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Abstract
Modern cluster managers like Borg, Omega and Kubernetes

rely on the state-reconciliation principle to be highly resilient
and extensible. In these systems, all cluster-management logic
is embedded in a loosely coupled collection of microservices
called controllers. Each controller independently observes the
current cluster state and issues corrective actions to converge
the cluster to a desired state. However, the complex distributed
nature of the overall system makes it hard to build reliable
and correct controllers – we find that controllers face myriad
reliability issues that lead to severe consequences like data
loss, security vulnerabilities, and resource leaks.

We present Sieve, the first automatic reliability-testing tool
for cluster-management controllers. Sieve drives controllers
to their potentially buggy corners by systematically and exten-
sively perturbing the controller’s view of the current cluster
state in ways it is expected to tolerate. It then compares the
cluster state’s evolution with and without perturbations to de-
tect safety and liveness issues. Sieve’s design is powered by
a fundamental opportunity in state-reconciliation systems –
these systems are based on state-centric interfaces between
the controllers and the cluster state; such interfaces are highly
transparent and thereby enable fully-automated reliability test-
ing. To date, Sieve has efficiently found 46 serious safety and
liveness bugs (35 confirmed and 22 fixed) in ten popular con-
trollers with a low false-positive rate of 3.5%.

1 Introduction
Modern cluster managers like Kubernetes [11], Borg [80],

Twine [77], Omega [72], and vSphere [20] break down cluster-
management logic into a fleet of microservices, called con-
trollers [27]. For example, in Kubernetes, all the cluster-
management logic is encoded in different controllers. Today,
thousands of controllers are implemented by commercial ven-
dors and open-source communities to extend Kubernetes with
new capabilities [42, 68, 74, 78]. Controllers manage every-
thing from application lifecycles (e.g., provisioning, upgrades,
autoscaling) to stateful services, storage, networking, and in-
tegrations with cloud providers [41, 53, 57, 60, 71].

These cluster managers follow the state-reconciliation prin-
ciple for resilience and extensibility [7, 27]. In this design,
each controller continuously monitors a subset of the cluster
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Controller Code Snippet (simplified)

switch Get(Phase){
case “Ongoing”:
if NotFound(   ) {
return Error(“Pod not found”)

}
...
Delete(   )
...
Update(Phase, “Finalizing”)
...

case “Finalizing”:
...
Delete(   )
...
Update(Phase, “Done”) 

} 
/* cassandracluster/pod_operation.go */
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Figure 1: A bug in a Cassandra controller detected by our
tool, Sieve [30]. The controller cannot recover from an inter-
mediate state introduced by Sieve using a crash. As a conse-
quence, the controller cannot auto-scale the Cassandra cluster
and leaks storage resources. The bug has been fixed. The
code snippet is significantly simplified for clarity; the real
code spans 70+ functions and 2,000+ lines of Go.

state and reconciles the current state of the cluster to match
a desired state. The cluster state is typically hosted in a log-
ically centralized, highly available data store (e.g., etcd or
ZooKeeper). In Kubernetes, entities like pods, nodes, vol-
umes, and application instances are represented as objects
in the cluster state. An auto-scaling controller might thereby
monitor an application-group object for the number of cur-
rently active replicas and scale it to match the desired replica
count. The design allows cluster managers to be 1) resilient:
controllers can independently fail and pick up from where
they left off, and 2) extensible: supporting a new feature or
application is a matter of adding a custom controller that
manages a set of custom objects as part of the cluster state.

Despite the importance and prevalence of custom con-
trollers, ensuring their reliability is challenging. Controllers
run within complex, dynamic, and distributed environments.
They must safely drive the system to desired states while tol-
erating unexpected failures, network interruptions, and asyn-
chrony issues. If controllers are not robust to these circum-
stances, they lead to severe consequences such as application
outages, data loss, and security issues. Buggy controllers have
indeed caused many real-world problems [31, 38, 51, 52].
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For example, Figure 1 shows a bug in a Kubernetes con-
troller for managing Cassandra [30]. The bug prevents the Cas-
sandra cluster from auto-scaling and leaks storage resources
(decommissioned volumes in gray are never deleted). This is
because the controller lacks crash safety – it fails to recover
from an intermediate state due to a crash between deleting a
Cassandra pod and updating the Finalizing phase.

The above crash-safety bug is only one of the myriad kinds
of reliability issues that affect controllers. We find that con-
trollers also experience bugs caused by state inconsistencies
due to asynchrony effects and bugs caused by uncoordinated
concurrent interactions between controllers. Existing testing
techniques are either too specialized for certain types of bugs
or require expert guidance in the form of formal specifica-
tions or carefully-crafted test inputs (§8). We instead seek a
solution that is broadly applicable across controllers and is
capable of automatically detecting a wide range of bugs.

Contributions. In this paper, we present Sieve, the first au-
tomatic reliability-testing technique for cluster-management
controllers. Sieve drives unmodified controllers to their po-
tentially buggy corners by systematically and extensively per-
turbing the controller’s view of the cluster state in ways it is
expected to tolerate. Sieve then compares the cluster state’s
evolution with and without perturbations to automatically
detect safety and liveness issues.

Sieve is highly usable. It does not require 1) formal specifi-
cations of the controller or the cluster manager, 2) hypotheses
about vulnerable regions in the code where bugs may lie, or
3) highly specialized test inputs. It does not rely on expert-
written assertions either. Sieve requires only a manifest for
building the controller image and basic test workloads. Sieve’s
testing is then fully automatic. This degree of usability is key
to making reliability testing broadly accessible to the rapidly
increasing number of custom controllers.

Sieve is powered by a fundamental opportunity in state-
reconciliation systems – controllers interact with the cluster
state via state-centric interfaces. State-centric interfaces per-
form semantically simple operations on the cluster state (e.g.,
reads and writes) and deliver notifications about cluster-state
changes; the objects that flow through the interfaces typically
have a uniform schema. Therefore, state-centric interfaces
are highly introspectable and hence an ideal vantage point to
observe and perturb a controller’s view of the cluster state.

Sieve leverages the fact that a controller’s actions are
strictly a function of its view of the current cluster state. We
thus test a controller by exhaustively introducing state pertur-
bations through failures, delays, and reconfigurations. These
are circumstances that reliable controllers are expected to
tolerate. Currently, Sieve supports three typical perturbation
patterns that expose controllers to 1) intermediate states (Fig-
ure 1), 2) stale states (or past cluster states), and 3) unobserved
states due to missing some cluster state transitions (§3.1).

For each pattern, Sieve automatically generates test plans

that cover all possible perturbations during an execution of
the controller under test. Test-plan generation is based on
analyzing a controller’s behavior and the cluster-state evo-
lution during reference executions. Sieve effectively avoids
redundant and futile test plans to maximize test efficiency.

Sieve automatically detects buggy controller behavior us-
ing differential test oracles that compare the cluster-state tran-
sitions with and without perturbations. This comparison is
feasible because a controller’s behavior is reflected in the
sequence of cluster-state transitions. The differential oracles
are often more effective than searching for errors in logs and
more comprehensive than human-written assertions (§3.6).

Key results. We implemented Sieve for Kubernetes con-
trollers. Sieve requires only a manifest for building the con-
troller image and basic workloads (e.g., a scale-up-and-down
workload for an autoscaling feature). Sieve’s testing is then
fully automatic. We evaluated Sieve on ten popular open-
source controllers of various kinds, from either commercial
vendors or official projects. Sieve found 46 new bugs in total,
among which 35 have been confirmed (22 fixed) after we
reported them. Notably, these are deep semantic bugs that
Sieve detected without any expert guidance. The bugs have
severe consequences, including application outages, security
vulnerabilities, resource leaks, and data loss. Sieve is highly
efficient—all controllers could be tested in under seven hours
on a cluster of 11 machines, representing a typical nightly test.
Sieve also has a very low false-positive rate of 3.5%, making
its testing results trustworthy.

Summary. The paper makes four main contributions:

• We present the first automatic reliability-testing technique
for state-reconciliation systems: exhaustively perturbing
the controller’s view of cluster states and using differential
oracles on the cluster state evolution to detect bugs.

• We design and implement Sieve, a system that uses our
proposed technique to automatically test unmodified cluster-
management controllers in Kubernetes.

• Sieve has already improved reliability for ten popular open-
source controllers by virtue of bugs it found that were then
fixed by developers. It is practical to run Sieve regularly.

• We have made Sieve publicly available at https://
github.com/sieve-project/sieve, with instructions to
reproduce all discovered bugs.

2 Background and Motivation
Modern cluster management and control plane designs fol-

low the state-reconciliation pattern, where control loops rec-
oncile the current state of the cluster to conform to a desired
state. Kubernetes, like its predecessors Borg and Omega, fol-
lows the idea of reconciliation control loops for resiliency [27].
Similarly, vSphere [81] and NSX [82] continuously monitor
and correct deviations from declaratively-specified desired
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Figure 2: Interactions between a controller and other Ku-
bernetes components and the state-centric APIs.

states to manage virtual machines and networks. These sys-
tems rely on a clean separation between the cluster state and
the control plane logic [27]; the state is represented as mere
data (e.g., JSON objects), and the control plane logic queries
and manipulates the state programmatically.

We now give a brief overview of state reconciliation and
cluster-management controllers. We also present the urgent
need for automated reliability testing and our insights.

State reconciliation by example. We use Kubernetes as a
representative example to present the basics of state recon-
ciliation. Figure 2 illustrates Kubernetes’ architecture. Ku-
bernetes’ core comprises an ensemble of API servers and
a highly available, strongly consistent data store (etcd) that
houses the cluster state. The cluster state is represented by a
collection of objects. Every entity in the cluster has a corre-
sponding object in the cluster state, including pods, volumes,
nodes, and groups of applications. All other components in
Kubernetes interact with the cluster state via API servers.

All cluster-management logic is encoded in controllers that
are clients of the API servers. The controllers continuously
monitor a part of the cluster state and perform state reconcili-
ation whenever the current state does not match the desired
state. The controllers perform reconciliation by querying and
manipulating the state objects via a client library that exposes
a state-centric interface. This interface provides notifications,
reads, and writes involving the cluster state objects.

This design enables Kubernetes to be highly extensible:
supporting a new application or feature is a matter of adding a
new controller and a corresponding set of custom object types
to the cluster state; it does not require changes to the client
library or interface. The design also allows controllers to be
loosely coupled, which improves resilience: controllers can
independently fail and new controller instances can resume
reconciliation without fail-over logic.

Figure 3 shows how a collection of controllers coordinate
in a loosely coupled manner. To deploy a ZooKeeper cluster
running on Kubernetes, the user creates a ZooKeeper object
which specifies the desired state of the ZooKeeper cluster
(e.g., replica count, version, storage size) via the Kubernetes
command-line tool. The ZooKeeper controller receives a no-
tification that a ZooKeeper object was created. To drive the
system to the desired state, it updates the cluster state by
creating a StatefulSet object (an abstraction to run stateful
applications). Then, a StatefulSet controller is subsequently
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Kubectl
# ZooKeeper object
metadata:
name: my_zookeeper

spec:
replicas: 1
storage: 10GB
version: 3.6.3

...

Create ZooKeeper object

Create StatefulSet object

ZooKeeper object created

StatefulSet object created

Create volume object

Create pod object

Figure 3: The workflow of deploying ZooKeeper on Ku-
bernetes using a ZooKeeper controller.

notified about the StatefulSet object being created, which in
turn creates pod and volume objects to run the containerized
ZooKeeper nodes. While not shown in the figure for brevity,
this subsequently leads to more controllers like a scheduler, a
storage controller, and worker nodes being activated to bring
up the actual containers and volumes. Similarly, if the user
then edits the desired state of the ZooKeeper object (e.g., the
number of replicas), it triggers a similar sequence of reconcil-
iations by different controllers, as each tries to make minor
adjustments to get to its appropriate desired state.

The need for automated reliability testing. Kubernetes’ ex-
tensibility has led to a thriving ecosystem with thousands of
domain-specific controllers implemented by commercial ven-
dors and open-source communities [41, 42, 53, 60, 68, 71, 74].
For example, OpenShift, an enterprise Kubernetes platform
from Red Hat, provides 130+ custom controllers that extend
Kubernetes [17]. All these controllers represent critical infras-
tructure, making their correctness paramount. As shown by
many real-world problems [31, 38, 51, 52] and our evaluation
results, designing and implementing reliable controllers is
challenging – many popular, mature controllers misbehave un-
der faults, delays, and asynchrony with severe consequences.

However, controller reliability is notoriously hard to ensure.
A developer faces the fundamental challenge of 1) anticipat-
ing all possible views of the cluster state at the controller
(compounded by asynchrony) and 2) safely reconciling to
the required desired states from any of these points. We ob-
serve that manually-written test suites do not sufficiently test
a controller’s reliability (§6).

Unfortunately, existing testing techniques are either too
specialized for certain bug types (e.g., crash-recovery bugs
or concurrency bugs) and cannot address the broad range of
controller bugs; or require expert guidance in terms of formal
specifications of the system, crafted heuristics, or hypotheses
on vulnerable code regions (§8). We seek a solution that is
easy to use and broadly applicable to unmodified controllers.

Our insight. To overcome the above challenges, we 1) auto-
matically and extensively perturb an unmodified controller’s
view of the cluster states in ways it is expected to tolerate,
and 2) automatically flag safety and liveness issues using dif-
ferential oracles that compare the evolution of cluster states
with and without perturbations. This degree of automation
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and unintrusiveness is enabled by the fundamental nature of
state-reconciliation systems. That is, these systems often have
a simple and highly introspectable state-centric interface with
which controllers interact with the cluster state. Such inter-
faces essentially do no more than reads and writes, or receive
notifications regarding state-object changes. All objects share
a common schema, which makes any arbitrary object highly
introspectable. For example, all objects in Kubernetes have an
identical set of fields representing their metadata. This enables
a degree of automation that is hard to achieve otherwise.

3 Sieve Design
Sieve is an automatic reliability testing tool for cluster man-

agement controllers. It checks whether the controllers under
test can correctly operate the system under common pertur-
bations (due to unexpected faults and inherent asynchrony)
and detects bugs that lead to safety and liveness issues at
the development time. Sieve is automatic—it tests unmodi-
fied controllers and does not rely on formal specifications or
controller-specific assertions. Sieve is effective—it focuses
on well-defined, highly-targeted perturbations that reliable
implementations are required to tolerate.

Sieve perturbs the controller’s view of the cluster state
based on three broad patterns that expose the controller to 1)
intermediate states, 2) stale states, and 3) unobserved states.
We discuss the three patterns and their rationales in §3.1.
Note that these are not the only patterns in which faults can
occur, but cover a broad range of faults that a component in a
distributed system is expected to handle gracefully. Sieve can
be extended to incorporate other patterns in the future.

Sieve tests controllers with the following workflow:

• Collecting reference traces (§3.2). Sieve starts by learning
how a controller behaves in the absence of faults (under test
workloads) and records the state transitions in reference
traces. To do so, it instruments the state-centric interfaces
used by the controller to interact with the cluster state.

• Generating test plans (§3.3). Sieve then analyzes the refer-
ence traces to generate test plans. A test plan describes a
concrete perturbation. The test plan specifies what faults
to inject and when to inject them to effectively drive the
controller to see a target cluster state.

• Avoiding ineffective test plans (§3.4). To achieve high test
efficiency, Sieve prunes redundant or futile test plans. For
example, it avoids a test plan if it is clear that it cannot
causally lead to a target cluster state.

• Executing test plans (§3.5). Sieve executes each test plan
using a test coordinator. The test coordinator monitors the
cluster-state transitions during testing and injects the speci-
fied faults according to the test plan’s specification.

• Checking test results (§3.6). Sieve has generic, effective,
differential oracles to automatically check test results. The

oracles detect buggy controller behavior by comparing the
cluster-state evolution between the reference and test runs.

Sieve deals with non-deterministic elements of the cluster
state during testing to minimize their impact on test plan gen-
eration and test oracles (§3.7). Specifically, Sieve identifies
non-deterministic state objects and fields and excludes them.
Usage. To use Sieve, one needs to provide two inputs: 1) a
manifest that specifies how to build and deploy the controller
under test, and 2) a set of test workloads that exercise end-
to-end behavior of the controller under test. The two inputs
are mostly available in mature controller projects, as they are
needed for controller development and deployment. In our
experience, finding them is straightforward.

3.1 Perturbing A Controller’s View of The State
Sieve operates under the assumption that a controller fol-

lows the state-reconciliation principle, which receives a se-
quence of notifications about the changes to the cluster states
and outputs a corresponding sequence of updates to the clus-
ter states. Sieve aims to affect the outputs of a controller by
perturbing its view of the cluster state. These perturbations
are produced by injecting targeted faults (e.g., crashes, delays,
and connection changes) when specific cluster-state changes
(triggering conditions) happen.

Notably, the perturbation strategy allows Sieve to decouple
policy from mechanism. The decoupling makes it easy to
extend existing policies or add new policies by orchestrating
the underlying perturbation mechanisms. Specifically, a policy
defines a view Sieve exposes to the controller at a particular
condition, while the mechanism specifies how to inject faults
to create the view. Sieve automatically generates test plans for
each policy; each test plan introduces a concrete perturbation
based on a specification of a triggering condition and a fault
to inject when that condition happens.

Sieve currently supports three patterns to perturb a con-
troller’s view. Crucially, these perturbations drive a controller
to states that it is expected to tolerate. They represent valid
inconsistencies in the view that a controller could see due
to common faults as well as the inherent asynchrony of the
overall distributed system. Over time, we hope to add more
perturbation patterns.

Intermediate states. Intermediate states occur when con-
trollers fail in the middle of a reconciliation before finishing
all the state updates they would have otherwise issued. After
recovery (e.g., Kubernetes automatically starts a new instance
of a crashed controller), the controller needs to resume recon-
ciliation from the intermediate state left behind.

Figure 4 illustrates how Sieve tests the official RabbitMQ
controller with intermediate-state perturbations and reveals
a new bug. The test workload attempts to resize the storage
volume from 10GB to 15GB. The resizing is implemented
with two updates: 1) updating VolCur to 15GB; 2) updating
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VolDesired: 15GB
VolCur: 10GB
VolReq: 10GB

VolDesired: 15GB
VolCur: 10GB
VolReq: 10GB

Controller Code Snippet 
(simplified)

Desired = Get(VolDesired)
Current = Get(VolCur)
if Desired > Current {
...
Update(VolCur, Desired)
...
Update(VolReq, Desired)
... 

} 
/* reconcile_persistence.go */

VolDesired: 15GB
VolCur: 15GB
VolReq: 15GB

VolDesired: 15GB
VolCur: 15GB
VolReq: 10GB

VolCurß15GB
VolReqß15GB

Correct run Faulty run

VolCurß15GB

Controller crash 
and restart

Cluster State (Controller’s View)

Figure 4: An intermediate-state bug in a RabbitMQ con-
troller detected by Sieve [70]. The controller fails to recover
from the intermediate state introduced by Sieve; the controller
does not successfully resize the storage volume.

VolReq to 15GB which triggers Kubernetes to resize the vol-
ume. The controller issues updates when VolCur is smaller
than the desired volume size. During testing, Sieve crashes
the controller between the two updates, which creates an in-
termediate state where VolCur is updated, but VolReq is not.
The controller cannot recover from the intermediate state and
the resizing never succeeds. The bug has been fixed with 700+
lines of Go code to revamp the volume resizing logic. In addi-
tion, the developers added eight new tests along with the fix
to exercise how the controller handles different intermediate
states, which is what Sieve performs automatically.

Stale states. Controllers often operate on stale states, due to
asynchrony and the extensive uses of caches for performance
and scalability [26]. As shown in Figure 2, controllers do
not directly interact with the strongly consistent data stores,
but are connected with API servers. The states cached at API
servers could be stale due to delayed notifications. Controllers
are expected to tolerate stale views that lag behind the latest
states maintained in the data store.

Tolerating stale views correctly is nontrivial. For exam-
ple, a Kubernetes controller’s view may “time travel” to a
state it observed in the past. Time traveling occurs when
there are multiple API servers operating in a high-availability
setup, when the controller reconnects to a stale API server
that has not yet seen some updates to the cluster state. The
reconnection can be triggered by failover, load balancing, or
reconfigurations. Controllers are expected to recognize the
stale state [18], instead of treating it as a new, unseen state.

Figure 5 illustrates how Sieve tests Percona’s MongoDB
controller with stale-state perturbation and reveals a new bug
that leads to both application outages and data loss. To support
graceful MongoDB cluster shutdowns, the controller waits to
see a non-nil deletion timestamp (DeletionTS) field attached
to the state object representing the MongoDB cluster (a com-
mon practice to give systems time to react to an impending
deletion [23]). When the controller sees this change, it deletes
all the pods and volumes of the MongoDB cluster.

Controller Code Snippet (simplified)
if Get(   ).DeletionTS != nil {
...
DeleteAllPods()
...
DeleteAllVols() 

} /* perconaservermongdb/finalizers.go */

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

Time
travel

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

MongoDB (UID: 1) deleted 

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

DeleteAllPods
DeleteAllVols

MongoDB: [                ]
Pods: [                         ]
Vols:  [                         ]

MongoDB (UID: 2) created 

MongoDB (UID: 1) deleted 

MongoDB (UID: 2) created 

(DeletionTS) : an object 
is marked for deletion

Cluster State (Controller’s View)
Correct run Faulty run

Figure 5: A stale-state bug in a MongoDB controller de-
tected by Sieve [43]. The controller experiences a “time-
travel” and observes a stale state. It makes wrong reconcilia-
tion action based on the stale state (deleting all the pods and
volumes) which leads to application outages and data loss.

Sieve drives the controller to mistakenly delete a live Mon-
goDB cluster by introducing a time-travel perturbation. With
a workload that first shuts down a MongoDB cluster and then
recreates a new instance of the same cluster, Sieve waits till
the cluster is recreated and then introduces a time-travel per-
turbation. The perturbation causes the controller to see the
deletion timestamp being applied to the already-deleted clus-
ter. Consequently, the controller mistakenly shuts down the
newly created cluster. This revealed that the controller should
be checking for the UIDs of clusters, not just their names.

Unobserved states. By design, controllers may not observe
every cluster-state change in the system. The full history of
changes made to the cluster state is prohibitively expensive
to maintain and expose to clients [76]. Controllers are hence
expected to be designed as level-triggered systems (opposed
to being edge-triggered), i.e., a controller’s decision must be
based on the currently observable cluster state (level) [21],
not on seeing every single change to the cluster state (edge).

Figure 6 illustrates how Sieve tests Instaclustr’s Cassandra
controller using unobserved-state perturbations and reveals
a new bug that leads to resource leaks and service failures.
The test workload first scales down and then scales up storage
volumes of the Cassandra cluster. During scale-down, the con-
troller removes volumes when it learns that the corresponding
pods were marked for deletion (a non-nil deletion timestamp
field is set on the pod object, similar to the previous exam-
ple). The pods’ lifecycles (including deletions) are managed
by a built-in controller called a StatefulSet controller. Sieve
pauses notifications to the Cassandra controller for a window
such that it does not see these deletion marking events by the
StatefulSet controller. This causes the Cassandra controller to
not delete the corresponding volumes even though it has the
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DesiredReplica: 1
Pods: [                  ]
Vols:  [                  ]

Correct run Faulty run

DesiredReplica: 1
Pods: [                  ]
Vols:  [                  ]

DesiredReplica: 1
Pods: [                  ]
Vols:  [                  ]

DesiredReplica: 1
Pods: [                  ]
Vols:  [                  ]

DesiredReplica: 1
Pods: [                  ]
Vols:  [                  ]

Delete
Delete

Cassandra controller 
code snippet (simplified)
if Get(  ).DeletionTS != nil {
...
Delete( )
...

}
/* cassandradatacenter/finalizers.go */

Statefulset controller 
code snippet (simplified)
// mark pod for deletion
SetDeletionTS(  ,    )
...
Delete( )
/* statefulset/stateful_pod_control.go */

Delete

Unobserved State

SetDeletionTSSetDeletionTS

Cluster State (Controller’s View)

Figure 6: An unobserved-state bug in a Cassandra con-
troller detected by Sieve [29]. The controller misses a tran-
sient state where the pod has a non-nil deletion timestamp.
It thus fails to delete the volumes, leaking storage resources.
The bug also prevents new Cassandra pods from rejoining.

right information to make that call (i.e., its view has volumes
created by it that do not have pods attached to them).

Hence, the volume never gets deleted, leaking the storage
resource. The bug also prevents the controller from scaling
the Cassandra cluster – newly-created pods try to reuse the
dangling volumes and cannot rejoin using the cluster metadata
already in them (as it represents a node that was decommis-
sioned). The bug has been fixed by adding a pre-deletion hook
– a coordination mechanism in Kubernetes that allows the Cas-
sandra controller to complete the required cleanup operations
before the pods can be deleted [9].

3.2 Collecting Reference Traces
Sieve starts by learning how a controller behaves in the

absence of faults. To do so, Sieve interposes around the state-
centric interfaces used by the controllers to interact with the
cluster state. All modern cluster managers have unified, well-
defined client libraries based on state-centric interfaces. Tak-
ing Kubernetes as an example, any interaction with the cluster
state (exposed by the API servers) goes through a small, well-
defined set of client APIs that read, modify, or receive notifi-
cations about state objects. They are used by every controller
that interacts with the Kubernetes API servers. To support
Kubernetes controllers, Sieve decorates 10 functions in the
client library and this interposition is fully automated (§4).

With the interposition in place, Sieve learns every cluster-
state change notification that the controller receives, as well as
any reads and writes attempted by the controller to the cluster
state or to the local cache of the cluster state maintained by
the client. Sieve then runs each test workload supplied by the
developer and collects the following two reference traces:

• Controller trace. A series of events observed via the inter-
position of client APIs, including notifications about state
changes, entry and exits of each reconciliation cycle, and
client-API invocation by the controller and their arguments.

• Cluster state trace. The initial cluster state and the sequence
of state changes (object creations, modifications, and dele-
tions), collected using public APIs of the cluster manager.

The controller trace is used for generating test plans (§3.3)
and the cluster-state trace is used by test oracles (§3.6).

3.3 Test Plan Generation
Sieve generates a set of test plans for each test workload

for which it has collected reference traces. Each test plan
specifies a perturbation to inject during the workload.

A test plan is represented by a self-contained file that de-
scribes a test workload, a list of faults to inject during the
workload run, and the triggering condition for when to in-
ject each fault. Sieve currently supports several primitives
that test plans can compose to introduce complex faults: 1)
crash/restart a controller, 2) disconnect/reconnect a controller
to an API server, 3) block/unblock a controller from process-
ing events, and 4) block/unblock an API server from process-
ing events. When an executed test plan reveals a bug, the
test-plan file is sufficient to reproduce the bug.

Figure 7 shows a simplified test-plan file generated by
Sieve. Each element in faults specifies the fault to inject
(faultType) and the triggering conditions (triggers). Each
element in triggers specifies a triggering condition, that
causes the specified fault to be injected before or after a par-
ticular cluster state change if executed. A composite triggering
condition can be specified in compositeTrigger by combin-
ing multiple conditions in triggers with boolean operators.
For example, t1 & t2 means the fault is only injected when
both t1 and t2 are triggered. In Figure 7, trigger1 is the
only required condition to inject the fault. Similarly, compos-
ite faults can be constructed (e.g. crashing a controller after
t1 and restarting it after t2).

We now present the basic rules Sieve applies to compute
test plans that exercise one of the three patterns in §3.1. We
later describe how Sieve avoids ineffective test plans in §3.4.
Optionally, one can customize patterns by implementing new
rules or manually writing test plans.
Intermediate-state rule. For a controller, Sieve generates
test plans that force all possible intermediate states and ex-
poses them to the controller. To do so, Sieve analyzes the
reference controller trace and marks the sequence of state up-
dates made by the controller within each reconciliation loop.
Concretely, for every reconciliation that issues multiple state
updates, U1,U2, ...,Un, Sieve generates one test plan per state
update Ui, where Sieve crashes the controller after it issues
Ui. When the controller restarts after the crash, it is presented
with the target intermediate state.
Stale-state rule. For stale states, Sieve generates test plans
that make the controller travel back in time and see stale
states that it has already observed. Concretely, Sieve checks
the controller trace for a notification-update pair (N,U), such
that observing N results in an update U (see §3.4.1). It then
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testWorkload: resizePVC
faults:
- faultType: crashController

triggers:
- triggerName: trigger1

triggerAt: afterControllerIssues
stateChange:

beforeChange: �VolCur :10GB�
afterChange: �VolCur :15GB�

compositeTrigger: trigger1

Figure 7: A test plan generated by Sieve. This is a simpli-
fied view of the test-plan file that detected the bug in Figure 4.
This test plan crashes the RabbitMQ controller right after the
controller updates VolCur from 10GB to 15GB. Sieve learns
every state change issued by the controller via the state-centric
interfaces (e.g., Update in Table 1).

searches for a subsequent state-change notification N0 which
has a conflicting effect with U (e.g.,U deletes an object and N0

creates the same object). With time traveling, if the controller
mistakenly issues U after seeing the stale state N, it could
corrupt the newer cluster state as notified by N0.

Sieve generates test plans that 1) block a reserved API
server to prevent it from advancing its own state after it sees
N, 2) after the controller sees N0, time-travel the controller
to see N by reconnecting the controller to the reserved stale
API server, and 3) unblock the stale API server; so, the intro-
duced staleness is only transient—both the API server and
the controller catch up eventually. We focus on deletions for
U because they are destructive operations.

Unobserved-state rule. For unobserved states, Sieve gen-
erates plans that skip states that a controller might observe
during normal executions, but could potentially miss in the
presence of faults. Sieve checks the controller trace to find
pairs of notifications (N,N0) in which N0 is the closest subse-
quent notification that cancels the effect of N. Sieve generates
test plans that 1) block the controller to prevent it from see-
ing N, and 2) unblock the controller when N0 arrives. Such a
test plan causes the controller to miss cluster states from N
(inclusive) up to N0 (exclusive).

3.4 Avoiding Ineffective Test Plans
Sieve may potentially generate a large number of test plans

using rules specified in §3.3. For example, in stale-state test-
ing, Sieve might identify every notification the controller re-
ceives as a point to inject staleness, therefore generating test
plans for every received notification. For example, the naïve
rule above for stale states would generate 140,000+ test plans
for the MongoDB controller in Figure 5. It is therefore key to
prune ineffective test plans.

As a guiding principle, we prune a test plan if the test plan
does not introduce an intermediate-, a stale- or an unobserved-
state that can affect the controller’s outputs, or the introduced
state is identical to states introduced by other test plans. This
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: Reconciliation

Figure 8: Causality rules used by Sieve. For simplicity, in
this figure the object pertaining to each notification is im-
mediately read by the controller. (N1,U1), (N1,U2), (N3,U3)
and (N4,U3) are causally related according to the rules in
§3.4.1. N2 is not causally related to any update, given the
earliest-reconciliation rule.

naturally requires Sieve to have a clear notion of what input
events affect the controller’s outputs.

3.4.1 Pruning by Causality
If a controller makes an update U based on a notification

N, we consider N and U to be causally related. We consider a
pair (N,U) that is not causally-related to be irrelevant from a
testing standpoint, because perturbing N will not affect U .

Inferring causality between events is generally a challenge
in distributed systems. By focusing on the “narrow waist”
of state-centric input and output events of the controller un-
der test, we are able to design simple yet effective rules for
Sieve to infer whether a pair (N,U) is causally related. These
rules are lenient and only introduce false positives at best, but
not false negatives. False positives increase testing times by
generating redundant test plans, whereas false negatives risk
reducing test coverage that could miss bugs. While causal trac-
ing support [58] for Kubernetes is currently in its infancy [6],
we might be able to leverage it in the future.

Sieve currently considers a pair (N,U) to be causally re-
lated if both the following conditions holds (Figure 8 exem-
plifies the two causality rules):

• Read-before-update rule: the object pertaining to N is read
by the controller before it issues U ;

• Earliest-reconciliation rule: N and U happen in the same
or adjacent reconciliation cycles. The rationale is that con-
trollers always issue updates relevant to N in the earliest
possible reconciliation cycle after N is received.

For stale- and unobserved-state testing, Sieve only gener-
ates test plans involving a N if it has at least one causally-
related U . We find pruning test plans by causality effective,
especially when there are many notifications due to other
activities irrelevant to the controllers under test.

3.4.2 Pruning Unsuccessful Updates
Sieve ignores any update U that does not change the current

cluster state. Sieve checks whether an update U is successful
based on whether U triggers a state change DS of the cluster
state. This information is typically encoded in the return value
of the U operation.
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For stale-state testing, Sieve further ignores an update U
that, if issued again, does not change any of the subsequent
cluster states, (i.e., there does not exist an N0 that is affected
by U). Sieve checks whether the state objects updated by U
would later be conflicted with N0.

The rationale for the above pruning is straightforward. If
an update does not change the current cluster state, it is un-
likely to cause new states in the execution. If an update U
cannot affect any future cluster states, it would not perturb
the controller’s execution under the time-travel pattern either,
i.e., if U is issued again, it would not corrupt any future state.

In practice, we found that many controllers issue unsuc-
cessful updates that do not actually change the cluster state,
including pathologically frequent ones caused by inefficient
but benign behavior (see Section 5.2).

3.5 Test Plan Execution
Every test plan is executed by the Sieve test coordinator

running in the testing cluster. The coordinator faithfully exe-
cutes the test plan by running the test workload and injecting
the faults specified in the test plan. Specifically, the test co-
ordinator monitors state transitions of both the controller’s
view of the cluster state as well as the cluster state as seen by
API servers. This is done based on the interposition described
in §3.2; it allows the test coordinator to intercept and take
actions (e.g., injecting faults) when state transitions happen.
If the observed state transition matches the triggering condi-
tion DS specified in the test plan, the coordinator marks the
condition as matched. The coordinator injects a fault (e.g., a
controller crash) once all the corresponding conditions are
matched. Most of the interposition and injection are done
through the client APIs. But, for stale-state testing, the coor-
dinator also needs to interpose at the API server (to make an
API server stale).

As a concrete example, to execute the test plan in Figure 7,
the test coordinator monitors every state transition issued by
the RabbitMQ controller. The coordinator marks trigger1
in the test plan as matched when it observes a state transition
that updates VolCur from 10GB to 15GB. Since trigger1 is
the only required condition in the test plan, the coordinator
injects a controller crash right after trigger1 is matched. If
the test plan specifies multiple faults, the coordinator injects
them one by one according to the specified order.

The test coordinator also records the cluster states in a trace
during testing, which will be compared with the reference
cluster-state trace (§3.2) to detect buggy behavior.

3.6 Differential Test Oracles
Sieve has generic, effective oracles to automatically detect

safety and liveness issues. The oracles detect buggy controller
behavior based on the cluster states during and at the end
of the test run. The goal is to validate that the testing traces
are free of safety and liveness issues, in addition to monitor-

ing anomalous controller behavior (e.g., crashes and hangs).
Developers can also add domain-specific oracles.

In our experience, many buggy controller behaviors do not
show immediate or obvious symptoms (e.g., crashes, hangs,
and error messages). Instead, they lead to data loss, security
issues, resource leaks, and unexpected application behavior
which is hard to check with oracles typically used by prior
art [55, 75, 84, 88, 89]; in our evaluation, only five (out of 46)
bugs can be flagged by checking for exceptions or crashes.

We therefore develop differential test oracles that compare
cluster states in a reference run versus those in test runs—
with inconsistencies typically indicating buggy behavior. This
methodology means we need to exclude nondeterministic
states and state objects affected by the perturbation (§3.7).

We found that Sieve’s differential oracles vastly outperform
developer-written assertions in the test suites of the controllers
we evaluated, because Sieve’s oracles systematically examine
all the state objects and their evolution during testing. It is
challenging for developers to manually codify oracles that
comprehensively consider the large number of relevant states.

Note that Sieve does implement regular error checks for ob-
vious anomalies, including exceptions, error codes and time-
outs. Sieve scans the controller’s log and checks whether the
controller encountered any unexpected exception (i.e., panic
in Go). Sieve also checks whether the operations in the test
workload return error codes or fail to complete on time.

3.6.1 Checking End States

Sieve systematically checks the end state after running a
workload. Specifically, our oracles check the count of state
objects by type and the field values of all the objects after
accounting for nondeterminism (§3.7). It compares the end
state of the test run versus the reference run. Sieve fails the
test if it finds inconsistencies between the end states and prints
human-readable messages to pinpoint inconsistencies.

Such checking is effective compared to the simpler asser-
tions that we found in test suites for the controller projects we
studied. For example, in an intermediate-state bug [46], the
MongoDB controller fails to create an SSL certificate used for
securing communications inside the MongoDB cluster. This
causes the controller to fall back to insecure communications.
Such security issues do not manifest in the form of crashes or
error messages. Sieve however automatically catches the bug,
because the certificate object in the faulty run does not exist
in the cluster state, which is different from a normal run. The
bug was detected by Sieve and confirmed by the developers.

We found that none of the 71 test cases shipped with the
controller has an assertion that checks the certificate object,
despite the fact that enabling TLS is recommended and is the
default configuration [66]. We would not be able to repurpose
the assertions in these test cases to catch this bug.
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3.6.2 Checking State-Update Summaries
Besides the end state, Sieve also checks how the controller

updates the cluster state over time. It does so by compar-
ing summaries of constructive and destructive state updates
for each object (e.g., CREATE and DELETE operations). Such
checks are complementary to the end-state checks, because a
correct end state does not imply that the controller behavior
is always correct during the test. We find that buggy behavior
can end in correct states (same as in the reference runs).

For example, in a stale-state bug [47], the XtraDB controller
mistakenly deletes the front-end proxy (which routes user
requests to the XtraDB cluster), causing service unavailability.
After the staleness ends, the API server and the controller
eventually catch up with updated states and recreate the proxy.
In this case, the end state of the proxy in the test run is the
same as in the reference, but the update that deleted the proxy
in the test run is buggy. Sieve detects the bug by noting that
the proxy pod receives 2 CREATE and 1 DELETE operations in
the faulty run, but only 1 CREATE in the reference run.

In another intermediate-state bug [62], the NiFi controller
fails to reload configuration files. The end state is the same as
a normal run; however, in the faulty run, the controller did not
restart the NiFi pod to reload the configuration. Sieve flags
this by noting the NiFi pod receives a CREATE and a DELETE
operation (to reload the configuration) in the normal run, but
neither appears in the faulty run.

Note, comparing the sequence of state-update is unreli-
able and would lead to false alarms—the sequences are not
strictly the same due to concurrent controller operations. The
summaries instead are robust to different event orderings.

3.7 Dealing with Nondeterminism
The shape of a state object (the set of fields and their val-

ues) might be nondeterministic. This nondeterminism affects
Sieve’s test plan generation and the differential test oracles.
We now describe how Sieve combats this problem.

All objects have identifying metadata (e.g., a type, names-
pace, and name). This is key for Sieve to identify two in-
stances of the same object, both within a run (e.g., checking
for conflicting operations in the stale-state rule) and across
runs (e.g., comparing configurations of objects across runs).

Sieve identifies nondeterministic field values by running
the test workloads without perturbation multiple times when
generating reference runs, and then comparing the values of
each field in each state object.

Objects whose identifying metadata is nondeterministic
are excluded from test plan generation and subsequent steps,
because Sieve cannot reliably match them across runs or setup
triggering conditions for them. If other kinds of fields have
nondeterministic values (typically IP addresses, timestamps,
or even random port numbers), Sieve does not exclude the
object but simply masks the field values. Note that these two
rules still allow Sieve to spot unexpected changes to the set of

API Component Instrumentation

reconcileHandler Client Log entry and exit
Get, List Client Send objects to coordinator
Create, Update, Patch Client Send objects to coordinator
Delete, DeleteAllOf Client Send objects to coordinator
HandleDeltas Client Send objects to coordinator
processEvent API server Send objects to coordinator
Get, List Client Add delay
processEvent API server Add delay

Table 1: Instrumentation performed by Sieve to monitor
and perturb states. The instrumentation is automated.

fields on the object (e.g., missing deletion timestamp fields).
In addition, Sieve provides an API for Sieve users to ex-

clude specific state objects or fields from test plans or oracles
based on domain knowledge, if needed.

4 Implementation
We implement Sieve for Kubernetes controllers. Sieve uses

kind [10] to run a Kubernetes cluster on a single machine,
so every test plan can be run entirely on one machine. Sieve
configures two API servers for stale-state testing. Sieve is
implemented in 5,500 lines of Python code (for test plan gen-
eration and oracles) and 3,100 lines of Go code (for automated
instrumentation and fault injection).

Sieve instruments 10 API methods, representing the state-
centric interface, for monitoring and perturbing states (Ta-
ble 1). Those methods are in Kubernetes client libraries [13,
14] and the API server. Sieve implements an automated pro-
cedure to instrument the 10 methods using dst [8] to work
with different versions of Kubernetes client libraries and API
servers. Sieve analyzes the syntax tree for each method to
insert monitoring and fault-injection code. Sieve applies the
instrumentation when building the controller image. Sieve
does not need to analyze or instrument the controller code.

In Kubernetes, level-triggered controllers do not immedi-
ately read notifications when they arrive [21]. Instead, the
controller first updates a locally-cached view of the state ob-
jects; the controller reads from this cache when it uses Get
or List APIs to query the cluster state. In causality analysis
(§3.4.1) Sieve needs to know whether a notification is read
before an update. To do so, Sieve analyzes the state objects
updated by each notification and those read by each Get/List.

Some controllers are multi-threaded, where each thread
calls a different reconcile function. Sieve uses the instru-
mented client libraries to obtain stacktraces whenever the con-
troller reads or updates the cluster state (e.g., Get, Create).
These stacktraces are used to differentiate between controller
threads when generating and executing test plans.

5 Evaluation
Sieve’s premise is that automatic and effective reliability

testing for unmodified controllers is viable, by a) exhaustively
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Controller Systems Dev. #Stars #Commits #WL

cass-operator Cassandra DataStax 287 477 2
cassandra-operator Cassandra Instaclustr 227 337 2
casskop Cassandra Orange 177 1643 3
elastic-operator Elasticsearch Official 1832 3375 2
mongodb-operator MongoDB Percona 142 1407 5
nifikop NiFi Orange 101 232 3
rabbitmq-operator RabbitMQ Official 343 1679 3
xtradb-operator XtraDB Percona 302 1693 5
yugabyte-operator YugabyteDB Official 41 36 4
zookeeper-operator ZooKeeper Pravega 242 220 2

Table 2: Kubernetes controllers used in our evaluation.
“#WL” stands for the number of different test workloads.

perturbing a controller’s view of the cluster states and b) using
differential oracles to flag safety and liveness issues.

We validate this hypothesis with three evaluation questions:
1) Can Sieve find new bugs in real-world controllers? 2) Does
Sieve do so efficiently? 3) Are Sieve’s testing results trustwor-
thy? We answer these questions in the affirmative:

• §5.1: Sieve finds new bugs in all ten evaluated controllers,
resulting in a total of 46 new bugs, which represent a swathe
of safety and liveness issues. So far, 35 of them have been
confirmed and 22 have been fixed by the developers.

• §5.2: All controllers can be tested in seven hours on a clus-
ter of 11 machines, representing a typical nightly test. This
is attributed to the effective reduction techniques which
reduce test plans by 46.7%–99.6% across the controllers.

• §5.3: Sieve poses a low false positive rate of 3.5%.

Tested controllers We evaluated Sieve on ten popular con-
trollers from the Kubernetes ecosystem for managing widely-
used cloud systems (Table 2). The controllers are either devel-
oped by the official development team of the corresponding
system, or by companies that have production-grade offerings
around said systems. The term operator [12] in the project
names refers to the Kubernetes design pattern of using a cus-
tom controller to manage an application.

Sieve employs 2–5 basic test workloads for each controller
(Table 2). Each workload exercises a feature of the controller.
Every evaluated controller supports software deployment and
autoscaling, and therefore has at least two workloads. Sieve
also employs workloads for controllers that support more
features, such as sharding, storage resizing, reconfiguration,
and load balancing. A test workload is typically implemented
in 6–12 lines of code and takes 4–12 minutes to run.

It took us on average three hours to apply Sieve to each
controller, which was mostly spent on understanding how
to build the controller. We expect controller developers to
expend much less effort to integrate Sieve in their workflow.

5.1 Finding New Bugs
Sieve finds a total of 46 new bugs in the evaluated con-

trollers (Table 3). Those bugs include 11 intermediate-state

Controller Interm. Stale Unobser. Indirect TotalState State State

cass-operator 2 1 0 0 3
cassandra-operator 0 2 1 2 5
casskop 1 2 1 0 4
elastic-operator 0 2 0 0 2
mongodb-operator 2 3 1 3 9
nifikop 2 0 0 1 3
rabbitmq-operator 1 2 1 0 4
xtradb-operator 3 3 1 0 7
yugabyte-operator 0 2 1 2 5
zookeeper-operator 0 2 1 1 4

Total 11 19 7 9 46

Table 3: New bugs detected by Sieve in each controller.

bugs, 19 stale-state bugs, 7 unobserved-state bugs, and 9 bugs
indirectly detected by Sieve during testing. Sieve finds new
bugs in all the evaluated controllers. We have reported all
these bugs. So far, 35 of them have been confirmed and 22
have been fixed. No bug report was rejected.

Sieve can consistently reproduce all the 37 intermediate-
, stale-, and unobserved-state bugs—running the test plan
always reproduces the buggy behavior. In our experience,
Sieve’s reproducibility is invaluable for debugging test fail-
ures. It helps developers localize bugs in the source code and
continuously iterate on bug fixes (§6).

Table 4 shows the consequences of the 46 controller bugs
and an exemplar bug for each kind of consequence. We see
that many bugs have severe consequences, such as application
outages, security issues, service failures, and data loss. Note
that these controllers are all mature projects (Table 2 and §6),
suggesting that controller reliability is challenging to achieve.

The bugs that Sieve finds are deep and highly unlikely to
be detected by manual testing or imprecise techniques like
chaos testing or randomized fault injection tools [1, 2, 4, 5].
For example, a bug [63] in nifikop is triggered only when the
controller crashes between issuing two specific state updates
within one reconciliation loop (the time window between the
two updates is about 0.7 milliseconds). In contrast, the test
workload used for detecting the bug takes about 440 seconds
to finish, and causes 481 reconciliation loops and 1,687 state
updates issued by the controller. Sieve is able to detect and
consistently reproduce the bug because it relies on injecting a
fault precisely when a specific cluster-state change happens.

5.1.1 New Bugs Detected by Sieve

Intermediate-state bugs. Sieve found 11 intermediate-state
bugs. Sieve stresses a common pattern among controllers,
where they issue multiple updates per reconciliation, after the
controller checks for a certain condition to hold in the cluster
state. However, Sieve finds bugs when these condition checks
only detect states from running the reconciliation loop in its
entirety; that is, when the checks do not account for inter-
mediate states that may arise due to controller crashes. For
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Consequence Example # Bugs

Application outage rabbitmq-operator-648: The RabbitMQ 12
cluster is mistakenly turned down [69].

Service failure K8SPSMDB-433: Sharding service for the 5
MongoDB cluster wrongly terminated [44].

Data loss K8SSAND-559: Storage volumes of 8
Cassandra replicas wrongly deleted [49].

Reduced reliability zookeeper-operator-314: The ZooKeeper 7
cluster scaled down unexpectedly [90].

Misconfiguration nifikop-49: The NiFi pod is not updated 6
with new configuration [62].

Security issue K8SPXC-896: TLS is not enabled for the 6
XtraDB cluster [48].

Resource leak cassandra-operator-398: Volumes used 7
by deleted replicas never recycled [29].

Controller malfunc. casskop-370: The controller stops serving 8
scaling requests [30].

Table 4: Consequences of the bugs found by Sieve (Ta-
ble 3). One bug can lead to multiple consequences.

example, in the intermediate-state bug in Figure 4, rabbitmq-
operator compares VolCur and VolDesired to check whether
the volume has been expanded already. However, this check
assumes that all subsequent steps in the reconciliation succeed
whenever this condition is satisfied. In the bug in Figure 1,
the condition check cannot differentiate an intermediate state
versus an unexpected faulty state. Part of the challenge is
that controllers lack mechanisms analogous to write-ahead
logging or journaling to guarantee atomicity of each reconcile
action to enforce crash consistency. Controllers typically run
as Kubernetes pods themselves and the newly created con-
troller pod instance lacks any memory of its past execution
(as they should – controllers must only depend on the current
state). Sieve exposes those bugs without the need to under-
stand source code—it systematically tests a controller with
all possible intermediate states and checks for correctness.

Stale-state bugs. Sieve found 19 stale-state bugs. In our
experience, it is notoriously challenging to anticipate all pos-
sible stale states. That said, we found controllers were not
adequately using Kubernetes’ mechanisms to tolerate asyn-
chrony and staleness: like object versioning and unique IDs
(instead of referring to objects by names, that need not be
unique), or using coordination mechanisms to enforce order-
ing between events. Controllers also have the option to avoid
staleness by using quorum reads to API servers, but this cre-
ates a scalability bottleneck as it drives more load to etcd –
developers therefore choose to synchronize selectively. In gen-
eral, we do not believe there is a shortcut to reasoning about
any given update under all possible staleness or time-travel
scenarios. Sieve therefore aids developers by systematically
testing controllers under all possible time-traveling scenarios.

Unobserved-state bugs. Sieve found 7 unobserved-state
bugs. We find that all of them are rooted in latent edge-
triggering behavior in the controllers, that go against the
Kubernetes philosophy of designing controllers to be level-

triggered (§3.1). That is, these bugs arise when the controller’s
correctness relies on observing a specific state transition
(edges), as exemplified by Figure 6. By identifying states
that would be later overwritten and preventing those states
from being observed by the controller, Sieve is effective at
exposing unobserved-state bugs in controllers.

Bugs indirectly detected by Sieve. Sieve also finds 9 bugs
that were not directly triggered by input states Sieve gener-
ated but were still correctly flagged by its differential oracles.
All these bugs could (and do) happen in reference runs as
well; but because Sieve executes many test plans, some test
traces inevitably differ from the reference traces due to these
bugs, allowing Sieve to detect them. These bugs are caused
by a range of issues, including 1) controllers making incor-
rect assumptions about the Kubernetes API (e.g., assuming a
list of pods from a query have stable ordinals); 2) spurious,
dangling object creations, masked by Kubernetes’ garbage
collection (e.g., accidentally creating ZooKeeper pods after
deleting the high-level ZooKeeper cluster object); 3) the ap-
plications managed by the controller being buggy and failing.
Sieve can be extended with new perturbation patterns to sys-
tematically force out some of those bugs. For example, after
understanding the root causes, we were able to reproduce two
of these bugs consistently with manually written test plans.

5.1.2 Oracle Effectiveness
Sieve’s differential oracles are crucial to detect buggy exe-

cutions. Of the 46 newly found bugs, 45 were flagged by the
differential test oracles. Checking logs for errors only flagged
5 bugs of which 4 were also found by our differential oracles.

Our end-state checker (§3.6.1) finds 28 bugs by comparing
the end states of a test workload with and without perturbation.
The state-update summaries checker (§3.6.2) finds 17 more
bugs by checking the number of object updates through an
execution. These oracles allow Sieve to detect bugs such as
security and reliability issues (see §3.6) that do not manifest as
simple failure symptoms (e.g. exceptions or process crashes).

The only bug that the differential oracles fail to find but is
found by a regular error check in log files, is a null-pointer
dereference bug [45] that causes an unexpected controller
crash. Since Kubernetes automatically restarts the controller,
it does not affect the end states or the state updates.

5.2 Test Efficiency
Table 5 shows the total time Sieve takes to test each con-

troller in terms of machine hours. All experiments were run
on 11 Amazon EC2 virtual machines, each with 8-core In-
tel(R) Xeon(R) Platinum 8259CL CPU with 2.50GHz and 32
GB memory, running Ubuntu 20.04.2 LTS.

Sieve’s total testing time varies from 11.07 to 67.24 ma-
chine hours across the controllers. Sieve runs tests in parallel
because every test plan is independent. With eleven virtual
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Controller Testing Time (Machine Hours) # Test PlansGeneration Execution Total

cass-operator 0.60 43.67 44.27 218
cassandra-operator 0.49 10.72 11.21 81
casskop 0.57 12.40 12.97 125
elastic-operator 0.43 30.10 30.53 245
mongodb-operator 1.00 66.24 67.24 584
nifikop 1.17 41.61 42.78 239
rabbitmq-operator 0.47 10.60 11.07 133
xtradb-operator 1.40 62.96 64.36 395
yugabyte-operator 0.67 17.38 18.05 196
zookeeper-operator 0.33 13.75 14.08 164

Table 5: Sieve’s total testing time for each controller.

machines, the total testing time for each controller is no more
than 7 hours. Therefore, it is practical to run Sieve as a regular
nightly test.

Over 95% of the testing time is spent on executing test
plans. With the perturbations introduced by Sieve, a work-
load takes 8.8% longer to run on average. The overhead
mainly comes from delays injected by Sieve for stale- and
unobserved-state testing. In a few cases, when Sieve triggers
bugs that lead to liveness issues, the controller hangs and
triggers a timeout (by default, 10 minutes).

Sieve also spends 0.33–1.40 hours to 1) collect the refer-
ence trace and 2) generate test plans for each controller. The
collected trace for each workload contains 3,386 events of
notifications, updates, or reads on average. Generating test
plans takes only 20 seconds for each workload on average.

Test reduction. Sieve’s techniques to avoid ineffective test
plans are key for tractability. Figure 9 breaks down the cumu-
lative contribution of each technique. The baseline represents
the basic rules described in §3.1 without any of the pruning
techniques in §3.4. Overall, Sieve prunes away 46.7%–99.6%
possible test plans across the evaluated controllers.

Specifically, pruning by causality (§3.4.1) reduces test
plans by up to 95.0% across the controllers. This reduction
is particularly effective for controllers that receive many no-
tifications that are not causally related to any update. For
example, mongodb-operator receives 700+ notifications re-
garding 20+ state objects, which are not causally related to
most of its updates. This allows Sieve to prune 136,000+
causally unrelated pairs of notifications and updates.

Pruning unsuccessful updates (§3.4.2) further prunes up to
75.8% of test plans across the controllers. In casskop, 60.0+%
of updates issued by the controller do not affect the clus-
ter state because the controller redundantly recreates two
service objects that already exist. As none of these updates
are relevant, Sieve excludes them when generating test plans.

Sieve finally prunes up to 72.9% of test plans across all
controllers by focusing on deterministic triggering conditions
(§3.7). This makes Sieve robust to many peculiar behaviors.
For example, zookeeper-operator has an inefficient but benign
behavior – it regularly clears the NodePort field of a service
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Figure 9: Effectiveness of Sieve’s test plan reduction tech-
niques (§3.4). The number of generated test plans is reduced
by 46.7%–99.6% compared with the baseline.

object in every reconciliation, forcing Kubernetes to randomly
allocate a port. This leads to thousands of state transitions
with random port numbers. Sieve identifies these transitions
to be nondeterministic and avoids related test plans.

5.3 False Positives
Sieve has a low false positive rate of 3.5%. It reports a total

of 227 test failures for the ten evaluated controllers. 219 of
them were true alarms—the test failures are caused by the
46 bugs described in §5.1 (one bug might fail multiple tests).
The other eight test failures are false alarms.

The eight false alarms come from test results of three con-
trollers (casskop, nifikop and xtradb-operator). All of them
are caused by benign state transitions introduced in the faulty
runs that did not happen in the reference runs.

The false alarms do not lead to opaque test failures—Sieve
pinpoints the inconsistent fields. In all eight cases, the false
alarms are easy to identify based on the identified fields and
we could validate them by running the vanilla workload.

6 Discussion
In this section, we reflect on our experience building Sieve

and studying the root causes of bugs it found (§5.1).
We find that all the evaluated controllers adopt mature soft-

ware testing practices and have numerous unit, integration,
and end-to-end test cases. Some even test scenarios involving
faults. However, it is prohibitively difficult for developers to
anticipate all possible cluster states that may occur, let alone
codify them into test cases. Sieve fills this gap by exhaus-
tively testing input states according to patterns of interest. For
two bugs, Sieve detects that the initial bug fixes are deficient
in covering all the conditions. We run Sieve on the patched
controllers and Sieve still detects the bugs!
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We also find that it is challenging for developers to compre-
hensively check test results, given the enormous state objects
and their fields. Developers typically check a few fields of
interest but such assertions can easily miss subtle, but serious
issues (e.g., security vulnerabilities as discussed in §3.6).

We also observe that certain bugs are likely rooted in mis-
understandings of Kubernetes’ design and API semantics. For
example, some unobserved-state bugs are caused by incor-
rectly assuming that every state change can be observed by
the controller; some stale-state bugs can be prevented by us-
ing Kubernetes’ mechanisms like resource versioning and
precondition checking. We expect such problems to be more
prevalent as engineers implement more and more custom
controllers for their cluster management needs.

While cluster managers may avoid some classes of bugs,
they come with hard tradeoffs. For example, not caching state
objects at the controllers and API servers (Figure 2) could
avoid stale-state bugs. However, it would introduce significant
performance overheads to the controllers (memory accesses
become network round trips) and make the data store a scala-
bility bottleneck [26]. Also, transactions are not a solution for
intermediate-state bugs – it would complicate the state-centric
interface and prevent controllers from independently making
progress regardless of failures, a key factor for resilience.

Since there is no silver bullet to implementing reliable
controllers, we believe that automatic tools like Sieve are
critical to cluster management reliability.

7 Limitations
Like other testing tools, Sieve is neither sound nor complete.

Sieve uses specific perturbation patterns and exhaustively
drives controllers to input states according to those patterns.

Sieve’s differential oracles can yield both false negatives
and positives. Sieve only applies its oracles on cluster states
exposed by the state-centric interface. It is possible that cer-
tain application-specific states cannot be observed by the
interface, which would lead to false negatives. In addition,
Sieve reports false positives if the inconsistencies captured by
the differential oracles are caused by benign state transitions
that did not happen in the reference runs (§5.3). We found the
false positive rate low (3.5%) in our evaluation.

The way Sieve deals with nondeterminism also leads to
false negatives. Sieve excludes objects with nondeterminis-
tic metadata and masks nondeterministic field values in test
plan generation and the differential test oracles (§3.7). This
approach effectively avoids many irreproducible test plans
and false positives, but also misses bugs that are triggered by
states involving nondeterministic fields.

Lastly, Sieve depends on test workloads provided by the
user for coverage. Implementing a test workload only takes
6-12 lines of code from our experience, but it requires domain
knowledge about the controller and the system.

8 Related Work
Testing control-plane software. Modern SDNs have state-
reconciliation based elements [15, 16, 19, 73] that could be
tested using Sieve’s methodology. A body of orthogonal work
tests [28, 83] or verifies [37] how an SDN controller affects
a network topology. For example, NICE [28] focuses on the
boundary where controllers process packet-in/out events and
uses that vantage point to automatically test for bugs. To the
best of our knowledge, Sieve is the first work to focus on
automatic reliability testing for cluster-manager controllers.
Testing distributed systems. Fault-injection tools [3, 25, 32,
34,35,55,59,79] have been developed for distributed systems,
including chaos testing tools from the industry for cluster
managers [1, 2, 4, 5]. Sieve’s goals differ from those in the
fault injection literature. Sieve seeks to expose controllers to
as many input states as possible to test their reliability. For us,
faults just happen to be a good mechanism to drive controllers
to the required states. Compared to randomized chaos testing
approaches that are unaware of cluster state transitions, Sieve
can precisely force specific bug-triggering state transitions
and consistently reproduce bugs. Furthermore, unlike prior
art [32, 55, 87], Sieve is not based on an expert’s hypotheses
about vulnerable regions in the code under test.

A few prior tools can, in principle, expose some bugs found
by Sieve. For example, concurrency-testing tools [61, 64, 65,
88] may expose bugs triggered by unobserved states (which
in essence occur due to reordering of events). Similarly, tools
that check for crash safety [22, 32, 55, 67] could expose bugs
caused by the intermediate states. Finally, tools that inject
network partitions [3], with expert guidance, could find some
bugs caused by the stale-state pattern, i.e., a partition might
force a controller to talk to a lagging API server (after talking
to an up-to-date one). In contrast to these tools, Sieve does not
target one class of bugs. Through exhaustive state perturba-
tions, Sieve finds many kinds of bugs, essentially combining
the power of prior targeted tools. Further, the chances that
prior tools will find the bugs Sieve does are small, as they lack
the context required to efficiently drive controllers to their
buggy corners (e.g., a network-partition injector is unlikely
to reliably orchestrate time-travel bugs).
Model checking. Sieve bears similarities to implementation-
level model checking [40, 50, 54, 56, 61, 85, 86], in that we
drive an unmodified implementation to a range of states to
find bugs. Unlike model checking, Sieve does not seek to
exhaustively cover the controller’s state space. It instead exe-
cutes developer-supplied test cases and exhaustively perturbs
these test cases according to some fault patterns. Additionally,
model checkers typically rely on a specification for correct
behavior. While Sieve intentionally does not require hand-
crafted specifications, it leans on reference traces as a partial
specification of expected correct behavior.
Automation and ease-of-use. Sieve treats automation and
ease-of-use as first-class design goals. Our automation is pri-
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marily enabled by state-centric interfaces, which Sieve uses to
produce perturbed states. Prior work has leveraged similar in-
terface boundaries (e.g., the system-call interface [36,67]), en-
abling a general scheme to test multiple applications. For ease
of use, Sieve does not require formal specifications [28,33,39],
special test input [3, 24], code modifications [34, 61, 65],
or whitebox analysis [54]. It also uses differential oracles
to avoid the additional effort to supply domain-specific or-
acles [3, 22, 39]. However, Sieve’s efficacy can be further
improved with such expert guidance.

9 Conclusion
We present Sieve, the first automatic reliability testing

technique for cluster management controllers. We find that
Sieve is effective and practical. Sieve’s usability and repro-
ducibility play a critical role in understanding, debugging,
and fixing reliability bugs. Sieve’s testing technique is gen-
eral and easy to extend – it separates the policy (how to per-
turb a controller’s view of state) from mechanisms (how to
realize perturbations). Hence, we are able to use the tech-
nique to detect a wide range of bugs without brittle heuristics,
specifications or hypotheses. Our goal is to make Sieve a
part-and-parcel of every controller developers’ toolkit, and
to harden the growing number of controllers that power to-
day’s data centers. We have made Sieve publicly available at
https://github.com/sieve-project/sieve.
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