers, typically
co-located with a peering network [46, 60].
The user request will first hit an L4 load balancer which

forwards the request to an L7 edge load balancer (Edge LB)
where the user’s SSL connection is terminated. Each Edge
LB runs a reverse proxy that maintains persistent secure
connections to all data centers. Edge LBs are responsible for
routing user requests to frontend machines in a data center
through our backbone network.
Within a data center, the user request goes through the

same flow of an L4 load balancer and an L7 load balancer
(named Frontend LB), as shown in Figure 3. The Frontend
LB proxies the user request to a web server. This web server
may communicate with tens or hundreds of micro services
which, in turn, typically need to further communicate with
other backend systems to gather the data needed to generate
a response. The web server handling the user request is
responsible for returning a response to the edge node which
then forwards it to the user.

Backbone capacity. We would like to note that there is
abundant backbone capacity between every edge node to
data centers to allow for load spikes, link failures, main-
tenances, etc. Different from public WANs, backbone link
capacity at Facebook is not a constraint (similar to other
private backbone networks [18–20, 22, 24, 29, 44]), espe-
cially given that the traffic induced by dynamic content is
only a small percentage of the overall bandwidth. Note that
backbone capacity is constantly verified by regular load test-
ing [53] and drain/DiRT-like testing [30, 54] that manipulate
live traffic at edge nodes to simulate how data centers handle
worst-case scenarios. Compared with the amount of traffic
driven by these tests, the amount of dynamic user traffic
Taiji manages does not stress our backbone links. Therefore,
we currently do not consider the backbone link utilization
in edge-to-datacenter user traffic management.

Traffic types. User traffic can be stateless or sticky. Our
web services are stateless—user requests can be routed to
any available data center. Interactive services, such as instant
messaging, pin a user’s requests to the particular machines

Edge LB

Edge LB

Edge LB
…

…

…

…

…

… …

… …

… …

…
…

Fr
on

te
nd

LB

B
ac

ke
nd

LB

Edge node Data center

DNS

Traffic assignment
(controlled by Taiji)

80%

15%

2%

Frontend Backend
…………
…………
…………

…………
…………
…………

Figure 3. An overview of Facebook’s infrastructure and the role
Taiji plays. Taiji decides how dynamic user traffic at the edge nodes
is routed to data centers by continuously adjusting the Edge LB’s
routing configurations.

that maintain the user sessions. For sticky traffic, a new
request can be routed to any data center which will initialize
a new session; once a session is established, the subsequent
user requests are always routed to the same destination based
on cookies in the HTTP header.

3 Taiji
Taiji serves as a user traffic load balancing system that routes
user requests for dynamic content from edge nodes to avail-
able data centers. It determines the destination data center
every user request is routed to. Figure 4 illustrates the ar-
chitecture of Taiji which consists of two main components:
Runtime and Traffic Pipeline.
Taiji’s Runtime decides the fractions of traffic each edge

node will send to available data centers in order to meet
service level objectives specified in a policy. Taiji formulates
traffic routing as an assignment problem that models the con-
straints and optimization goals set by a service. Runtime’s
output is a routing table that meets the policy. Taiji contin-
uously adjusts the routing table to keep pace with the ebb
and flow of diurnal traffic patterns as well as maintenances,
failure events, and other operational issues.

Traffic Pipeline takes as input the routing table generated
by Runtime and then leverages connection-aware routing to
generate specific routing configuration for each Edge LB. The
insight in connection-aware routing is that users in a shared
community follow/friend/subscribe so they can engage with
similar content. Connection-aware routing groups highly-
connected users into “buckets” and selectively routes buckets
to the same data centers, based on the traffic fractions speci-
fied in the routing table. Note that connection-aware routing
is per-product but it is agnostic to service-level objectives—it
faithfully follows the routing table generated by the Runtime.
The Edge LB parses each incoming user request, maps

the user into an appropriate bucket, and then forwards the
user’s request to the data center containing that bucket in
the routing configuration.

432

www.facebook.com
www.facebook.com

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada D. Chou, T. Xu, K. Veeraraghavan, A. Newell, S. Margulis, L. Xiao, et al.

…

…

…

…

… …

… …

… …

…
…

80%

15%

2%

Taiji

Edge LB

Edge LB

Edge LB
…

Routing config

Monitoring infra

・Edge traffic
・Resource utils
・Latency
・Health

・Resource utils
・Cluster health

・Traffic (edge)
・Latency (RTT)

U
pd

at
e

Solver
Guard

Runtime
policy

Pipeline
Conn.-aware
routing

Figure 4. Taiji consists of two components: (1) a Runtime that
generates a routing table based on various system inputs (traffic
load, data center utilization, latency between each edge node and
data center pair, etc.) and a service-level policy; (2) a Traffic Pipeline
translates the routing table into fine-grained entries to instruct each
Edge LB how to route traffic of a user to a particular data center.

3.1 Runtime
The Runtime component is responsible for generating a rout-
ing table which specifies the fraction of user traffic that each
edge node ought to send to a data center. This routing table
is a simple collection of tuples of the form:

{edge:{datacenter:fraction}}

We next describe the inputs provided to Runtime, how
we model the constraint satisfaction problem, and the safety
parameters considered when generating a routing table.

3.1.1 Inputs to Runtime
Taiji reads two types of dynamic data as inputs from the mon-
itoring system [43]: (1) operational state of the infrastructure
such as capacity, health and utilization of edge nodes and
data centers, and (2) measurement data such as edge traffic
volumes and edge-to-datacenter latency.

Taiji implements an abstraction called reader for data read-
ing, normalization, and aggregation before feeding the data
into modeling and solving. Readers decouple input reading
and processing from the rest of Runtime. This allows us to
create an hermetic test environment for Taiji by plugging in
readers that can consume data from historical snapshots or
synthetic data in test scenarios (§3.3.1).

3.1.2 Modeling and Constraint Solving
Taiji formulates edge-to-datacenter routing as an assignment
problem that satisfies a service-specific policy. Our early de-
sign used a closed-form solver specific to a single product.
As more products wished to use Taiji, we found that building
and maintaining a closed-form solver for every product was
time consuming and error prone. Further, as our infrastruc-
ture grew with new data centers and edge nodes, we had to
continually re-build and re-deploy the closed-form solvers.

We simplified the design and implementation of Taiji with
constraint-based solving based on a generalization of all the
closed-formed solvers we had implemented.
Taiji models traffic load as requests per second (RPS) for

stateless traffic and as user sessions for sticky traffic. The
model allows stateless traffic to be routed to any available
data center while constraining sticky traffic to the same
machine so as not to disrupt established sessions.

Another input to Taiji is the utilization of the data center—
a measurement of howmuch traffic can be served per service.
A good utilization metric should be easy to measure at the
server level and aggregate on a data center scale, and be able
to account for the heterogeneity in hardware generations.
Services verify their utilization metric at the data center level
by running regular load tests using live traffic [53].

Utilization metrics vary between services. Our main web
service uses a normalized metric called i-dyno score based on
the MIPS (Million Instructions Per Second) observed on web
frontend servers, to account for heterogeneous processor
architectures. Our mobile service, Facebook Lite, measures a
server’s utilization based on the number of active sessions.
Taiji assumes that utilization for a service increases propor-
tionally to the load being served in an epoch.

Taiji re-evaluates traffic allocation decisions in every epoch
(set by a service) by reading current utilization directly from
our monitoring systems.

A policy specifies constraints and objectives. Policies typi-
cally have the constraint of not exceeding predefined data
center utilization thresholds to avoid overloading any data
center. Our most commonly-used policy specifies the objec-
tives of balancing the utilization of all available data centers,
while optimizing network latency. An alternative policy has
the objective of “closest data center first” which is modeled
by optimizing edge-to-datacenter latency. We describe our
formal model for the balancing policy in the appendix.
Taiji employs an assignment solver to solve the problem.

Our solver employs a local search algorithm using the “best
single move” strategy. It considers all single moves: swapping
one unit of traffic between two data centers, identifying the
best one to apply, and iterating until no better results can
be achieved. Our solver takes advantage of symmetry to
achieve minimal recalculation. We compare our solver with
an optimal solver using mixed-integer programming. Our
solver always generates the optimal results despite using
local search because the safety guards (§3.1.3) limit the search
space. The solver can generate a solution in 2.81 seconds on
average. If we double our scale (2× data centers, 2× edge
nodes, and 2× user traffic), we can solve the problem in 9.95
seconds. If we increase our scale by 4 times, we can solve
the problem in 43.97 seconds.

3.1.3 Pacing and Dampening
Taiji employs several safety guards to limit the volume of traf-
fic change permitted in each update of the routing table. First,

433

Taiji: Managing Global User Traffic for Large-Scale Internet Services at the Edge SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

Taiji uses an onloading safety guard, a configurable constant
(0.04 in production) to bound how much the utilization of
a data center can increase during an epoch. The onloading
constant is encoded as a constraint in the model (described
in the appendix). The onloading safety guard breaks up large
changes into multiple steps, each published in serialized rout-
ing table updates so all the downstream services in the data
centers, such as our caching systems, have the opportunity
to warm up over time. In addition, we use another safety
guard to limit the max allowable fraction of traffic sent to a
data center. This provides tighter bounds on the operating
limits of Taiji to ensure safety.

Moreover, Taiji has two levels of protection to prevent un-
necessary oscillations. First, we find that small traffic changes
(e.g., shifting less than 1% of the traffic) provide little value
but can cause oscillations. Taiji will skip the change if the
shift does not reach minimum shift limit. Second, Taiji also
allows specifying a dampening factor. Our linear model with
load and utilization is not perfect; thus trying to make an
exact traffic shift to the target can lead to overshooting. We
use a dampening factor to aim for 80% of the target.

Sensitivity analysis. To determine the right limits for safety
guards, we run a sensitivity analysis by shifting increas-
ing amounts of load to a set of services and measuring the
throughput, latency, cache efficiency and other characteris-
tics of backend systems. We find that traffic shifts in stateful
services are more costly than in stateless services, because
the shifts disrupt sticky user sessions which need to be re-
established. Traffic shifts for stateless services result in in-
creased latency and throughput drops as the new requests
will experience cache misses. We continually run this sensi-
tivity analysis and tune the threshold presets.

3.2 Traffic Pipeline
Traffic Pipeline consumes the routing table output by Run-
time and generates the specific routing entries in a configura-
tion file using connection-aware routing. It then disseminates
the routing configuration out to each Edge LB via a config-
uration management service [48, 50]. The routing entries
specify the buckets based on which each edge node routes
to data centers, in the form of

{edge:{datacenter:{bucket}}}

It takes about a minute to generate the routing entries and
deploy them to the edge nodes. Currently, we use an epoch
of 5 minutes as the duration between routing table updates.

3.2.1 Connection-Aware Routing
Connection-aware routing is built on the insight that user
traffic requesting similar content has locality and can benefit
the caching and other backend systems. Connection-aware
routing brings locality in traffic routing by routing traffic
from highly-connected users to the same data center.

Users:

Connection-Aware Routing

…… … … …

… …

…

…
… … …

…

… …

… …

… …

Segments:

Buckets:

…
50%

40%

10% …

… …

… …

… …

Routing Table
E1: { DC1:50%,

DC2:40%,
DC3:10%}

...

Routing Configuration
E1: { DC1: {B1,B2,...,B8},

DC2: {B9,B10,...,B14},
DC3: {B15,B16}}

...

Figure 5. Connection-aware routing transforms a routing table
into routing configuration entries that specify how to route user
traffic based on user connections in a community graph. We do not
depict the bucket weights (per-bucket traffic fraction) for clarity.

Connection-aware routing builds upon Social Hash [26,
47] that partitions the community graph into user buckets.1
It uses classical balanced graph partitioning to ensure that
each user bucket is roughly the same size and maximizes the
connections within each bucket. Online routing mechanisms
route traffic at the granularity of these buckets (which are
computed offline). The online routing uses consistent hash-
ing to ensure each data center gets an appropriate number
of buckets (based on the fractions specified in the routing
table) while also ensuring that routing is stable (i.e., users
should be routed consistently to the same data center).
The number of users per bucket trades off routing accu-

racy with potential cache efficiency. To have fine-grained
traffic shifting control, Taiji desires smaller bucket sizes of
the order of 0.01% of global traffic. However, smaller bucket
sizes leads to splintering of large community groups into
separate buckets, each of which could be routed to different
data centers, destroying their shared locality benefits.
Connection-aware routing overcomes this trade-off by

coupling (1) offline user-to-bucket assignments with (2) on-
line bucket-to-datacenter assignments. The user buckets are
created in a hierarchical structure that allows the online com-
ponent to route highly-connected buckets to the same data
center. This enables Taiji to increase community connections
routed to the same data center from 55% to 75%, resulting in
substantial improvements of backend utilization.

Offline user-to-bucket assignment. The community hi-
erarchy is created in the form of a complete binary tree,
where leaf nodes are user buckets and inner nodes represent

1 An alternative is to bucket users by their location information instead of
social connections.We learned that location information is often unreliable—
peering networks often route users from towns/cities in neighboring Asian
countries to larger regional ISPs (e.g., Singapore) which forward the re-
quest to an edge node. Domain information such as country/state/city is
unusable as users “from Singapore” might be different nationalities and
speak different languages. Attributes such as user age, or other user-specific
information is extremely difficult to use in a privacy-preserving manner.
Therefore, we prefer leveraging the connection graph which provides suffi-
cient information without leaking user information.

434

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada D. Chou, T. Xu, K. Veeraraghavan, A. Newell, S. Margulis, L. Xiao, et al.

the total set of users in their subtree’s buckets (Figure 5).
This tree is constructed based on the Social Hash [26, 47]
algorithm, except construction happens in successive bipar-
titions. The levels of the tree are represented as L, where L
= [0, H], and H represents the height of the tree. The level
L = 0 is a single head node representing all the users. At level
L = H are 2H leaf nodes, each representing a bucket of 0.01%
users. A bucket is the finest routing granularity available to
Taiji. The 2L+1 nodes for level L + 1 of the tree are generated
by performing 2L balanced bipartitions that minimize edge
cut of the 2L nodes in level L.

This partitioning is produced offline on a weekly basis to
adapt to changes in the community graph.We cap user move-
ment across buckets to 5% to limit the amount of rerouting
that these weekly changes might induce. In practice, we find
that less than 2% of the users need to be moved to maintain
the same quality of partitioning over time, i.e., percentage
of connections within buckets at varying levels of the com-
munity hierarchy.
When we started deploying Taiji, we found that there

were two types of connections where tree-based partitioning
does not work well: (1) User to highly-connected entity where
one end of the connection is a user but the other end is a
highly-connected entity, such as President Barack Obama or
Justin Bieber. In this case, the connection is a subscription
to news media rather than a social connection. Given the
large subscription base, we cannot route all the subscribed
users to the same data center; and (2) One-time interactions
where users are connected temporarily (e.g., a user submits a
payment to an acquaintance).We do not route users with one-
off or minimal interactions to the same data center as such
interactions are too weak to be qualified as “connections.”
Taiji excludes these two types in connection-aware routing.

Online bucket-to-datacenter assignment. Traffic Pipeline
invokes the online component of connection-aware routing
to transform the fractions in the routing table into bucket as-
signments that keep most large subtrees of buckets together
while splitting a few to enable fine-grained traffic routing.
This online component invokes the Stable Segment Assign-
ment algorithm (Algorithm 1) based on per-bucket traffic
and the capacity of each data center (normalized as bucket
weights and data center weights in Algorithm 1).

Stable Segment Assignment strives to preserve bucket lo-
cality by assigning a whole level of buckets (called a segment)
in the community hierarchy to the same data center; only a
minimal number of segments need to be split. For stability,
the same segments should be assigned to the same data cen-
ters as much as possible. A unique ordering of segments is
generated for each data center using a random permutation
(P) seeded by the data center name (Line 8). This ordering
is used to represent a random preference of data centers to
segments. Buckets are mapped to segments as per Line 10.
Tuples (T) are created for every (data center, bucket) pair

Algorithm 1 Stable Segment Assignment
1: B ← list of buckets
2: D ← list of data center names
3: WB ← bucket weights
4: WD ← data center weights
5: S ← number of segments
6: T ← ∅
7: for d ∈ D do
8: P ← PermutationWithSeed(S , d)
9: for b ∈ B do
10: segment← ⌊ b · |B |S ⌋

11: T ← T ∪ ⟨P[segment],d,b⟩
12: end for
13: end for
14: SortLexicographically(T)
15: A← ∅
16: for ⟨preference,d,b⟩ ∈ T do
17: if b < A ∧WD [d] > 0 then
18: A[b] ← d

19: WD [d] ←WD [d] −WB [b] ·
∑
WD∑
WB

20: end if
21: end for
22: return A

which begins with the data center’s preference for the seg-
ment that bucket belongs to (Line 11). All such tuples are
sorted lexicographically, in the order of preference, then data
center, and finally bucket (Line 14). Tuples are traversed in
this order, and buckets are greedily assigned to data centers,
until a data center has its desired weight (Lines 16-21).
Stable Segment Assignment achieves stable routing: the

bucket-to-datacenter assignments need minimal changes to
accommodate routing table changes in consecutive epochs.
In other words, the set of data centers visited by each user
is minimized to reduce storage cost and keep caches warm.
The algorithm preserves locality, as buckets in the same
segment are commonly routed to the same data center. We
group buckets into S = 2L segments based on the level L
in the community hierarchy. The choice of L is a trade-off
between stability and locality. A smaller L leads to higher
locality but lower stability (segments are more likely to be
split into buckets). We empirically pick L to be 7 which will
be discussed in depth in §4.3. Note that L = H is equivalent
to Social Hash [47].

3.2.2 Edge LB Forwarding
Connection-aware routing requires Edge LBs to support
bucket forwarding. For a user request, an Edge LB routes
the request to the data center according to the user’s bucket
specified in the routing configuration. Note that maintaining
every user-to-bucket mapping at each Edge LB is inefficient—
with billions of users, each Edge LB needs to maintain a
gigabyte-sized mapping table in memory and synchronize

435

Taiji: Managing Global User Traffic for Large-Scale Internet Services at the Edge SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

the table when the mapping changes. Thus, we maintain the
fine-grained user-to-bucket mapping in data centers and let
Edge LBs route traffic at the granularity of buckets.
The initial user request has no bucket information and

therefore the Edge LB routes it to a nearby data center. When
the request reaches the data center, the frontend writes the
bucket ID in the HTTP cookie based on the user-to-bucket
mapping. Then the subsequent requests will have bucket ID
in the cookie and the Edge LB will route the request to the
data center specified in the routing configuration.

Note that connection-aware routing (header parsing and
bucket ID extraction) adds negligible computational over-
head on the original request handling path. The mapping file
is shipped to every edge node once every 5 minutes and is
only 15KB in size, which is negligible data transfer overhead.

3.3 Correctness and Reliability
Correctness and reliability are important design principles of
Taiji. A software bug or misconfiguration in Taiji that results
in an incorrect routing table may trigger myriad failures
ranging from dropping some fraction of user traffic, to a spike
in traffic directed at a particular data center that overwhelms
our backend systems leading to more cascading failures.
In this section, we provide some insights into our test

strategy, our approach to input/output validation, how we
deal with hardware failures, how we respond to larger infras-
tructure failures, and how we size our backend systems to
function well both during steady state and failure scenarios.

3.3.1 Testing
The major risk to Taiji is not a fail-stop bug, which are easily
detected via a litany of unit tests, integration tests, etc., but
semantic bugs that generate incorrect routing configuration
(e.g., due to numeric errors in the calculation). We find that
semantic bugs are typically noticed by alerts firing after
service-level metrics cross some preset thresholds, which
implies that the service has already been affected.
We leverage the hermetic test environment of the Run-

time combined with historical snapshots of data to construct
regression tests to verify Taiji’s correctness. The drawback
of this approach is that we can only test for problematic sce-
narios that our deployment has experienced. That said, we
have instituted a post-mortem practice where we snapshot
any inputs/configuration/policies that cause Taiji to fail in
production and add a test case to validate future builds.
When onboarding new services or changing policies, we

perform online testing that covers weekly traffic patterns.
One common practice is to set conservative safety guards in
order to understand Taiji’s behavior in a controlled manner
before deploying to production.

Input and output validation. We place a number of val-
idators for the input and output of each component in Taiji.

The basic idea of validating inputs is to cross-check data
from different sources, e.g., the current traffic allocation in
production should be consistent with the latest routing con-
figuration. The output validation is to check against prede-
fined invariants, e.g., a data center cannot take more traffic
than its remaining capacity can serve. The last-known-good
configuration will be used upon validation failures. Last, the
safety guards (§3.1.3) ensure that Taiji cannot change traffic
allocation dramatically in an epoch.

3.3.2 Tolerating Failures
Taiji allows services to register metrics based on their own
healthmonitoring. Taiji checks thesemetrics at each epoch. If
the metrics indicate unhealthy service states, e.g., exceeding
the safety threshold, Taiji alerts the service owners instead
of adjusting traffic.

Dependencies. Taiji is built with minimal dependencies—it
only depends on the monitoring infrastructure to read the
inputs (§3.1.1) and the configuration management service to
deploy routing configurations to the Edge LBs. Both config-
uration management and monitoring have similar or higher
availability guarantees than Taiji [52].

It is possible, though extremely rare, that the monitoring
system reports wrong data, which leads to the consequence
of Taiji generating wrong routing configurations. Such cases
are no different from Taiji’s own bugs and we deal with them
using input and output validation.

Hardware. Taiji runs on commodity hardware. To tolerate
machine failures, we deploy multiple Taiji instances in data
centers in different geographic regions. These instances form
a quorum using ZooKeeper [21] and maintain one unique
leader at a time. Only the leader Taiji instance computes the
routing configurations and deploys them to the Edge LBs.
When the leader fails, a new leader will be elected.

3.3.3 Embracing Site Events
Taiji is not the only system that controls edge-to-datacenter
traffic. At Facebook, traffic control is also used as the mecha-
nism for two types of site events:

• Reliability tests. Facebook runs regular load tests [53]
as well as drain and storm tests [54] which shift traffic
into and out of a data center, respectively.
• Failure mitigation. We occasionally drain traffic out
of a data center or a set of data centers to mitigate
unexpected widespread failures.

When traffic is drained out of a failing data center, Taiji
should recognize the resulting low utilization as intentional
and not shift traffic back to the data center. We accomplish
this by marking the status of any data center under mainte-
nance or failure as ABNORMAL. Taiji excludes ABNORMAL data
centers in its traffic balancing calculations.

436

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada D. Chou, T. Xu, K. Veeraraghavan, A. Newell, S. Margulis, L. Xiao, et al.

Note that there could be a race condition in which Taiji
and other tools submit conflicting traffic changes at the same
time. We prevent race conditions from emerging by having
all tools submit traffic shifts to the Traffic Pipeline, which is
then responsible for detecting and resolving conflicts. Failure
mitigation has the highest priority; if a traffic shift proposed
by Taiji interferes with failure mitigation, the shift will be
executed in the next eligible epoch.
When a data center suddenly goes offline, the Edge LBs

have a fallback rule to route traffic globally to all data centers
proportional to their capacity. This provides an immediate
mitigation for datacenter-level disasters.

3.3.4 Backend Safety as a First Class Principle
A notable role of Taiji is to protect our backend systems from
being overloaded by diurnal traffic patterns or peak load. As
Taiji changes the traffic allocation across data centers, the
adjustment itself should not incur excessive overhead to the
backends (e.g., due to cold cache effects). As stated in §3.1.3,
Taiji leverages safety guards to ensure that the frequency
and magnitude of changes are smooth without load spikes.
Taiji also accounts for minimum and maximum levels for
operation, deciding when to bail out.
Unlike the backbone network, where traffic introduced

by Taiji is insignificant, the capacity of backend systems is
a bounding factor for the upper limit of traffic. Particularly,
Facebook’s backend systems are composed of many micro
services with complex dependencies—lack of capacity at any
of these services may cause cascading failures.
The disaster-readiness strategy at Facebook determines

the upper bound of traffic at a data center. When a data
center is down because of widespread failures (e.g. natural
disasters), we drain traffic out of the data center and shift it
to the remaining data centers [54]. Each of them will take an
extra amount of traffic determined by Taiji’s policy, and we
prepare downstream services’ capacity to serve such traffic.

We size the backend systems according to the utilization of
the frontends. We plan the capacity of backend systems con-
sidering the extra traffic each data center can handle which
is verified via regular drain tests and load tests. These tests
are high fidelity exercises that provide us with confidence
on the operational bounds within which Taiji can safely act.
We find that flash crowds that affect particular commu-

nities of people, or even geographies, are not significant
enough to impact overall site load. That said, we do find that
events like New Year’s Eve and the World Cup are global
phenomena that require provisioning capacity, customized
traffic management, and other load management strategies.

4 Evaluation
Taiji has been in use at Facebook for more than four years,
where it manages user traffic of multiple Internet services

with varying traffic types and latency requirements. We eval-
uate Taiji using data collected from two of Facebook’s main
product services, a web service with stateless traffic and a
mobile service with sticky traffic, with billions of daily active
users. Our evaluation answers the following questions:
• How does Taiji balance large-scale Internet services
with dynamic user traffic patterns and unexpected
failure events?
• Can connection-aware routing improve cache efficiency
and backend utilization?
• What is the role of pacing and safety guards?
• How stable are Taiji’s routing strategies?
• Does Taiji support product services with different traf-
fic types and varying routing policies?

4.1 Balancing Large-Scale Web Traffic
We show the effectiveness of Taiji using Facebook’s main
web service which is composed of stateless HTTPS requests.
The web service uses a latency-aware balancing policy with
the objectives of (1) balancing utilization of frontend web
servers across data centers, while (2) optimizing RTT (Round
Trip Time) of user requests2 and (3) handling infrastructure
failures seamlessly. Figure 6 depicts measurement data col-
lected over a 24-hour period to cover the diurnal user traffic
patterns shown in Figure 1. Note that we intentionally select
a day with a major infrastructure failure that required us
to drain traffic out of a data center; this event allows us to
assess the effectiveness of Taiji’s responsiveness to failures.
We next delve into each of the subfigures of Figure 6 in turn.

4.1.1 Balancing Data Center Utilization
Figure 6a shows the frontend web server utilization of dif-
ferent data centers, henceforth referred to as “data center
utilization”. In contrast with the static edge-to-datacenter
mapping used in 2015 (shown in Figure 2), the frontend uti-
lization in 2019 across our data centers is always balanced.
This balanced utilization enables us to support continuous
deployment for software updates [45, 51]. In Figure 6a, each
software update can be identified by a utilization spike as
an update needs to restart the running software instance
in a staged manner. Restarts reduce the available capacity
for a short period which results in an increase in the utiliza-
tion on the remaining servers. As shown in Figure 6a, Taiji
balances data center utilization even with the spikes caused
by temporal capability reduction. In contrast, we can see in
Figure 2 that with static mapping, the utilization constantly
exceeded the deployment-safety threshold and thus blocked
software updates during peak time.
Figure 6b demonstrates that the volume of traffic (in Re-

quests Per Second) routed to different data centers can be
substantially different—the largest data center (DC-4) serves

2We do not use end-to-end latency as an input because it is not sufficiently
stable and is affected by factors external to Taiji.

437

Taiji: Managing Global User Traffic for Large-Scale Internet Services at the Edge SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

 0

 20

 40

 60

 80

 100

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

00:00
02:00

04:00
06:00

U
ti

liz
a
ti

o
n
 (

%
)

Time (hours)

DC 1
DC 2

DC 3
DC 4

DC 5
DC 6

DC 7
DC 8

(a) Data center utilization

 0
 2x106
 4x106
 6x106
 8x106
 1x107

 1.2x107
 1.4x107
 1.6x107
 1.8x107

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

00:00
02:00

04:00
06:00

R
P
S

Time (hours)

DC 1
DC 2

DC 3
DC 4

DC 5
DC 6

DC 7
DC 8

(b) Requests Per Second

 40

 60

 80

 100

 120

 140

 160

 180

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

00:00
02:00

04:00
06:00

R
T
T
 (

m
s)

Time (hours)

Actual
Random

Lower Bound
Static circa 2015

(c) Round Trip Time

Figure 6. Taiji manages edge-to-datacenter traffic for Facebook’s largest web service. This figure (from a day in 2019) depicts: (a) data
center utilization, (b) traffic load (Requests Per Second) allocated to each data center, and (c) average network latency (Round Trip Time).

5× more than the smallest one (DC-8). All data centers are
not created equal, in terms of size, server hardware, avail-
ability, etc. Taiji abstracts away the heterogeneity of data
centers as well as edge nodes, and ensures that user traffic
can always be served with optimized latency, as long as the
overall capacity is sufficient for the global user demand.

4.1.2 Reacting to Unexpected Failure Events
Figures 6a and 6b depict the sudden traffic drop for DC-1 due
to a data center drain event at 16:50 due to an unexpected
failure.We observe that Taiji did not interfere with the higher
priority drain event (§3.3.3) and no traffic is sent to DC-1 until
the failure is resolved. Taiji seamlessly distributes the traffic
previously served by DC-1 to the other data centers, as seen
in the load spikes in Figure 6b. Figure 6a shows the additional
traffic at 16:50 increases utilization of the other data centers
proportionately, thus maintaining the service-level policy of
balancing data center utilization.

4.1.3 Minimizing Latency
While meeting the constraint of balancing utilization across
our data centers, Taiji also optimizes for minimizing latency
by maximizing the probability of sending traffic to the near-
est, under-utilized data center. Figure 6c illustrates this be-
havior by comparing the average RTT achieved by Taiji’s
traffic balancing strategy to random assignment and the the-
oretical lower bound of any traffic routing strategies. Both
of them assume infinite data center capacity. The random as-
signment routes every user request to a random data center,
while the theoretical lower bound is calculated by routing
every request to the closest (in terms of RTT) data center.
We also calculate the average RTT with a static edge-to-
datacenter mapping (used in 2015). As shown in Figure 6c,
with latency-aware balancing, Taiji achieves significant la-
tency improvement over random assignments and is close to
the lower bound (25 milliseconds gap in the worst case), and
outperforms a manually crafted static mapping. Figure 7 fur-
ther shows the latency distribution at the peak loads of differ-
ent geographical locations. Note that the peak loads are the
worst-case scenarios for latency because Taiji trades latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

P
er

ce
nt

ile

Latency (ms)

America: Actual
EU: Actual

Asia Pacific: Actual

Lower Bound
Lower Bound
Lower Bound

Figure 7. The CDF of the edge-to-datacenter latency (in terms of
RTT) at the peak load of three different geographical locations.

for balancing at the peak. Still, the latency of Taiji’s traffic
allocations remains close to the theoretical lower bound. In
Asia-Pacific, for example, the 50th, 75th, 90th, and 95th per-
centiles of latency only exceed the lower bound by 14.39,
19.56, 33.95, and 54.37 milliseconds, respectively.

4.2 Efficient Capacity Utilization
Figure 8 illustrates how Taiji distributes user traffic from
edge nodes to different data centers for Facebook’s main
web service. Our evaluation focuses on three geographical
regions: EU, Asia-Pacific and America.

Figure 8a depicts the magnitude of requests served by each
data center. Observe that Asia-Pacific DC primarily serves
user traffic from Asia with a minor amount of American
users. Similarly, EU DC primarily serves European users and
a minor amount of American users. In contrast, America DC
serves all three regions.
Figure 8b shows the destination data centers each edge

node sends traffic to. If we examine the “Asia Edge node” traf-
fic, we see that the vast majority of traffic from a node is sent
to Asia-Pacific DC (light blue) but a significant fraction is
also sent to non Asia-Pacific data centers. Similarly, the
“EU Edge node” pane shows that we send some traffic to the
EU DC but send a majority of the traffic to other data centers.
These two figures show that each edge node typically

sends user traffic to the data center in its nearby geographi-
cal region which minimizes network latency. However, since
this service is optimizing for utilization balance, some edge

438

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada D. Chou, T. Xu, K. Veeraraghavan, A. Newell, S. Margulis, L. Xiao, et al.

 0

 1x106

 2x106

 3x106

 4x106

 5x106

08:00
12:00

16:00
20:00

00:00
04:00

Asia-Pacific DC

R
P
S

08:00
12:00

16:00
20:00

00:00
04:00

America DC

Time (hours)

EU
Asia-Pacific

America

08:00
12:00

16:00
20:00

00:00
04:00

EU DC

(a) Distribution of traffic originated from different edge nodes re-
ceived at three data centers (Asia-Pacific, America, and EU DCs).

 0

 500000

 1x106

 1.5x106

 2x106

 2.5x106

 3x106

08:00
12:00

16:00
20:00

00:00
04:00

Asia Edge node

R
P
S

dc-1
dc-2
dc-3

America DC
EU DC

dc-5
Asia-Pacific DC

dc-8

08:00
12:00

16:00
20:00

00:00
04:00

US-East
Edge node

Time (hours)
08:00

12:00
16:00

20:00
00:00

04:00

EU
Edge node

(b) Distribution of traffic destined for different data centers at three
edge nodes (Asia, US-East, and EU edge nodes).

Figure 8. Daily edge-to-datacenter traffic distribution. The shaded
area denotes the traffic sent from/to the same geographical regions.

nodes will have to send traffic to remote data centers when
the closest ones reach high utilization. This is most obvious
in “US-East Edge node” in Figure 8b where we see that be-
tween 13:00-21:00, some traffic spills over to Asia-Pacific
DC—this is because Asian users are likely asleep, causing
Asia-Pacific DC to be underutilized unless users from other
geographies are redirected there. Thus, we see that Taiji en-
ables efficient utilization of data center capacity.

4.3 Effectiveness of Connection-Aware Routing
The principle of connection-aware routing is to route traffic
of users from a segment to the same data centers to benefit
from cached data and other backend optimizations. We opti-
mize for a metric coined connection locality defined as the
percentage of connections being routed together to the same
data center. Our baseline implementation is Social Hash [47]
which achieves 55% connection locality. Connection-aware
routing improves this to 75%.
Figure 9 shows the reduction in query load on backend

databases after we rolled out connection-aware routing com-
pared to the baseline that uses Social Hash. We observe a
17% reduction in query load on the backends—the increased
connection locality improves the efficiency of the caching
system and other backend optimizations. This outcome at
our deployment scale means a reduction of our infrastructure
footprint by more than one data center.
We chose the bucket and segment sizes by analyzing the

levels in the tree-based hierarchy and considering trade-
offs between locality, routing accuracy, and stability (§3.2.1).

 3x108
 3.5x108

 4x108
 4.5x108

 5x108
 5.5x108

 6x108
 6.5x108

 0 2 4 6 8 10 12 14 16

Rollout

D
B

 Q
P

S

Time (days)

DB Reads

Figure 9. Reduction of database queries per second after the de-
ployment of connection-aware routing which improves caching
efficiency (the reduced queries are served at the cache layer).

 0.5

 0.6

 0.7

 0.8

 0.9

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 2

 3

 4

 5

 6

Selected LevelLo
ca

lit
y

(%
)

In
st
a
b
ili
ty

Tree Level

Locality
Instability

Figure 10. The tradeoff between locality and instability in select-
ing the tree level used by connection-aware routing. Locality is
measured by the percentage of connections routed together, while
the instability is measured by the average number of data centers a
user bucket may be routed in a week.

 0
 0.2
 0.4
 0.6
 0.8

 1

0.70 0.75 0.80 0.85 0.90 0.95 1.00

P
ro

b
a
b

ili
ty

Percentage of segments routed together

EU
Asia Pacific

America

Figure 11. The probability of the percentage of segments routed
together (to the same data centers) at three different edge nodes
over the course of a day. Taiji routes 95+% of the segments together
for 80% of the time (the other segments are further split up and
routed at the bucket granularity).

First, we select bucket size at Level 14 of the tree (214 = 16384
buckets) to ensure a 0.01% granularity in traffic allocation.

We select segment size as a tradeoff between locality and
stability, discussed in §3.2.1. The principle is to select a seg-
ment size that is most likely to be routed together—too large
a segment is more likely to be split into buckets due to the
changes of routing table and results in instability. Figure 10
shows our sensitivity analysis for deciding segment size
based on trace-based simulation. We select a segment at
Level 7 (27 = 128 segments) which keeps the same level of
stability as compared to Social Hash while improving the
locality from 55% to 75%. Figure 11 shows the probability of
the percentage of segments routed together at three different
edge nodes. Taiji is able to route 95% of the 128 segments
together in around 80% of the time.

439

Taiji: Managing Global User Traffic for Large-Scale Internet Services at the Edge SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

 70
 75
 80
 85
 90
 95

 100

08:00
12:00

16:00
20:00

00:00
04:00

S
ta

b
ili

ty
 (

%
)

Time (hours)

(a) Normal

1 DC
2 DCs
3 DCs

① ②
Drain Restore

Time (hours)

(b) DC Drain

08:00
12:00

16:00
20:00

00:00
04:00

Figure 12. Stability of Taiji’s routing (a) in a day with the normal
state where 98+% users visit nomore than 2 data centers, and (b) in a
day with a datacenter-level drain events which increase oscillations
during the traffic drain and restore periods.

4.4 Stability
Stability in routing means that traffic from the same user is
stably routed to a small set of data centers instead of being
bounced among a large number of data centers. Stable rout-
ing reduces the storage cost for keeping user data in cache
and backend storage. In Taiji, a user can be routed to multiple
data centers when Taiji changes the bucket-to-datacenter
assignment (discussed in §3.2.1). The Stable Segment As-
signment algorithm (Algorithm 1) minimizes the assignment
changes to accommodate the proposals of traffic shifts.

Figure 12 illustrates the stability as the percentage of users
that visit no more than N data centers in an hour. We show
Taiji’s stability both in the normal state (no major site events)
and with the occurrence of 1 a datacenter-level drain event
that evicted all user traffic from a data center followed by
2 a restore event that shifts the evicted traffic back. We can
see that in the normal state, 98+% of our users visit less than
two data centers, while more than 85% of our users visit
only one data center most of the time. A user visits more
than one data center because the edge nodes have different
diurnal patterns–an increase in demand in a geographical
region can push out users from the closest data center to the
others. With Stable Segment Assignment, Taiji almost never
routes users to more than three data centers. The region-
level drain/restore events force user traffic to oscillate in
a short period (the gray area) as shown in Figure 12. Such
oscillations are expected and supported by our locality-based
storage management services [1].

4.5 Pacing and Sensitivity Analysis
We demonstrate the effectiveness of pacing and safety guards
discussed in §3.1.3 using a drain event. During this event, the
utilization of a data center reaches its lower bound because
it does not take any user traffic. Without pacing, when the
data center is restored, traffic will flood into the data center
and overload the backend services due to the cold cache.

Figure 13 shows how Taiji paces traffic shifts after a drain
event which took place at minute 45–81 2 . Taiji stops rout-
ing user traffic to the data center during the drain event to

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
① ② ③ ④

Tr
a
ffi

c
C

h
a
n
g

e Proposal
Actual

 0

 5

 10

 15

 20

 25

Im
b

a
la

n
ce

 (
u
ti

l
d

iff
)

Utilization
difference

 0
 200
 400
 600
 800

 1000
 1200

 0 15 30 45 60 75 90 105 120 135 150

La
te

n
cy

 (
m

s)

Time (minutes)

Latency (ms)

Figure 13. Taiji’s pacing during datacenter-level drain and re-
store events. The uppermost subfigure shows the proposed traffic
changes versus the actual changes after pacing. The middle subfig-
ure shows the utilization divergence between the target data center
and other data centers—the drain leads to significant divergence
while Taiji gradually removes the divergence after the restoration.
The bottom subfigure shows the 95th percentile of backend process-
ing time—with Taiji’s balancing strategy, the drain/restore events
do not affect the backend processing latency.

avoid interference with our failure mitigation tool (§3.3.3)—it
does not submit any change requests for the drained data
center, as shown in Figure 13(a).
After the drain event, the data center resumes serving

user traffic again 3 . At the moment of restoration, since
the utilization of the data center is dramatically different
from the others, the assignment solver without safety guards
would propose to shift back a large volume of user traffic
as shown in Figure 13(a). However, the safety guards pace
the proposed changes into a few small steps. These changes
are gradually conducted in 3 and lead to a balanced steady
state 4 in 30 minutes. At the steady states 1 and 4 , the
changes are minimal to deal with organic traffic dynamics.

Figure 13(c) shows the 95th percentile of backend process-
ing time, a metric sensitive to both caching and downstream
service behavior. We see that with Taiji’s pacing, the traffic
increase did not cause impact on the service or the backends.
Figure 14 shows the sensitivity analysis that determines

the pacing (§3.1.3) in 2015 and 2019, respectively. We see that
in both 2015 and 2019, when we increase traffic to the data
center, the CPU utilization of the backend systems will in-
crease substantially. In Figure 14(a), in the beginning of each
step, we can see icicles—the introduction of cold traffic leads
to cache misses and results in CPU spikes at the backend.
We see from Figure 14(b) that with the improvements of

our backend services (e.g., caching and sharding), we are

440

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada D. Chou, T. Xu, K. Veeraraghavan, A. Newell, S. Margulis, L. Xiao, et al.

 0

 20

 40

 60

 80

 100

 0 30 60 90 120 150

2015

Time (minutes)

C
P
U

 I
d

le
 (

%
)

Load multiplier
Cluster cache

 0 30 60 90
 0

 0.5

 1

 1.5

 2

 2.5
2019

Time (minutes)

Lo
a
d

 M
u
lt

ip
lie

r

Load multiplier
DC cache 1
DC cache 2

Figure 14. Sensitivity analysis for the same services in 2015 and
2019, respectively. The analysis in 2015 takes almost twice as long
as the one in 2019. The impact on the backend systems is visible.
Specifically, in 2015, there are icicles at the beginning of each step—
the introduction of cold traffic leads to cache misses and results in
CPU spikes at the backends.

able to shift traffic of the same service much faster and more
smoothly in 2019 than in 2015.

4.6 Supporting Service Heterogeneity
As shown in the preceding sections, achieving balanced re-
source utilization has proven to be an efficient solution for
traffic load balancing for global stateless services. However,
Facebook also hosts services that serve traffic that could be
stateful or require sticky connections. Other services could
require custom traffic balancing to support products unique
to a data center or other unique backend configurations. In
other words, traffic management at Facebook cannot be for-
mulated to have a one-size-fits-all solution. Taiji is built to
be flexible and configurable to a service’s need with intuitive
constraints and robust testing infrastructure.

4.6.1 Diverse Traffic Characteristics
Besides the stateless traffic of the web service, Taiji is also
used to manage sticky traffic for Facebook’s mobile service,
Facebook Lite, which also adopts the latency-aware balanc-
ing strategy described in §4.1. Comparedwith stateless traffic,
sticky traffic requires modeling unmovable traffic objects—
Taiji only manipulates new sessions without disrupting es-
tablished sessions (§3.1.2). We quantify the effectiveness of
Taiji in balancing sticky traffic based on the divergence of
frontend utilization. At each point in time, the divergence di
of the i-th data center is calculated as di = |u

a−ui |
ua , where ua

is the average utilization of all the data centers and ui is the
utilization of the i-th one. Figure 15 shows the Cumulative
Distribution Function (CDF) of the divergence of all the data
centers over a period of two weeks. We filter out cases where
the data centers were drained or taken offline.

As shown in Figure 15, for 80% of the cases, the divergence
is less than 3% for the stateless traffic and 4% for the sticky
traffic. For the stateless web service, the divergence mainly
comes from continuous deployment which restarts service
instances and causes imbalance (§4.1).

 0
 0.2
 0.4
 0.6
 0.8

 1

0.00 0.00 0.01 0.02 0.03 0.06 0.12 0.25

Pe
rc

e
n
ti

le

Imbalance (%)

Sticky Service
Stateless Service

Figure 15. CDF of divergence from perfect utilization balancing
for a stateless service and a sticky service over two weeks.

 0

 20

 40

 60

 80

 100

08:00 12:00 16:00 20:00 00:00 04:00

U
ti

liz
a
ti

o
n
 (

%
)

Time (hours)

(a) Closest-datacenter-first

 0

 20

 40

 60

 80

 100

08:00 12:00 16:00 20:00 00:00 04:00

U
ti

liz
a
ti

o
n
 (

%
)

Time (hours)

DC 1
DC 2
DC 3
DC 4

DC 5
DC 6
DC 7

(b) Latency-aware balancing

Figure 16. Frontend utilization of different data centers for Face-
book’s mobile service, Facebook Lite, with (a) closest-datacenter-
first and (b) balancing with latency optimization.

Facebook Lite does not use continuous deployment but
has slightly larger divergence. This is because Taiji does
not disrupt unmovable traffic objects, but only controls new
sessions. Therefore, the convergence is in general slower
than for stateless traffic. On the other hand, by modeling
session stickiness using unmovable objects, Taiji limits the
divergence to within 4% for 80% of the cases.

4.6.2 Versatile Policy Choices
Taiji allows services to effectively experiment with different
traffic management policies. Typically, the steps for a service
to change its original policy include (1) setting the configu-
ration (constraints, objectives and safety guards, §3.1.2), (2)
running a load test and a drain test for validation, and (3)
baking and monitoring in production.

Figure 16 shows the frontend utilization of Facebook Lite
with two different policies. We started to use Taiji to manage
its traffic from static edge-to-datacenter configuration (§1).
Facebook Lite initially used a closest-datacenter-first policy
for latency optimization. Figure 16a shows the daily pat-
tern of frontend utilization in geo-located data centers—the
utilization keeps increasing as the traffic from edge nodes
in the same region climbs to the peak time, until hitting a
predefined utilization threshold.

Facebook Lite later switched to the latency-aware balanc-
ing policy after evaluating the tradeoff between manageabil-
ity and latency reduction. The utilization with a balancing
policy is shown in Figure 16b. According to the service devel-
opers, the balancing policy makes it easier to understand the
traffic behavior at the data center, with only slight latency
increases (less than 20 milliseconds in most times of a day)
as discussed in §4.1.3.

441

Taiji: Managing Global User Traffic for Large-Scale Internet Services at the Edge SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

5 Experiences and Lessons Learned
Customizing load balancing strategy is key to managing in-
frastructure utilization.We find that different services, such
as Facebook, Facebook Lite, and Messaging, optimize for
different user experiences. Each service optimizes for some
combination of infrastructure resources such as system CPU,
memory, network bandwidth, network latency, etc. We rec-
ommend constructing a unified system that allows each ser-
vice to provide a target load balancing function, rather than
constructing multiple load balancing systems.
Build systems that keep pace with infrastructure evolution.

We find that product evolution, data center footprint ex-
pansion, hardware generation changes, backbone network
deployments and other factors trigger policy changes. For
instance, we recently started deploying Skylake processors
in our data centers, which resulted in our services needing to
run effectively on three process generations. As we continu-
ally refresh hardware, the ratio of machines with different
processors will keep changing. We have built tooling that
leverages Taiji to run simulations and experiments to assess
how changing the processor generation affects the utiliza-
tion of backend systems, and all intervening dependencies to
web servers, for different traffic mixes of Facebook, Facebook
Lite, Messaging, etc. Thus, Tajii allows us to reason about
how to distribute traffic when capacity, product and other
changes occur in production.

Keep debuggability in mind.We often need to answer the
question: “Why did Taiji choose to route traffic from this edge
node to that data center”? Since Taiji continually updates
the routing table, we focused on making every traffic shift
understandable to human operators. In addition to displaying
the “before” and “after” state of each traffic shift, we highlight
which inputs changed, the magnitude of change, etc. This
investment in transparency, beyond the norm of good log
messages and alerts/monitoring, has allowed both service
owners and site reliability engineers to build trust in Taiji.

Build tools to simplify operations.We have found it useful
to build tools to solve specific problems, such as a command
line tool that allows us to manually intervene and modify the
routing table, which has proven useful in myriad situations
ranging from complex network upgrades to failure mitiga-
tions. We find that it is preferable to build tools or custom
configurations to solve problems than adding complexity to
the traffic management system.

6 Limitation and Discussion
Taiji might increase the latency for some users during peak load.
Balancing data center utilization sometimes requires sending
users to farther data centers. For instance, during Europe’s
peak, Taiji might intentionally move some European traffic
to our East Coast data centers to better balance capacity.
Thus, while our overall infrastructure is better utilized, some
users will experience additional latency.

Taiji only considers edge-to-datacenter latency. Service own-
ers tend to care about the end-to-end latency. We have ob-
served services where the backend processing latency dom-
inates; for these services, routing traffic to the closest data
center improves network latency, but can cause the backends
to run at higher utilization and result in longer queuing and
processing, offsetting the savings in network latency. In this
case, a better policy is to balance data center utilization in
a latency-aware manner. Taiji is not able to directly opti-
mize for end-to-end latency, and instead relies on the service
owner to configure Taiji based on their backends.

Taiji only controls the edge-to-datacenter routing. Taiji opti-
mizes at the edge-to-datacenter request hop. However, there
are separate systems for optimizing routing from a user’s
browser to the closest edge node, and for routing requests
within a data center to specific backendmachines. There may
be untapped potential in Taiji to have end-to-end control of
a user’s request right from their browser to an edge node to
a data center to backend machines.

7 Related Work
There are limited publications on managing user traffic at the
edge for modern Internet services. User traffic routing from
edge nodes to data centers is fundamentally different from
content distribution over public WANs [14, 23, 32, 33, 39, 56,
57, 61]. For dynamic content, the constraints do not come
from the capacity of network links, but from the capacity of
data centers in terms of computation and response gener-
ation. The dedicated private backbone of modern Internet
services [18–20, 22, 24, 29, 44] eliminate the bottlenecks of
edge-to-datacenter network transmission. On the other hand,
the subsystems deployed in the data centers are complex,
dynamic, and interdependent. Taiji is designed for managing
user traffic requesting dynamic content for modern Internet
infrastructure instead of static content distribution.

Taiji is complementary to load balancingwithin a data cen-
ter, including both L4 and L7 solutions [2, 6, 7, 10–12, 25, 27,
37, 40, 42, 49]. Taiji manages edge-to-datacenter traffic—once
the traffic hits the frontends, it will be further distributed by
load balancing inside the data center, as shown in Figure 3.

Taiji is also complementary to overload control including
admission control and data quality tradeoffs [4, 5, 55, 62].
Taiji proactively avoids overloading backends with backend
safety as a first class principle (§3.3.4).

A common strategy for managing edge-to-datacenter traf-
fic is to route edge traffic to the nearest data centers with
available capacity while autoscaling service capacity [3, 8,
31, 44]. We show that managing edge-to-datacenter traffic
brings a number of benefits in terms of reliability and site
utilization with good performance.

Many cloud platforms have started to provide customers
with global traffic routing configuration, including Azure
Front Door [38] and AWS Global Accelerator [44]. These

442

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada D. Chou, T. Xu, K. Veeraraghavan, A. Newell, S. Margulis, L. Xiao, et al.

services allow customers to configure how user traffic is
routed to each service endpoint in data centers. We show
that static configurations of traffic routing is insufficient in
accommodating dynamic user traffic for Internet services at
scale. Taiji shows that a dynamic system can be built based
on existing configuration interfaces, which bring meaningful
benefits to the site reliability, efficiency, and manageability.

The idea of clustering requests of connected users was first
explored in Social Hash [26, 47]. However, we find that Social
Hash alone significantlymisses out on locality: 1) Social Hash
treats each bucket independently and misses the connections
between the buckets, and 2) Social Hash has no knowledge of
the requirements of edge-to-datacenter traffic management—
it is unclear how to assign buckets under dynamic traffic
adjustment. Compared with Social Hash [47], connection-
aware routing significantly increases the connection locality
by 20% and reduces 17% query load on our backend storage.

8 Conclusion
This paper shows that managing edge-to-datacenter traffic
has important implications on data center resource utiliza-
tion and user experience in modern Internet services with
a global user base. We present Taiji, a new system for man-
aging global user traffic for large-scale Internet services at
Facebook. Taiji has successfully achieved its two design ob-
jectives: 1) balancing the utilization of data centers and 2)
minimizing network latency of user requests. Furthermore,
Taiji optimizes backend utilization by improving locality in
user traffic routing. Taiji has been used in production at
Facebook for more than four years, and is an important in-
frastructure service that enables the global deployment of
several large-scale user-facing product services.

Acknowledgment
We thank the reviewers and our shepherd, Sujata Banerjee,
for comments that improved this paper. We thank Jason
Flinn, Mayank Pundir, Alex Gyori, Chunqiang Tang, and
Dan Meredith for the discussions and feedback on the paper.
We thank Yun Jin, Ashish Shah, Aravind Narayanan, and Yee
Jiun Song for managing the team. We also thank Yuliy Piset-
sky, Anca Agape, Ayelet Regev Dabah, Sean Barker, Alison
Huang, Dimitris Sarlis, and the numerous engineers at Face-
book who have helped us understand various systems and
offered suggestions for improving user traffic management.

Appendix
The appendix provides the formal model of the balancing
policy used by Taiji, as described in §3.1.2.
Let D={d} be the set of data centers, E={e} be the set of

edges, and x ′e,d be the new traffic weights for proportion of
traffic to send from e to d in the next epoch. The following
constraints ensures x ′e,d are non-negative:

x ′e,d ≥ 0 (1)

The following constraints ensures weights are valid pro-
portions between 0 and 1 which is applied for all e ∈ E:∑

d ∈D

x ′e,d = 1 (2)

Let u ′d be our estimate of utilization given x ′e,d , ud ∈ [0, 1]
be the utilization measured at data center d , te be the cur-
rent load measures from edge node e , and xe,d be the values
chosen in the current epoch. The following expression cap-
tures the relationship between traffic shift choices and the
estimated utilization for all d ∈ D:

u ′d = ud ·

(
1 +

∑
e ∈E (te · x

′
e,d) −

∑
e ∈E (te · xe,d)∑

e ∈E (te · xe,d)

)
(3)

Primary objective: Balancing. Balancing can be expressed as
minimizing the highest data center utilization:

minimize maxd ∈Du ′d (4)

Secondary objective: Squared latency minimization. Let le,d be
the average latency from edge e to data center d . Minimizing
squared latency avoids worst-case scenarios:

minimize
∑

e ∈E,d ∈D

x ′e,d · te · l
2
e,d (5)

Onloading constraints. LetM be an onloading constant bound
(0.04 in production). The following bounds how much new
utilization one data center can receive during an epoch:

u ′d − ud ≤ M (6)

Capacity constraints. The following enforces basic capacity
concerns to ensure no data center is over capacity:

u ′d ≤ 1 (7)

The above problem can be posed as a linear programwhere
x ′e,d and u ′d are variables while everything else is a constant
read from the monitoring system as input to the problem.
The problem is of the sizeO(|E | · |D |) in terms of constraints
and variables. For the objectives, we place a large constant
coefficient on the primary objective and then sum it with
the secondary objective. The primary objective coefficient is
set large enough such that balance is always achieved.
We transform our problem by breaking user traffic from

each edge node into N discrete traffic objects ye,d,i (i =
1, ...,N), each as 0/1 binary variables. Any legal assignments
have to satisfy the following for all e ∈ E and i = 1, ...,N :∑

d ∈D

ye,d,i = 1 (8)

We then define the relationship between x ′e,d and ye,d,i :

x ′e,d =

∑
i=1, ...,N ye,d,i

N
(9)

The above problem can be efficiently solved by the assign-
ment solver described in §3.1.2.

443

Taiji: Managing Global User Traffic for Large-Scale Internet Services at the Edge SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

References
[1] Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas,

Igor Zinkovsky, Luning Pan, Tony Savor, David Nagle, and Michael
Stumm. 2018. Sharding the Shards: Managing Datastore Locality at
Scale with Akkio. In Proceedings of the 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’18). Carlsbad, CA,
USA.

[2] J. Taveira Araújo, Lorenzo Saino, Lennert Buytenhek, and Raul Landa.
2018. Balancing on the Edge: Transport Affinity without Network
State. In Proceedings of the 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’18). Renton, WA, USA.

[3] Cooper Bethea, Gráinne Sheerin, Jennifer Mace, Ruth King, Gary Luo,
and Gary O’Connor. 2018. Managing Load. The Site Reliability Work-
book: Practical Ways to Implement SRE, Chapter 11, O’Reilly Media Inc.
(Aug. 2018), 224–243.

[4] Ludmila Cherkasova and Peter Phaal. 1998. Session Based Admission
Control: A Mechanism for Improving the Performance of an Overloaded
Web Server. Technical Report HPL-98-119. Hewlett-Packard Company.

[5] Alejandro Forero Cuervo. 2016. Handling Overload. Site Reliability
Engineering: How Google Runs Production Systems, Chapter 21, O’Reilly
Media Inc. (April 2016), 231–246. https://landing.google.com/sre/sre-
book/chapters/handling-overload/.

[6] Alejandro Forero Cuervo. 2016. Load Balancing in the Datacenter. Site
Reliability Engineering: How Google Runs Production Systems, Chapter
20, O’Reilly Media Inc. (April 2016), 231–246. https://landing.google.
com/sre/sre-book/chapters/load-balancing-datacenter/.

[7] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wen-
tao Shang, and Jinnah Dylan Hosein. 2016. Maglev: A Fast and Reliable
Software Network Load Balancer. In Proceedings of the 13th USENIX
Symposium onNetworked Systems Design and Implementation (NSDI’16).
Santa Clara, CA, USA.

[8] Ashley Flavel, Pradeepkumar Mani, David A. Maltz, Nick Holt, Jie
Liu, Yingying Chen, and Oleg Surmachev. 2015. FastRoute: A Scalable
Load-Aware Anycast Routing Architecture for Modern CDNs. In Pro-
ceedings of the 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’15). Oakland, CA, USA.

[9] Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely,
Van-Anh Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. 2010.
Availability in Globally Distributed Storage Systems. In Proceedings
of the 9th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI’10). Vancouver, BC, Canada.

[10] Rohan Gandhi, Y. Charlie Hu, Cheng kok Koh, Hongqiang Liu, and
Ming Zhang. 2015. Rubik: Unlocking the Power of Locality and End-
point Flexibility in Cloud Scale Load Balancing. In Proceedings of the
2015 USENIX Annual Technical Conference (USENIX ATC’15). Santa
Clara, CA.

[11] Rohan Gandhi, Y. Charlie Hu, and Ming Zhang. 2016. Yoda: A Highly
Available Layer-7 Load Balancer. In Proceedings of the 11th European
Conference on Computer Systems (EuroSys’16). London, United King-
dom.

[12] Rohan Gandhi, Hongqiang Harry Liu, Y. Charlie Hu, Guohan Lu, Ji-
tendra Padhye, Lihua Yuan, and Ming Zhang. 2014. Duet: Cloud Scale
Load Balancing with Hardware and Software. In Proceedings of the 2014
ACM SIGCOMM Conference (SIGCOMM’14). Chicago, Illinois, USA.

[13] Aditya Ganjam, Junchen Jiang, Xi Liu, Vyas Sekarx, Faisal Siddiqi, Ion
Stoica, Jibin Zhan, and Hui Zhang. 2015. C3: Internet-Scale Control
Plane for VideoQuality Optimization. In Proceedings of the 12th USENIX
Symposium onNetworked Systems Design and Implementation (NSDI’15).
Oakland, CA, USA.

[14] David K. Goldenberg, Lili Qiu, Haiyong Xie, Yang Richard Yang, and
Yin Zhang. 2004. Optimizing Cost and Performance for Multihoming.
In Proceedings of the 2004 ACM SIGCOMM Conference (SIGCOMM’04).
Portland, Oregon, USA.

[15] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and
Amin Vahdat. 2016. Evolve or Die: High-Availability Design Principles
Drawn from Googles Network Infrastructure. In Proceedings of the
2016 ACM SIGCOMM Conference (SIGCOMM’16). Florianópolis, Brazil.

[16] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar,
Agung Laksono, Jeffrey F. Lukman, Vincentius Martin, and Anang D.
Satria. 2014. What Bugs Live in the Cloud? A Study of 3000+ Issues
in Cloud Systems. In Proceedings of the 5th ACM Symposium on Cloud
Computing (SoCC’14). Seattle, WA, USA.

[17] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono,
Anang D. Satria, Jeffry Adityatama, and Kurnia J. Eliazar. 2016. Why
Does the Cloud Stop Computing? Lessons from Hundreds of Service
Outages. In Proceedings of the 7th ACM Symposium on Cloud Computing
(SoCC’16). Santa Clara, CA, USA.

[18] Nikola Gvozdiev, Stefano Vissicchio, Brad Karp, and Mark Handley.
2018. On low-latency-capable topologies, and their impact on the de-
sign of intra-domain routing. In Proceedings of the 2018 ACM SIGCOMM
Conference (SIGCOMM’18). Budapest, Hungary.

[19] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Roger Wattenhofer. 2013. Achieving High
Utilization with Software-driven WAN. In Proceedings of the 2013 ACM
SIGCOMM Conference (SIGCOMM’13). Hong Kong, China.

[20] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu,
Richard Alimi, Kondapa Naidu B., Chandan Bhagat, Sourabh Jain, Jay
Kaimal, Shiyu Liang, Kirill Mendelev, Steve Padgett, Faro Rabe, Saikat
Ray, Malveeka Tewari, Matt Tierney, Monika Zahn, Jonathan Zolla,
Joon Ong, and Amin Vahdat. 2018. B4 and After: Managing Hierarchy,
Partitioning, and Asymmetry for Availability and Scale in Google’s
Software-defined WAN. In Proceedings of the 2018 ACM SIGCOMM
Conference (SIGCOMM’18). Budapest, Hungary.

[21] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
2010. ZooKeeper:Wait-free Coordination for Internet-scale Systems. In
Proceedings of the 2010 USENIX Conference on USENIX Annual Technical
Conference (USENIX ATC’10). Boston, MA.

[22] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart, and Amin Vah-
dat. 2013. B4: Experience with a Globally-deployed Software Defined
WAN. In Proceedings of the 2013 ACM SIGCOMM Conference (SIG-
COMM’13). Hong Kong, China.

[23] Wenjie Jiang, Rui Zhang-Shen, Jennifer Rexford, and Mung Chiang.
2009. Cooperative Content Distribution and Traffic Engineering in an
ISP Network. In Proceedings of the 11th International Joint Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS ’09).
Seattle, WA, USA.

[24] Mikel Jimenez and Henry Kwok. 2017. Building Express Backbone:
Facebook’s new long-haul networks. https://code.fb.com/data-center-
engineering/building-express-backbone-facebook-s-new-long-haul-
network/.

[25] Theo Julienne. 2018. GLB: GitHub’s open source load balancer. https:
//githubengineering.com/glb-director-open-source-load-balancer/.

[26] Igor Kabiljo, Brian Karrer, Mayank Pundir, Sergey Pupyrev, and Alon
Shalita. 2017. Social Hash Partitioner: A Scalable Distributed Hyper-
graph Partitioner. Journal Proceedings of the VLDB Endowment 10, 11
(Aug. 2017).

[27] Nanxi Kang, Monia Ghobadi, John Reumann, Alexander Shraer, and
Jennifer Rexford. 2015. Efficient Traffic Splitting on Commodity
Switches. In Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies (CoNEXT’15). Heidelberg,
Germany.

[28] Kimberly Keeton, Cipriano Santos, Dirk Beyer, Jeffrey Chase, and John
Wilkes. 2002. Designing for Disasters. In Proceedings of the 3rd USENIX
Conference on File and Storage Technologies (FAST’04). San Francisco,

444

https://landing.google.com/sre/sre-book/chapters/handling-overload/
https://landing.google.com/sre/sre-book/chapters/handling-overload/
https://landing.google.com/sre/sre-book/chapters/load-balancing-datacenter/
https://landing.google.com/sre/sre-book/chapters/load-balancing-datacenter/
https://code.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://code.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://code.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://githubengineering.com/glb-director-open-source-load-balancer/
https://githubengineering.com/glb-director-open-source-load-balancer/

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada D. Chou, T. Xu, K. Veeraraghavan, A. Newell, S. Margulis, L. Xiao, et al.

CA, USA.
[29] Yousef Khalidi. 2017. How Microsoft builds its fast and reliable global

network. https://azure.microsoft.com/en-us/blog/how-microsoft-
builds-its-fast-and-reliable-global-network/.

[30] Kripa Krishnan. 2012. Weathering the Unexpected. Communications
of the ACM (CACM) 55, 11 (Nov. 2012), 48–52.

[31] Piotr Lewandowski. 2016. Load Balancing at the Frontend. Site Relia-
bility Engineering: How Google Runs Production Systems, Chapter 19,
O’Reilly Media Inc. (April 2016), 223–229. https://landing.google.com/
sre/sre-book/chapters/load-balancing-frontend/.

[32] HongqiangHarry Liu, Raajay Viswanathan,Matt Calder, Aditya Akella,
Ratul Mahajan, Jitendra Padhye, and Ming Zhang. 2016. Efficiently
Delivering Online Services over Integrated Infrastructure. In Proceed-
ings of the 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’16). Santa Clara, CA, USA.

[33] Hongqiang Harry Liu, Ye Wang, Yang Richard Yang, Hao Wang, and
Chen Tian. 2012. Optimizing Cost and Performance for Content Mul-
tihoming. In Proceedings of the 2012 ACM SIGCOMM Conference (SIG-
COMM’12). Helsinki, Finland.

[34] Anil Mallapur and Michael Kehoe. 2017. TrafficShift: Load Testing at
Scale.
https://engineering.linkedin.com/blog/2017/05/trafficshift--load-
testing-at-scale.

[35] Ben Maurer. 2015. Fail at Scale: Reliability in the Face of Rapid Change.
Communications of the ACM (CACM) 58, 11 (Nov. 2015), 44–49.

[36] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Yee Jiun Song.
2018. A Large Scale Study of Data Center Network Reliability. In
Proceedings of the 2018 ACM Internet Measurement Conference (IMC’18).
Boston, MA, USA.

[37] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan
Yu. 2017. SilkRoad: Making Stateful Layer-4 Load Balancing Fast
and Cheap Using Switching ASICs. In Proceedings of the 2017 ACM
SIGCOMM Conference (SIGCOMM’17). Los Angeles, CA, USA.

[38] Microsoft Docs. 2019. Azure Front Door Service Documentation. https:
//docs.microsoft.com/en-us/azure/frontdoor/.

[39] Srinivas Narayana, Joe Wenjie Jiang, Jennifer Rexford, and Mung Chi-
ang. 2012. To Coordinate Or Not To Coordinate? Wide-Area Traffic
Management for Data Centers. Technical Report TR-998-15. Depart-
ment of Computer Science, Princeton University.

[40] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin
Raiciu. 2018. Stateless Datacenter Load-balancing with Beamer. In
Proceedings of the 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’18). Renton, WA, USA.

[41] David Oppenheimer, Archana Ganapathi, and David A. Patterson. 2003.
Why Do Internet Services Fail, and What Can Be Done About It?. In
Proceedings of the 4th Conference on USENIX Symposium on Internet
Technologies and Systems (USITS’03). Seattle, WA, USA.

[42] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert
Greenberg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos,
Hongyu Wu, Changhoon Kim, and Naveen Karri. 2013. Ananta: Cloud
Scale Load Balancing. In Proceedings of the ACM 2013 SIGCOMM Con-
ference. Hong Kong, China.

[43] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi
Huang, Justin Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast,
Scalable, In-Memory Time Series Database. In Proceedings of the 41st
International Conference on Very Large Data Bases (VLDB’15). Kohala
Coast, HI, USA.

[44] Shaun Ray. 2018. AWS Global Accelerator for Availability and Perfor-
mance. https://aws.amazon.com/global-accelerator/.

[45] Chuck Rossi, Elisa Shibley, Shi Su, Kent Beck, Tony Savor, and Michael
Stumm. 2016. Continuous Deployment of Mobile Software at Facebook.
In Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE’16). Seattle, WA, USA.

[46] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett,
Harsha V. Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr
Lapukhov, and Hongyi Zeng. 2017. Engineering Egress with Edge
Fabric: Steering Oceans of Content to the World. In Proceedings of
the 2017 ACM SIGCOMM Conference (SIGCOMM’17). Los Angeles, CA,
USA.

[47] Alon Shalita, Brian Karrer, Igor Kabiljo, Arun Sharma, Alessandro
Presta, Aaron Adcock, Herald Kllapi, and Michael Stumm. 2016. Social
Hash: An Assignment Framework for Optimizing Distributed Systems
Operations on Social Networks. In Proceedings of the 13th USENIX
Symposium onNetworked Systems Design and Implementation (NSDI’16).
Santa Clara, CA, USA.

[48] Alex Sherman, Philip A. Lisiecki, Andy Berkheimer, and Joel Wein.
2005. ACMS: The Akamai Configuration Management System. In
Proceedings of the 2nd Conference on Symposium on Networked Systems
Design and Implementation (NSDI’05). Boston, MA, USA.

[49] Daniel Sommermann and Alan Frindell. 2014. Introducing Proxygen,
Facebook’s C++ HTTP framework. https://code.facebook.com/posts/
1503205539947302.

[50] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Ak-
shay Chander, Zhe Wen, Aravind Narayanan, Patrick Dowell, and
Robert Karl. 2015. Holistic Configuration Management at Facebook.
In Proceedings of the 25th Symposium on Operating Systems Principles
(SOSP’15). Monterey, CA, USA.

[51] Tony Savor and Mitchell Douglas and Michael Gentili and Laurie
Williams and Kent Beck andMichael Stumm. 2016. Continuous Deploy-
ment at Facebook and OANDA. In Proceedings of the 38th IEEE/ACM
International Conference on Software Engineering Companion (ICSE’16).
Austin, TX, USA.

[52] Ben Treynor, Mike Dahlin, Vivek Rau, and Betsy Beyer. 2017. The
Calculus of Service Availability. Communications of the ACM (CACM)
60, 9 (Sept. 2017), 42–47.

[53] Kaushik Veeraraghavan, Justin Meza, David Chou, Wonho Kim, Sonia
Margulis, Scott Michelson, Rajesh Nishtala, Daniel Obenshain, Dmitri
Perelman, and Yee Jiun Song. 2016. Kraken: Leveraging Live Traffic
Tests to Identify and Resolve Resource Utilization Bottlenecks in Large
Scale Web Services. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’16). Savannah,
GA, USA.

[54] Kaushik Veeraraghavan, Justin Meza, Scott Michelson, Sankaralingam
Panneerselvam, Alex Gyori, David Chou, Sonia Margulis, Daniel Oben-
shain, Shruti Padmanabha, Ashish Shah, Yee Jiun Song, and Tianyin Xu.
2018. Maelstrom: Mitigating Datacenter-level Disasters by Draining
Interdependent Traffic Safely and Efficiently. In Proceedings of the 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI’18). Carlsbad, CA, USA.

[55] Matt Welsh and David Culler. 2003. Adaptive Overload Control for
Busy Internet Servers. In Proceedings of the 4th Conference on USENIX
Symposium on Internet Technologies and Systems (USITS’03). Seattle,
WA.

[56] Patrick Wendell, Joe Wenjie Jiang, Michael J. Freedman, and Jennifer
Rexford. 2010. DONAR: Decentralized Server Selection for Cloud
Services. In Proceedings of the 2010 ACM SIGCOMM Conference (SIG-
COMM’10). New Delhi, India.

[57] Hong Xu and Baochun Li. 2013. Joint Request Mapping and Response
Routing for Geo-distributed Cloud Services. In Proceedings of the 32nd
IEEE International Conference on Computer Communications (INFO-
COM’13). Turin, Italy.

[58] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long
Jin, and Shankar Pasupathy. 2016. Early Detection of Configuration
Errors to Reduce Failure Damage. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI’16).
Savannah, GA, USA.

445

https://azure.microsoft.com/en-us/blog/how-microsoft-builds-its-fast-and-reliable-global-network/
https://azure.microsoft.com/en-us/blog/how-microsoft-builds-its-fast-and-reliable-global-network/
https://landing.google.com/sre/sre-book/chapters/load-balancing-frontend/
https://landing.google.com/sre/sre-book/chapters/load-balancing-frontend/
https://engineering.linkedin.com/blog/2017/05/trafficshift--load-testing-at-scale
https://engineering.linkedin.com/blog/2017/05/trafficshift--load-testing-at-scale
https://docs.microsoft.com/en-us/azure/frontdoor/
https://docs.microsoft.com/en-us/azure/frontdoor/
https://aws.amazon.com/global-accelerator/
https://code.facebook.com/posts/1503205539947302
https://code.facebook.com/posts/1503205539947302

Taiji: Managing Global User Traffic for Large-Scale Internet Services at the Edge SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

[59] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng,
Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do Not
Blame Users for Misconfigurations. In Proceedings of the 24th Sym-
posium on Operating Systems Principles (SOSP’13). Farmington, PA,
USA.

[60] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett,
Matthew Holliman, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok
Narayanan, Ankur Jain, Victor Lin, Colin Rice, Brian Rogan, Arjun
Singh, Bert Tanaka, Manish Verma, Puneet Sood, Mukarram Tariq,
Matt Tierney, Dzevad Trumic, Vytautas Valancius, Calvin Ying, Ma-
hesh Kallahalla, Bikash Koley, and Amin Vahdat. 2017. Taking the
Edge off with Espresso: Scale, Reliability and Programmability for

Global Internet Peering. In Proceedings of the 2017 ACM SIGCOMM
Conference (SIGCOMM’17). Los Angeles, CA, USA.

[61] Zheng Zhang, Ming Zhang, Albert Greenberg, Y. Charlie Hu, Ratul
Mahajan, and Blaine Christian. 2010. Optimizing Cost and Performance
in Online Service Provider Networks. In Proceedings of the 7th USENIX
Symposium onNetworked Systems Design and Implementation (NSDI’10).
San Jose, CA, USA.

[62] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu,
Rui Gu, Beng Chin Ooi, and Junfeng Yang. 2018. Overload Control for
Scaling WeChat Microservices. In Proceedings of the ACM Symposium
on Cloud Computing (SoCC’18). Carlsbad, CA, USA.

446

	Abstract
	1 Introduction
	2 Background
	3 Taiji
	3.1 Runtime
	3.2 Traffic Pipeline
	3.3 Correctness and Reliability

	4 Evaluation
	4.1 Balancing Large-Scale Web Traffic
	4.2 Efficient Capacity Utilization
	4.3 Effectiveness of Connection-Aware Routing
	4.4 Stability
	4.5 Pacing and Sensitivity Analysis
	4.6 Supporting Service Heterogeneity

	5 Experiences and Lessons Learned
	6 Limitation and Discussion
	7 Related Work
	8 Conclusion
	References

