
Cross-System Interaction Failures
Don't Fail through the Cracks
Tianyin Xu
University of Illinois Urbana-Champaign

Xudong Sun
University of Illinois Urbana-Champaign

1

2

3

https://hadoop.apache.org/

Our production stack is mostly an orchestration
of many (!) interacting systems.

4

Our production stack is mostly an orchestration
of many (!) interacting systems.

5

The production stack is mostly an orchestration
of many (!) interacting systems.

“Site reliability” is determined not only by the
reliability of individual systems, but also by the
reliability of their interactions.

6

Interaction reliability is hard.

• Few formal description on cross-system interfaces
• Not even “POSIX”

7

Spark Spark

read(f)
f is compressed
f.size() = -1

assert(
f.size()
>= 0) Job failure SPARK-27239

https://issues.apache.org/jira/browse/SPARK-27239

Interaction reliability is hard.

• Few formal description on cross-system interfaces
• No “POSIX” any more
• No spec on error paths

8

Spark Spark

read(f)
f is compressed
f.size() = -1

assert(
f.size()
>= 0) Job failure SPARK-27239

timeout

OverloadedFlink-12342

Flink

alloc container

alloc container

alloc container

retry
timeout

retry

Spark busy

slow processing

interpret retries
as new requests

...

https://issues.apache.org/jira/browse/SPARK-27239
https://issues.apache.org/jira/browse/FLINK-12342

Interaction reliability is hard.

• Few formal description on cross-system interfaces
• No “POSIX” any more
• No spec on error paths

• High cost of reasoning about multiple systems collectively
• New tools are needed to cross system/program boundaries
• Search space grows exponentially

9

Magnified by emerging computing paradigms

Real-time graph of microservice dependencies at amazon.com in 2008.

• Microservice
• Serverless
• Sky computing
• Hybrid cloud

10

Real-time graph of microservice dependencies at amazon.com in 2008.

From the Death Star to the Galaxy

AWS Re:Invent 2023.
11

Summary (from the paper)

• Individual systems become simpler and more fine-grained
• More friendly for testing, analysis, and verification

• Cross-system interactions become more complex and error-prone
• New tools and practices are needed

• Traditional reliability tools are insufficient
• Many only reason about control- and data-flow within a program

12

What can be done about it?

• Testing and verification of systems with interactions
• Find bugs manifested through interactions

• Build formally verified systems with guaranteed safety and liveness

13

Kubernetes as a running (microservice) system

…

Scheduler

...

StatefulSet
Controller

… …

Deployment
Controller GC Controller

ZooKeeper
Controller

RabbitMQ
Controller

FluentBit
Controller

Cassandra
Controller

API Server API Server API Server API Server

etcd etcd etcd

14

…

…

…

…

Kubernetes as a running (microservice) system

…

Scheduler

...

StatefulSet
Controller

… …

Deployment
Controller GC Controller

ZooKeeper
Controller

RabbitMQ
Controller

FluentBit
Controller

Cassandra
Controller

API Server API Server API Server API Server

etcd etcd etcd

15

…

…

…

…

Kubernetes as a running (microservice) system

…

Scheduler

...

StatefulSet
Controller

… …

Deployment
Controller GC Controller

ZooKeeper
Controller

RabbitMQ
Controller

FluentBit
Controller

Cassandra
Controller

API Server API Server API Server API Server

etcd etcd etcd

16

…

…

…

…

Kubernetes as a running (microservice) system

…

Scheduler

...

StatefulSet
Controller

… …

Deployment
Controller GC Controller

ZooKeeper
Controller

RabbitMQ
Controller

FluentBit
Controller

Cassandra
Controller

API Server API Server API Server API Server

etcd etcd etcd

17

…

…

…

…

Controller and different types of interactions

Controller

etcd

API Server
Container

Volume

1

18

Controller and different types of interactions

Controller

etcd

API Server

Controller
2

3

API Server
1

19

Cassandra
Controller

Interaction between controller and system state

Container

Volume

Current

Delete(container)
...
Delete(volume)
...

Desired

20

Re
co

nc
ili

at
io

n

Volume

• Controller malfunction
• Resource leak
• Security issue

Crash
and

Restart Never
executed

Current
Container

Desired

This bug was detected
by our tool and has been
fixed by the developers

Cassandra
Controller

Delete(container)
...
Delete(volume)
...

Unreliable interactions lead to disasters

21

• Key Idea: Perturbing the controller’s interaction with the system state
• Usability: Testing unmodified controllers
• Reproducibility: Reproducing detected bugs reliably

• Detected 46 serious bugs in 10 popular Kubernetes controllers
• Severe consequences: System outage, data loss, security issues, etc.
• 35 confirmed and 22 fixed

• Available: https://github.com/sieve-project/sieve

Sieve for automatic reliability testing

22

https://github.com/sieve-project/sieve

Volume

Crash
and

Restart Never
executed

Current
Container

Desired

Cassandra
Controller

Delete(container)
...
Delete(volume)
...

Challenges of testing the interaction

Non-crashing symptom Sophisticated
triggering
condition

Different implementations
and diverse functionality

23

Reference run Perturbed run

Common,
transient

faults

The interaction with the system state
can be affected by many factors

Desired state

Initial state
System state: Objects in

Every object
creation/update/deletion

advances the state

Perturb the controller’s interaction with the state

24

Reference run Perturbed run

Common,
transient

faults

Desired state

Initial state
System state: Objects in

Differential oracles:
Detecting liveness and safety

violations without knowing the
semantic of the system

Flag buggy behavior with differential oracles

25

Reference run Perturbed run

Common,
transient

faults

Desired state

Initial state
System state: Objects in

Liveness Property
A controller should eventually

achieve the desired state

Compare the end states

Flag buggy behavior with differential oracles

26

Reference run Perturbed run

Common,
transient

faults

Desired state

Initial state
System state: Objects in

Safety Property
A controller should never delete

user data unless requested

Compare the state updates
(e.g., # volume deletions)

Flag buggy behavior with differential oracles

27

• Employ three perturbation patterns
• Intermediate-state pattern
• Stale-state pattern
• Unobserved-state pattern

• Exhaustively test all bug-triggering perturbations
• Systematically find all the targeted bugs
• Inject faults with different timings

• Prune out ineffective perturbations to be efficient
• Not every perturbation leads to bugs

Exhaustive perturbation with different patterns

28

{
 Create(...) // S1->S2
 ...
 Update(...) // S2->S3
}

S1

S2

S3

S4

S5

S1

S2Crash

Reference run Perturbed run

No atomicity guarantee!

Reconcile
cycle

Start a new reconcile cycle
from S2

The interaction fails in the middle,
leaving the controller to handle

some intermediate state

Intermediate state

Intermediate state

The intermediate-state pattern

29

S1

S2

S3

S4

S5

S1

S2

S3

S1

The interaction is affected by staleness
caused by asynchrony and caching

Reference run Perturbed run

S1 replayed during
the interaction

The stale-state pattern

30

API Server 1 API Server 2

Controller

S1 S1S2S3

etcd
S1S2S3

S1

S1

S2

S3

S4

S5

S1

S2

S3

S1

The interaction is affected by staleness
caused by asynchrony and caching

Reference run Perturbed run

S1 replayed during
the interaction

The stale-state pattern

31

API Server 1 API Server 2

Controller

S1 S1S2S3

etcd
S1S2S3

S1

S1

S2

S3

S4

S5

S1

S2

S4

S5

There are observability gaps
in the interaction

Reference run Perturbed run

S3 missed in the
interaction

The unobserved-state pattern

32

Controller

S1S2S3S4S5

Input

Kubernetes
Controller

Workloads
(E2E tests)

Output

Test results for
each perturbation

1. Produce a reference run 3. Produce a perturbed
run for each test plan

2. Generate test plans

4. Flag bugs with differential oracles

A test plan describes a
concrete perturbation

Sieve: Testing interaction with the system state

test

33Open source: https://github.com/sieve-project/sieve

https://github.com/sieve-project/sieve

Interaction between controller and application

ControllerManaged
application

• Controller reconfigures the managed applications
• must respect application operation semantics

34

Interaction between controller and application

ControllerManaged system

• Controller interacts the managed applications
• Invoke application APIs (e.g., updating membership)
• Have to meet application operation semantics

• Must reason about end-to-end correctness
• Application availability is more important than the controller’s.

35

Interaction between controller and application

Controller

• Controller reconfigures the managed applications
• must respect application operation semantics

• Must reason about end-to-end operation correctness
• Unit tests are deficient

36

Managed
application

Acto: a push-button E2E testing tool

• Testing the controller together with the managed applications
• complement unit tests

• Checking end-to-end correctness properties
• always reconciling the managed application to its desired states
• always recovering the application from undesired or error states
• always being resilient to operation errors

• Detected 56 serious bugs in 11 popular Kubernetes controllers
• 42 confirmed and 30 fixed

• Available: https://github.com/xlab-uiuc/acto
37

https://github.com/xlab-uiuc/acto

2

replicas:
 2 # <- 3

replicas:
 3 # <- 2

C
ur

re
nt

 S
ta

te

Desired State

A bug detected by Acto in the Pravega’s ZooKeeper operator

Fail to update ZK membership

Interaction bugs detected by Acto

Desired
State

Current
State

State
Declaration

• Modeling operations as state transitions

Basic idea: exploring different transitions of states

39

𝑆!

𝐷"

𝑆" 𝑆# 𝑆$

𝐷# 𝐷$

...

...

...

• Chaining state transitions into an operation sequence

Basic idea: exploring different transitions of states

40

𝑆! 𝑆" 𝑆# 𝑆$

𝐷!

𝑆!"# 𝑆!$#

𝐷!"# 𝐷!"# 𝐷!$#...

......

• Checking error-state recovery

Basic idea: exploring different transitions of states

41

𝑆! 𝑆" 𝑆# 𝑆$... 𝑆!"# 𝑆!$#

...

...

𝐷!"# 𝐷!"# 𝐷!$#

• Checking the level-triggering principle

Basic idea: exploring different transitions of states

42

43

Secret sauces

• Automatic generation of comprehensive desired-state declarations
• cover different operation scenarios

• cover all the fields of the operation interface

• Automatic test oracles for flagging undesired behavior
• e.g., consistency and differential oracles

•Open source: https://github.com/xlab-uiuc/acto

https://github.com/xlab-uiuc/acto

Verification? All types of interactions matter.

Controller

etcd

API Server

Controller
2

3

API Server
1

44

Interaction between controllers

ZooKeeper
Controller

Update(vol, v1)

Get(vol)

V1

V2

45

etcd

Interaction between controllers

etcdZooKeeper
Controller

Volume
Controller

Update(vol, v1)

Get(vol)

V1
Update(vol, v1)

VersionConflict

V2

46

Interaction between controllers

ZooKeeper
Controller

Garbage
Collector

Update(vol, v1)

Get(vol)

V1
Delete(vol)

NotFound

47

etcd

Interaction between controllers

ZooKeeper
Controller

Garbage
Collector

Update(vol, v1)

Get(vol)

V1

Delete(vol)V2

48

etcd

Anvil: building verified Kubernetes controllers

• A framework to help build practical and verified controllers

• Verified: the controller implementation is formally verified

• Practical: the verified controller can be deployed in any Kubernetes clusters

• We have built three Kubernetes controllers using Anvil

• Controllers for managing ZooKeeper, RabbitMQ and FluentBit

• Feature parity and competitive performance

49

Modeling three types of interactions

• Interactions between the controller and the system state
• API server and etcd that serves/stores the system state

• Interactions between the controller and the managed application
• The managed application (customized by developers)

• Interactions between controllers
• Built-in controllers that interact with the target controller

• Asynchrony and failures (e.g., controller crash, network delay)

50

Eventually Stable Reconciliation (ESR)

• A formal correctness specification for controllers
• Generally applicable to diverse controllers
• Powerful enough to preclude a broad range of bugs

• Formula:

• “If at some point the desired state stops changing, then the system state
will eventually match the desired state, and always match it from then”

51

Reasoning about one step at a time

• 𝑃: the precondition for the controller to take one step
• 𝑄: the postcondition after the controller takes one step
• 𝑆𝑡𝑒𝑝!: one step of the controller
• 𝑆𝑡𝑒𝑝"#$: one step of any component (including the controller) in the cluster

𝑃 𝑆𝑡𝑒𝑝%&'{𝑃 ∨ 𝑄}𝑃 𝑆𝑡𝑒𝑝({𝑄}

𝑃 ⇝ 𝑄

𝑊𝑒𝑎𝑘𝐹𝑎𝑖𝑟(𝑆𝑡𝑒𝑝() 𝑊𝐹1 rule

volume exists with v1 volume exists with v2If , eventually

52

Combining steps together

. . .

𝑃 ⇝ 𝑄
𝑊𝐹1 rule

𝑄 ⇝ 𝑅

. . .
𝑊𝐹1 rule

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 rule
𝑃 ⇝ 𝑅

Developers can build up the leads-to (⇝) chain in this way to
prove that the controller eventually reaches the desired state
step by step, regardless of all possible interactions.

53

54

Towards a truly reliable cloud infrastructure

Ramnatthan Alagappan
Chaitanya Bhandari
Tej Chajed
Aishwarya Ganesan
Michael Gasch
Jiawei Tyler Gu
Indranil Gupta
Jon Howell
Shuyang Ji
Yuxuan Jiang
Anna Karanika
Andrea Lattuada

55

It takes a village to do the research.
Owolabi Legunsen
Wenqing Luo
Wenjie Ma
Zicheng Ma
Oded Padon
Lalith Suresh
Adriana Szekeres
Lilia Tang
Mandana Vaziri
Chen Wang
Wentao Zhang
Yongle Zhang

Reference

[1] Fail through the Cracks: Cross-System Interaction Failures in Modern
 Cloud Systems, EuroSys, 2023. [paper] [dataset]
[2] Reasoning about modern datacenter infrastructures using partial
 histories, HotOS, 2023 [paper]
[3] Automatic Reliability Testing for Cluster Management Controllers,
 OSDI, 2022. [paper] [project]
[4] Acto: Automatic End-to-End Testing for Operation Correctness of
 Cloud System Management, SOSP, 2023. [paper] [project]
[5] Anvil: Verifying Liveness of Cluster Management Controllers, OSDI,
 2024. (to appear)

56

https://dl.acm.org/doi/10.1145/3552326.3587448
https://github.com/xlab-uiuc/csi-ae
https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s11-sun.pdf
https://www.usenix.org/conference/osdi22/presentation/sun
https://github.com/sieve-project/sieve
https://dl.acm.org/doi/10.1145/3600006.3613161
https://github.com/xlab-uiuc/acto

