Cross-System Interaction Failufé',
Don't Fail through the Cracks

)

o

S )
L

./’)_ -

.'{'»"f v

Tianyin Xu
University of Illinois Urbana-Champaign

Xudong Sun

University of Illinois Urbana-Champaign







S —

Indranil Gupta

@indygupta
The Dark Matter of Production Bugs! How bad are Cross-System
Interactions? Out of 360 random issues, 120 issues were #CS| Failures!
Lilia Tang @liliatangxy will present paper @ #Eurosys2023! W/

@tianyin_xu @chaitybhandari @anna_karanika @jsy531
Paper: tinyurl.com/CSI-2023




l

—

Marc Brooker
=¥ ©MarcJBrooker

Looks like an interest paper. Honestly surprising if this number is as low
as 30%.

Tianyin Xu &
Y @tianyin_xu

It isn't a sample from production failures (we'd love to study but hard to
find code-level details) The issues were sampled from JIRAs of OSS
projects where majority are still bugs in one system. You seems to
indicate x-system interaction failures are even more common in prod? :0

@ Marc Brooker @MarcJBrooker - May 5, 2023
=

That's my intuition. | don't have hard data on it, unfortunately, but | would
roughly say that interaction issues are the majority (and not merely
plurality) of in-production issues in large-scale dist sys.

Cool research, though. Looking forward to reading the whole paper.

‘ - 3
— e



Our production stack is mostly an orchestration
of many (!) interacting systems.

i@hadaap

Map Reduce

N 4

Submarine

https://hadoop.apache.org/



Our production stack is mostly an orchestration
of many (!) interacting systems.

BRI

“ Ming
F=e - @ (| faaen
IVE ‘
\, J\‘

o000 || Spark

MLlib




“Site reliability” is determined not only by the
reliability of individual systems, but also by the
reliability of their interactions.



Interaction reliability is hard.

* Few formal description on cross-system interfaces
* Not even “POSIX”

spark’ @hagdoop

read(f)

—»| f is compressed

f.size() = -1

assert( _
f.size() ¢
>= 0)

SPARK-27239



https://issues.apache.org/jira/browse/SPARK-27239

Interaction reliability is hard.

* Few formal description on cross-system interfaces

* No “POSIX” any more
* No spec on error paths

@ Flink # 1adoop

alloc COntainer

timeout
retry

alloc Container

timeout
retry

busy

—»| slow processing

—® interpret retries

alloc .
“Ontainer as new requests

—

—>

Flink-12342



https://issues.apache.org/jira/browse/SPARK-27239
https://issues.apache.org/jira/browse/FLINK-12342

Interaction reliability is hard.

* Few formal description on cross-system interfaces
* No “POSIX” any more
* No spec on error paths

* High cost of reasoning about multiple systems collectively
* New tools are needed to cross system/program boundaries
* Search space grows exponentially



digms

Magnified by emerging computing para

ICroService

>

e Serverless

* Sky computing
* Hybrid cloud

10

Real-time graph of microservice dependencies at amazon.com in 2008.



From the Death Star to the Galaxy

AWS Re:lnvent 2023.

Real-time graph of microservice dependencies at amazon.com in 2008. 11




Summary (from the paper)

* Individual systems become simpler and more fine-grained

* More friendly for testing, analysis, and verification

* Cross-system interactions become more complex and error-prone

* New tools and practices are needed

* Traditional reliability tools are insufficient

* Many only reason about control- and data-flow within a program



What can be done about it?

* Testing and verification of systems with interactions

* Find manifested through interactions

* Build formally verified systems with guaranteed safety and liveness



Kubernetes as a running (microservice) system

i !Ilr




Kubernetes as a running (microservice) system

ZooKeeper RabbitMQ FluentBit Cassandra
Controller Controller Controller Controller

APIServer Il ... API Server

APl Server |l API Server

L ctcd <« » & ctcd < » & ectcd




Kubernetes as a running (microservice) system

Scheduler SIS R GC Controller
Controller Controller
APl Server APl Server |l APIServer Il ... APl Server i
O ctcd < » & ctcd < » & etcd




Kubernetes as a running (microservice) system

L

APl Server |l APl Server i APIServer Il ... APl Server i

s —_ A
‘ etcd <« > ‘ etcd < > ‘ etcd




Controller and different types of interactions

Controller
A

APl Server Il
Container 1

Volume

18



Controller and different types of interactions

cassandra

» Controller
A

APl Server |l

Controller
A

APl Server i

19



Interaction between controller and system state

Current

Container

Volume

Delete(container)

Delete(volume)

Reconciliation

20



Unreliable interactions lead to disasters

Current

Container

Volume

Delete(container)

Crash
and
Restart

Never
executed

-1



ARTIFACT ARTIFACT
EVALUATED EVALUATED

’’’’’’’
¢ 4 ASSOCIATION

Sieve for automatic reliability testing

FUNCTIONAL | REPRODUCED

* Key Idea: Perturbing the controller’s interaction with the system state
* Usability: Testing unmodified controllers
* Reproducibility: Reproducing detected bugs reliably

* Detected 46 serious bugs in 10 popular Kubernetes controllers
* Severe consequences: System outage, data loss, security issues, etc.
confirmed and 2~ fixed

* Available: https://github.com/sieve-project/sieve . @
'“— \/



https://github.com/sieve-project/sieve

Challenges of testing the interaction

Different implementations
and diverse functionality

_crashi . .
Non-crashing symptom Sophisticated

triggering
condition



Perturb the controller’s interaction with the state

Reference run Perturbed run

—%— System state: Objects in @ etcd %

Initial state n Every object
" creation/update/deletion

advances the state
- The interaction with the system state
can be affected by many factors

I
Desired state -

24



Flag buggy behavior with differential oracles

Reference run Perturbed run

-%- System state: Objects in @ etcd %

Initial state

Differential oracles:
Detecting liveness and safety
violations without knowing the

semantic of the system

Desired state

25



Flag buggy behavior with differential oracles

Reference run

—%— System state: Objects in @ etcd
Initial state

Liveness Property

A controller should eventually
achieve the desired state

Desired state

,llll!

Compare the end states

Perturbed run

&

PAS)



Flag buggy behavior with differential oracles

Reference run Perturbed run

-%- System state: Objects in @ etcd %
- ~
Initial state - A

Safety Property

A controller should never delete
user data unless requested

> Compare the state updates <
(e.g., # volume deletions)

Desired state




Exhaustive perturbation with different patterns

* Employ three perturbation patterns
* Intermediate-state pattern
* Stale-state pattern
* Unobserved-state pattern

* Exhaustively test all bug-triggering perturbations
e Systematically find all the targeted bugs
* |nject faults with different timings

* Prune out ineffective perturbations to be efficient
* Not every perturbation leads to bugs

28



The interaction fails in the middle,

The intermediate_State pattern leaving the controller to handle

some intermediate state

Reference run Perturbed run
—
Intermediate state Reconcile Credte(...) // 51->52
cycle "
¢' Update(...) // S2->S3
X h Start a new reconcile cycle

Int diate stat from S2
ntermediate state

*

29



The interaction is affected by staleness

The sta le'State pattern caused by asynchrony and caching

Reference run Perturbed run

Controller %

/"\ =

30



The interaction is affected by staleness

The sta le'State pattern caused by asynchrony and caching

1 Pull requests

Kubernetes is vulnerable to stale reads, violatirr

813 () Actions [ Projects 6 () Security |~ Insights

# 5 9 8 4 8 Episodes About Subscribe

® Open

Kubernetes

smarterclayton opened this issue on Feb 13, 2018 - 89 comments Podcast

sm

When we added resourceVersion=0 to reflectors, we didn't properly reason about its i
can cause two nodes to run a pod with the same name at the same time when using m|

from Google

#218

arterclayton commented on Feb 13, 2018 - edited ~

Kubernetes stale reads, with Madhav Jivrajani

pod safety guarantees on the cluster. Because a read serviced by the watch cache ca Hosts: Abdel Sghiouar, Kaslin Fields
connects to that api server can read an arbitrarily old history. We explicitly use quoru
Scenario: n Episode #218: Kubernetes stale reads, with Madhav Jivrajani
1. T1: StatefulSet controller creates pod-@ (uid 1) which is scheduled to node-1 Madhav Jivrajani is an engineer at VMware, a tech lead in SIG Contributor Experience and a GitHub Admin for the Kubernetes project. He also
2.T2: pod-0 is deleted as part of a rolling upgrade contributes to the storage layer of Kubernetes, focusing on reliability and scalability.
3. node-1 sees that pod-0 is deleted and cleans it up, then deletes the pod in the In this episode we talked with Madhav about a recent post on social media about a very interesting stale reads issue in Kubernetes, and what the
’ ! community is doing about it.
4. The StatefulSet controller creates a second pod pod-@ (uid 2) which is assigned ) )
Do you have something cool to share? Some questions? Let us know:
5. node-2 sees that pod-@ has been scheduled to it and starts pod-0
o web: kubernetespodcast.com
6. The kubelet on node-1 crashes and restarts, then performs an initial list of pods §

N

o mail: kubernetespodcast@google.com

an HA setup (more than one API server) that is partitioned from the master (watc

. o twitter: @kubernetespod
watch cache returns a list of pods from before T2 @ .

. node-1 fills its local cache with a list of pods from before T2

. node-1 starts pod-@ (uid 1) and node-2 is already running pod-0 (uid 2).



There are observability gaps

The unobserved-state pattern in the interaction

Reference run Perturbed run

Controllerm

32



Sieve: Testing interaction with the system state

3. Produce a perturbed

- A test plan describes a
concrete perturbation

4. Flag bugs with differential oracles

I

| l Output

Input : 1. Produce a reference run run for each test plan : P

I I

o & I =
Kubernetes I 2. G | *

: . Generate test plans 1 X m—
Controller : | Vv —

. :

I I

: | Testresults for
Workloads : | each perturbation
(E2E tests) I i

I

: :

I I

I I

I I

I I

I I

I I

l l

Open source: https://github.com/sieve-project/sieve 3[]



https://github.com/sieve-project/sieve

Interaction between controller and application

< » Controller

Managed
application

* Controller reconfigures the managed applications
* must respect application operation semantics



Interaction between controller and application

Modifying the current dynamic configuration

Modifying the configuration is done through the reconfig command. There are two modes of reconfiguration: incremental and non-incremental (bulk). The non-incremental simply specifies the new dynamic configuration of the system.
The incremental specifies changes to the current configuration. The reconfig command returns the new configuration.

A few examples are in: ReconfigTest.java, ReconfigRecoveryTest.java and TestReconfigServer.cc.

General

Removing servers: Any server can be removed, including the leader (although removing the leader will result in a short unavailability, see Figures 6 and 8 in the paper). The server will not be shut-down automatically. Instead, it
becomes a "non-voting follower". This is somewhat similar to an observer in that its votes don't count towards the Quorum of votes necessary to commit operations. However, unlike a non-voting follower, an observer doesn't actually
see any operation proposals and does not ACK them. Thus a non-voting follower has a more significant negative effect on system throughput compared to an observer. Non-voting follower mode should only be used as a temporary
mode, before shutting the server down, or adding it as a follower or as an observer to the ensemble. We do not shut the server down automatically for two main reasons. The first reason is that we do not want all the clients connected
to this server to be immediately disconnected, causing a flood of connection requests to other servers. Instead, it is better if each client decides when to migrate independently. The second reason is that removing a server may
sometimes (rarely) be necessary in order to change it from "observer" to "participant” (this is explained in the section Additional comments).

Note that the new configuration should have some minimal number of participants in order to be considered legal. If the proposed change would leave the cluster with less than 2 participants and standalone mode is enabled

(standaloneEnabled=true, see the section The standaloneEnabled flag), the reconfig will not be processed (BadArgumentsException). If standalone mode is disabled (standaloneEnabled=false) then its legal to remain with 1 or more
participants.

Adding servers: Before a reconfiguration is invoked, the administrator must make sure that a quorum (majority) of participants from the new configuration are already connected and synced with the current leader. To achieve this we
need to connect a new joining server to the leader before it is officially part of the ensemble. This is done by starting the joining server using an initial list of servers which is technically not a legal configuration of the system but (a)
contains the joiner, and (b) gives sufficient information to the joiner in order for it to find and connect to the current leader. We list a few different options of doing this safely.

1. Initial configuration of joiners is comprised of servers in the last committed configuration and one or more joiners, where joiners are listed as observers. For example, if servers D and E are added at the same time to (A, B,
C) and server C is being removed, the initial configuration of D could be (A, B, C, D) or (A, B, C, D, E), where D and E are listed as observers. Similarly, the configuration of E could be (A, B, C, E) or (A, B, C, D, E), where D and
E are listed as observers. Note that listing the joiners as observers will not actually make them observers - it will only prevent them from accidentally forming a quorum with other joiners. Instead, they will
contact the servers in the current configuration and adopt the last committed configuration (A, B, C), where the joiners are absent. Configuration files of joiners are backed up and replaced automatically as this happens. After
connecting to the current leader, joiners become non-voting followers until the system is reconfigured and they are added to the ensemble (as participant or observer, as appropriate).

. Initial configuration of each joiner is comprised of servers in the last committed configuration + the joiner itself, listed as a participant. For example, to add a new server D to a configuration consisting of servers (A, B, C),
the administrator can start D using an initial configuration file consisting of servers (A, B, C, D). If both D and E are added at the same time to (A, B, C), the initial configuration of D could be (A, B, C, D) and the configuration of
E could be (A, B, C, E). Similarly, if D is added and C is removed at the same time, the initial configuration of D could be (A, B, C, D). Never list more than one joiner as participant in the initial configuration (see warning below).

. Whether listing the joiner as an observer or as participant, it is also fine not to list all the current configuration servers, as long as the current leader is in the list. For example, when adding D we could start D with a configuration
file consisting of just (A, D) if A is the current leader. however this is more fragile since if A fails before D officially joins the ensemble, D doesn’t know anyone else and therefore the administrator will have to intervene and
restart D with another server list.

Never specify more than one joining server in the same initial configuration as participants. Currently, the joining servers don’t know that they are joining an existing ensemble; if multiple joiners are listed as participants they may form an
independent quorum creating a split-brain situation such as processing operations independently from your main ensemble. It is OK to list multiple joiners as observers in an initial config.

Finally, note that once connected to the leader, a joiner adopts the last committed configuration, in which it is absent (the initial config of the joiner is backed up before being rewritten). If the joiner restarts in this state, it will not be
able to boot since it is absent from its configuration file. In order to start it you’ll once again have to specify an initial configuration.




Interaction between controller and application

< » Controller

Managed
application

* Controller reconfigures the managed applications
* must respect application operation semantics

* Must reason about end-to-end operation correctness
* Unit tests are deficient



Acto: a push-button E2E testing tool

* Testing the controller together with the managed applications
* complement unit tests

* Checking end-to-end correctness properties
* always reconciling the managed application to its desired states
* always recovering the application from undesired or error states
* always being resilient to operation errors

* Detected 56 serious bugs in 11 popular Kubernetes controllers
confirmed and =0 fixed

* Available: https://github.com/xlab-uiuc/acto []


https://github.com/xlab-uiuc/acto

Interaction bugs detected by Acto

replicas: replicas:
2#<-3 3#<-2

Fail to update ZK membership




Basic idea: exploring different transitions of states

* Modeling operations as state transitions

State
Declaration

----------------------------
A .
*

Current Desired
State State

* .
----------------------------

39



Basic idea: exploring different transitions of states

* Chaining state transitions into an operation sequence

D, D, D;

o080 8-

40



Basic idea: exploring different transitions of states

* Checking error-state recovery

500 308

41



Basic idea: exploring different transitions of states

* Checking the level-triggering principle

%‘/y

S

42




Secret sauces

* Automatic generation of comprehensive desired-state declarations

* cover different operation scenarios

* cover all the fields of the operation interface

* Automatic test oracles for flagging undesired behavior

* e.g., consistency and differential oracles

* Open source: https://github.com/xlab-uiuc/acto

43


https://github.com/xlab-uiuc/acto

Verification? All types of interactions matter.

» Controller Controller
A

cassandra

APl Server i APl Server i

etcd <« '€

44



Interaction between controllers

ZooKeeper etcd
Controller
% Get(vol ‘
(vol) >
— &
V1
Updat 1, vl
pdate(vol, v1) >
— &
V2

45



Interaction between controllers

ZooKeeper etcd Volume
Controller Controller
% Get(vol %

(vol) »I
— &
Updat 1, vl
Ui < pdate(vol, v1)
e g
Updat 1, vl V2
pdate(vol, v1) >

46



Interaction between controllers

ZooKeeper etcd Garbage
Controller Collector
% Get(vol ‘ %
(vol) >
< ' Delete(vol)
V1 <

Update(vol, v1)

>

47



Interaction between controllers

ZooKeeper etcd Garbage
Controller Collector
% Get(vol ‘ %

(vol) >
— o
V1
Updat 1, vl
pdate(vol, v1) >
— o pelete(vol
eiete(vo
V2 <

48



Anvil: building verified Kubernetes controllers

* A framework to help build practical and verified controllers
* Verified: the controller implementation is formally verified

* Practical: the verified controller can be deployed in any Kubernetes clusters

* We have built three Kubernetes controllers using Anvil

* Controllers for managing ZooKeeper, RabbitMQ and FluentBit

Y

* Feature parity and competitive performance




Modeling three types of interactions

* Interactions between the controller and the system state
* APl server and etcd that serves/stores the system state

* Interactions between the controller and the managed application
* The managed application (customized by developers)

* Interactions between controllers
* Built-in controllers that interact with the target controller

* Asynchrony and failures (e.g., controller crash, network delay)



Eventually Stable Reconciliation (ESR)

* Aformal correctness specification for controllers
* Generally applicable to diverse controllers
* Powerful enough to preclude a broad range of bugs

* Formula: model = Vd.[ldesire(d) ~» [Imatch(d)

* “If at some point the desired state stops changing, then the system state
will eventually match the desired state, and always match it from then”



Reasoning about one step at atime

* P:the precondition for the controller to take one step
* (J): the postcondition after the controller takes one step
* Step.: one step of the controller

* Stepany: one step of any component (including the controller) in the cluster

{P}Step{Q} {P}Stepany{P vV (0} WeakFair(Step,)
P w ()

If volume exists with v1, eventually volume exists with v2

WF1rule

52



Combining steps together

WF1 rule WF1 rule
P w () ) w» R

Transitivity rule
P w» R

Developers can build up the leads-to () chain in this way to
prove that the controller eventually reaches the desired state
step by step, regardless of all possible interactions.



Towards a truly reliable cloud infrastructure




It takes a village to do the research.

Ramnatthan Alagappan
Chaitanya Bhandari
Tej Chajed
Aishwarya Ganesan
Michael Gasch
Jiawei Tyler Gu
Indranil Gupta

Jon Howell
Shuyang Ji

Yuxuan Jiang

Anna Karanika
Andrea Lattuada

Owolabi Legunsen
Wengqing Luo
Wenjie Ma
Zicheng Ma
Oded Padon
Lalith Suresh
Adriana Szekeres
Lilia Tang
Mandana Vaziri
Chen Wang
Wentao Zhang
Yongle Zhang



Reference

[1] Fail through the Cracks: Cross-System Interaction Failures in Modern
Cloud Systems, EuroSys, 2023. [paper] [dataset]

[2] Reasoning about modern datacenter infrastructures using partial
histories, HotOS, 2023 [paper]

[3] Automatic Reliability Testing for Cluster Management Controllers,
OSDI, 2022. [paper] [project]

[4] Acto: Automatic End-to-End Testing for Operation Correctness of
Cloud System Management, SOSP, 2023. [paper] [project]

[5] Anvil: Verifying Liveness of Cluster Management Controllers, OSDI,
2024. (to appear)


https://dl.acm.org/doi/10.1145/3552326.3587448
https://github.com/xlab-uiuc/csi-ae
https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s11-sun.pdf
https://www.usenix.org/conference/osdi22/presentation/sun
https://github.com/sieve-project/sieve
https://dl.acm.org/doi/10.1145/3600006.3613161
https://github.com/xlab-uiuc/acto

