
Kernel extension verification is untenable

Jinghao Jia
University of Illinois

Urbana-Champaign, IL, USA
jinghao7@illinois.edu

Raj Sahu
Virginia Tech

Blacksburg, VA, USA
rjsu26@vt.edu

Adam Oswald
Virginia Tech

Blacksburg, VA, USA
adamoswald@vt.edu

Dan Williams
Virginia Tech

Blacksburg, VA, USA
djwillia@vt.edu

Michael V. Le
IBM T.J. Watson Research Center

Yorktown Heights, NY, USA
mvle@us.ibm.com

Tianyin Xu
University of Illinois

Urbana-Champaign, IL, USA
tyxu@illinois.edu

ABSTRACT

The emergence of verified eBPF bytecode is ushering in a

new era of safe kernel extensions. In this paper, we argue

that eBPF’s verifier—the source of its safety guarantees—has

become a liability. In addition to the well-known bugs and

vulnerabilities stemming from the complexity and ad hoc

nature of the in-kernel verifier, we highlight a concerning

trend in which escape hatches to unsafe kernel functions

(in the form of helper functions) are being introduced to

bypass verifier-imposed limitations on expressiveness, un-

fortunately also bypassing its safety guarantees. We propose

safe kernel extension frameworks using a balance of not

just static but also lightweight runtime techniques. We de-

scribe a design centered around kernel extensions in safe

Rust that will eliminate the need of the in-kernel verifier,

improve expressiveness, allow for reduced escape hatches,

and ultimately improve the safety of kernel extensions.

CCS CONCEPTS

• Software and its engineering→ Operating systems; •

Computer systems organization → Reliability.

KEYWORDS

Operating system, kernel extension, eBPF, verification, safety

ACM Reference Format:

Jinghao Jia, Raj Sahu, Adam Oswald, Dan Williams, Michael V. Le,

and Tianyin Xu. 2023. Kernel extension verification is untenable.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

HotOS ’23, June 22–24, 2023, Providence, RI, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0195-5/23/06. . . $15.00

https://doi.org/10.1145/3593856.3595892

In Workshop on Hot Topics in Operating Systems (HotOS ’23), June

22–24, 2023, Providence, RI, USA. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3593856.3595892

1 INTRODUCTION

The emergence of a popular safe kernel extension framework

in the form of eBPF in Linux has ignited an industry around

system-level capabilities from tracing and observability [21]

all the way to security [26], networking [23], storage [20, 52],

and consensus [53]. Core to its value proposition is an un-

precedented promise of safety. To this end, eBPF programs

are compiled to a restricted bytecode, upon which the ker-

nel performs verification: a form of symbolic execution to

examine all possible program paths and guarantee proper-

ties, including memory safety, freedom from crashes, proper

resource acquisition and release, and termination.

Unfortunately, the current in-kernel eBPF verification ap-

proach does not live up to its promise of safety. An increasing

tide of concerns is rising in the community questioning the

correctness of the in-kernel verifier, which continues to grow

in complexity. Kernel bugs introduced by the verifier, as well

as exploits leveraging unsafe extensions that pass the ver-

ifier but violate safety properties, are constantly reported

(see §2.1). Efforts are underway to improve the eBPF verifier

through fuzzing [41], verifying the verifier [11], or rewriting

the verifier with proof-carrying code [39].

However, even if the verifier were flawless, we observe

that verified code makes up only a small portion of an exten-

sion program. In eBPF, verified code interacts with a growing

set of potentially complex and unverified helper functions,

which serve as “escape hatches” to make up for the severe

limitations on program expressiveness required for verifica-

tion (see Figure 1). In fact, by using helper functions, verified

“safe” eBPF programs can violate all of the verification guaran-

tees mentioned above. So, although extension writers pay a

heavy cost to program within the constraints of the in-kernel

verifier, they do not receive the promised safety guarantees.

We take the position that the current myopic approach to

safe kernel extensions that relies solely on static bytecode

150

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593856.3595892&domain=pdf&date_stamp=2023-06-22

HotOS ’23, June 22–24, 2023, Providence, RI, USA Jinghao Jia, Raj Sahu, Adam Oswald, Dan Williams, Michael V. Le, and Tianyin Xu

JIT
compiler

Safe eBPF
program

Verifier

Loading Runtime

Kernel

User space

Unsafe
helper functions /

kernel code

eBPF
bytecode

Figure 1: Overview of eBPF and helper functions

verification is untenable. Instead, we argue for a broader

approach towards safe kernel extensions beyond static byte-

code verification. Inspired by the use of language safety in OS

kernels past [10] and present [12, 37], our key insight is that,

through a balance of language safety, runtime protection,

and separation of concerns between checking safety and per-

forming kernel duties, the extension framework can be more

expressive with similar safety. That increased expressiveness

reduces the need for dangerous helper functions, resulting

in better, more practical guarantees.

We propose kernel extensions to be written using the

Rust programming language, because its approach to safety—

including but not limited to memory safety, undefined be-

havior, and resource ownership—has been explored in other

OS contexts [9, 12, 31, 37] and embraced by Linux [8]. Rather

than attempting to check safety properties in the kernel, we

allow a trusted userspace Rust toolchain to sign extensions

and leverage secure key bootstrap mechanisms to validate

signatures at load time. Finally, we suggest lightweight run-

time mechanisms that complement Rust to achieve proper-

ties, such as program termination, that are not easy to do

statically without severely impacting expressiveness.

We believe that moving to safe, expressive language-based

extensions is a key step to continuing the growth of the in-

dustry and the emergence of more complex use cases around

safe kernel extensions. Furthermore, as a new entry point to

implement kernel functionality in a safe language, we believe

safe Rust extensions will be an important tool to answer the

call to arms towards safe and practical OS kernels [31].

2 VERIFICATION IS NO GUARANTEE

Despite the excitement and promise surrounding eBPF ver-

ification, kernel extensions have not achieved the safety

properties that one would expect. As a result, the kernel

community is cautious about eBPF, going so far as to reject

use cases that would allow unprivileged users to load (veri-

fied) kernel extensions [22]. Here we provide more details

about the known issues with the verifier, identify new chal-

lenges to verifier guarantees caused by helper functions, and

make a case for a move away from the verifier.

2.1 Verification is not easy

It is known that the current eBPF verifier in Linux is buggy

and brittle, due to its increasing complexity, constant changes,

as well as the challenges of sound and complete static anal-

ysis [19, 33, 39, 50]. Here we highlight the growth in the

complexity and bugs of the verifier, as well as its costs.

The verifier complexity is growing. As shown in Fig-

ure 2, the eBPF verifier has been growing in size to support

new checks for features since it was introduced in 2014. For

example, with the introduction of the bpf_spin_lock helper,

the verifier grew to check that an eBPF program only holds

one lock at a time and releases the lock before termination

in any execution [48]. To support BPF-to-BPF calls, 500 lines

of C code were added to the verifier [45]. Meanwhile, the

verifier has been under constant optimization and refactor-

ing to reduce verification time and memory consumption.

The multitude of new verifier features being actively devel-

oped (e.g., [18, 49]) indicates that eBPF has not yet achieved

adequate expressiveness. We do not expect the growth to

subside in the near future.

The verifier is buggy. The ever-increasing complexity leads

to new bugs being continuously introduced. Table 1 shows

that at least 22 bugs were discovered in the eBPF verifier in

the past two years. These bugs open up two types of exploits.

First, a buggy verifier could accept unsafe, malicious eBPF

programs, allowing attacks like arbitrary read and write [2,

4, 5], kernel pointer leak [3, 13–15, 32], and privilege esca-

lation [2, 4]. For example, in a recent bug documented by

CVE-2022-23222 [4], missing validation on pointer values al-

lows unprivileged users to perform illegal pointer arithmetic,

causing arbitrary read and write capabilities on kernel mem-

ory, and eventually privilege escalation. Second, the verifier

itself can be vulnerable and exploited by unsafe, malicious

eBPF programs. For example, a recent commit [54] fixed a

use-after-free bug in the loop-inlining code of the verifier.

In addition, even a perfectly coded verifier cannot prevent

malicious eBPF programs from exploiting bugs in down-

stream components of the eBPF ecosystem such as the JIT

compiler [38]. For example, a recent bug in the JIT com-

piler [1] allows malicious eBPF code that successfully passes

the verifier to hijack the kernel control flow.

Verification is expensive. Verification costs both human

time and machine time. It is known that the verifier fre-

quently reports false positives that unnecessarily force de-

velopers to heavily massage correct eBPF code to pass the

verifier [19, 39, 50]. A more fundamental problem is the lim-

ited scalability of the verifier. Since the verifier needs to

evaluate all possible execution paths, it has to limit the eBPF

program size and complexity to complete the verification

in time. To satisfy these verifier limits, developers need to

find ways to break their program into small pieces when

151

Kernel extension verification is untenable HotOS ’23, June 22–24, 2023, Providence, RI, USA

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

0
2000
4000
6000
8000

10000
12000

L
oC

of
th

e
eB

PF
ve

ri
fie

v3.18v4.3 v4.9
v4.14

v4.20

v5.4

v5.10
v5.15

v6.1

Figure 2: Lines of code of the eBPF

verifier by kernel over time

Helpers
10−1

100

101

102

103

#
of

no
de

s
in

ca
llg

ra
ph

Figure 3: Call-graph complexity of

each eBPF helper

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

0

50

100

150

200

#
of

eB
PF

he
lp

er
s

v3.18
v4.3

v4.9 v4.14
v4.20

v5.4

v5.10
v5.15

v6.1

Figure 4: The number of helper func-

tions by kernel versions and by year

Vulnerabilities/Bugs Total Helper Verifier

Arbitrary read/write 3 1 2

Deadlock/Hang 2 1 1

Integer overflow/underflow 2 2 0

Kernel pointer leak 5 0 5

Memory leak 2 0 2

Null-pointer dereference 7 6 1

Out-of-bound access 7 1 6

Reference count leak 1 1 0

Use-after-free 2 1 1

Misc 9 5 4

Total 40 18 22

Table 1: Bug statistics in eBPF helper functions and

verifier in years of 2021 and 2022. Instead of searching

CVEs (which are not embraced by the Linux community [28]),

we searched commit logs for security-related bug fixes and

confirmed them manually.

writing large, complex programs [20]. The result is reduced

programmability and increased performance overhead [29].

2.2 Verified code needs help(ers)

Even with a correctly implemented verifier, the promise of

safety is still hard to achieve, because verified code interfaces

with unsafe kernel code in the form of helper functions. As

shown in Figure 1, helper functions (helpers) are normal,

unverified kernel functions that generally provide read /

write access to various kernel data structures (e.g., a socket

buffer). Helpers offer escape hatches for eBPF programs to

become more useful, as complex logic or out-of-program

memory accesses may not be expressible in eBPF or verifiable

by the in-kernel verifier. On the other hand, helpers provide

a direct mechanism for verified code to misbehave.

Helper functions are complex. It is generally accepted

that complex code tends to have more bugs than simple code.

To measure the complexity of helper functions and a first

indication of their potential danger, we statically analyzed

the Linux kernel version 5.18 to compute the call graph of

each helper functions. Figure 3 shows the number of unique

nodes in the call graph of each of the 249 helper functions in

Linux-5.18.1 As shown in the figure, helper functions vary

in their complexity. For example, bpf_get_current_pid_tgid,

which retrieves the PID and TGID of the current task, calls

no other kernel functions. On the other hand, bpf_sys_bpf,

which allows eBPF programs to invoke a subset of the bpf

system call, has 4845 nodes in its callgraph. Specifically, 52.2%

of the helper functions call 30+ other kernel functions and

34.5% call 500+ other functions. Bugs and vulnerabilities in

the helper function implementations are a natural conse-

quence of their complexity, which, as described below, can

be exploited by unsafe or malicious eBPF programs.

Helper functions are growing. The main motivation to

introduce new helper functions is to increase the expres-

siveness and utility of eBPF programs. As researchers and

practitioners invent new use cases of safe kernel extensions,

rather than implementing these new use cases in eBPF and

passing them through the verifier, they are resorting to in-

troducing new helper functions. Figure 4 shows the growth

in helpers as a function of time. Roughly 50 helper functions

are added every two years. In addition to these helper func-

tions that are specifically developed and exposed for eBPF

programs, developers also have introduced new ways for ex-

posing existing internal kernel functions for eBPF programs

to use [16]. Since these internal kernel functions were not

written with eBPF usage in mind, it is even more likely that

their use by eBPF programs will result in safety violations.

With this trend, in the next decade, the helper function in-

terface will be as wide as (or wider than) the system call

interface, providing many opportunities for verified code to

trigger unexpected behavior.

Helper functions can be lawbreakers. With more new

helpers being introduced, bugs and vulnerabilities are con-

stantly being discovered in various helper functions. As

shown in Table 1, at least 18 security-related bugs have been

found and fixed in the Linux kernel in the past two years.

These results show that helper functions are far from being

safe and can easily violate properties assumed by the verifier.

1Note that these numbers are lower bounds—our static analysis did not

account for function pointers.

152

HotOS ’23, June 22–24, 2023, Providence, RI, USA Jinghao Jia, Raj Sahu, Adam Oswald, Dan Williams, Michael V. Le, and Tianyin Xu

To concretely show the dangers of helper functions today,

we examine two different properties that are guaranteed by

the verifier—safety and termination.

• Safety. The verifier ensures that eBPF code cannot access

memory outside the program, including trying to derefer-

ence a NULL pointer. However, through a helper function,

we wrote eBPF programs that crash the kernel. Specifi-

cally, we discovered a bug in the helper bpf_sys_bpf and

constructed an eBPF program to call the helper with a

union pointer argument containing a NULL pointer field.

Since the verifier does not perform deep argument in-

spection, we achieved a kernel crash by dereferencing

the NULL pointer inside the union. We reported this bug,

which soon was determined to be exploitable (allowing

an arbitrary kernel read) and assigned a CVE [5].

• Termination.The eBPF verifier is supposed to guarantee

termination to prevent kernel lockups caused by buggy

or malicious eBPF programs. However, we can easily

craft an eBPF program that runs for practically infinite

time while holding the RCU read lock, causing RCU stalls.

Our crafted eBPF code uses nested calls to the bpf_loop

helper to perform random reads and writes on an eBPF

map object. It gives us linear control over total runtime;

while we have run it continuously for 800 seconds (more

than enough to observe RCU stalls), we calculate that

with more nested loops and eBPF tail calls [44], we can

craft a program that will run for millions of years.

2.3 The eBPF verifier needs to retire

Taking a step back, there are two reasons the current eBPF

verification approach is inadequate:

• Static bytecode verification has both soundness and com-

pleteness issues, and is fundamentally hard to scale, which

inevitably admits unsafe code.

• Unreasonable constraints on extension expressiveness

result in the introduction of unsafe escape hatches in the

form of helper functions.

To date, the community has focused on the first issue, pri-

marily by improving the verifier implementation. PREVAIL

uses abstract interpretation to implement a userspace veri-

fier [19]. Fuzzing and formal verification have been proposed

to improve both the existing verifier and the JIT compiler [11,

38, 39, 41, 50, 51]. Decoupling the burden of proof from the

kernel is being explored with proof-carrying code [39].

Unfortunately, to the best of our knowledge, the issue

of unsafe helper functions has been overlooked; we expect

that even with the aforementioned advances in verification,

helper functions will continue to undermine safety.

3 BEYOND VERIFICATION

Instead of continuing to go down the path of static bytecode

verification—which is ineffective—we make the following

suggestions for a new approach to safe kernel extensions:

• The extension language should be more expressive.

A more expressive safe language can eliminate the need

for some helpers and simplify others.

• Static code analysis should be decoupled from the

kernel. Leveraging the broader (userspace) communities

working on type checkers and formal software verifica-

tion reduces bugs stemming from ad hoc implementation.

• Static analyses and runtime mechanisms should

work together. Implementing properties that are easy

and efficient to enforce in the runtime reduces the burden

on analysis and/or verification (and its complexity).

In the rest of this section, we describe a potential architec-

ture for safe kernel extensions that does not require overly

restrictive verification and thereby avoids its pitfalls.

3.1 A Rust-based approach

We propose that instead of relying entirely on in-kernel

static bytecode verification using execution simulation, safe

kernel extensions should rely on a combination of language

safety and lightweight runtime mechanisms. Figure 5 gives

an overview of the proposed kernel extension framework.

Rust for safety properties. Rust is emerging as a popular

systems programming language—even for OS kernels [9, 12,

31, 37]—due to its lightweight abstractions, effective elimi-

nation of undefined behavior (e.g. memory errors or integer

errors), and unique memory ownership model. By restricting

user-implemented extension programs to only use safe Rust

(i.e., no unsafe blocks), the Rust compiler takes the role of

the verifier to ensure the code is safe to run. We envision a

trusted “kernel crate” that provides the interface between

the safe Rust of the extension program and the kernel.

In addition to memory and integer safety, Rust can also

enforce properties relating to safe resource acquisition and

release. For example, in eBPF, the verifier currently checks

for the proper release of the resources acquired by the pro-

gram via helper functions (e.g., the reference count obtained

from the bpf_sk_lookup_tcp helper and the spin lock ac-

quired from the bpf_spin_lock helper function), rejecting

programs that can possibly leave dangling resources. In Rust,

the resource-acquisition-is-initialization (RAII) pattern [7]

can be used to create an abstraction around kernel resources

that user extension code must use. When the object goes

out-of-scope, the resource is automatically released in the

destructor, guaranteeing its proper release.

153

Kernel extension verification is untenable HotOS ’23, June 22–24, 2023, Providence, RI, USA

Load-time
fixup

Interface
libs

Lightweight
runtime

mechanisms

Safe
Rust

Signature
validation

Loading Runtime

Safe
Rust

Safe
Rust

Trusted
Rust

toolchain

Kernel

User space

Reduced unsafe
helper functions /

kernel code

Figure 5: Safe kernel extensions without verification

Decoupling static code analysis. Rather than analyzing

the code to ensure safety in a one-off implementation in-

side the kernel at load time, we leverage the full Rust com-

munity, toolchain, and the many ongoing Rust verification

projects [40] to perform safety checks. By piggybacking on

kernel support for signed kernel modules (and even signed

eBPF programs [43]), our architecture involves a trusted

compiler that checks and signs an extension program (see

Figure 5). At load time, the kernel checks the signature to

ensure safety. The kernel may need to perform some amount

of load-time fixup on the program to resolve helper function

addresses and other relocations, but it does not incur the

burden (and complexity) of checking safety properties.

Runtime protection. As a general-purpose programming

language, even programs using the safe subset of Rust can

exhibit undesirable behavior, including infinite loops or dead-

locks. While we rely on the Rust language for memory isola-

tion and prevention of undefined behavior, we use runtime

mechanisms like watchdog timers, signals, and stack pro-

tection to terminate the program rather than violate safety.

Related work has also explored the use of hardware protec-

tions at runtime, including lightweight page protection keys

to augment language safety [27, 30, 33].

A key challenge raised by runtime mechanisms is how to

perform safe termination of an extension program. It is criti-

cal that any allocated kernel resources (e.g., reference counts)

are released upon termination for any reason (watchdog time-

out, Rust’s own panics). While in userspace Rust uses an ABI-

based stack unwinding mechanism (e.g., llvm-libunwind) to

handle exceptions and to perform cleanup operations, such

a method is not desirable for kernel extensions:

• Failures during unwinding, which are permissible in

userspace, cannot be tolerated in kernel space, as incom-

plete cleanup means leaking kernel resources.

• ABI-based unwinding typically requires dynamic alloca-

tion, which creates challenges for extensions in interrupt

contexts, in which an allocator may not be available [17].

• Unwinding generally executes destructors for all exist-

ing objects on the stack, but executing untrusted, user-

defined destructors (via the Drop trait in Rust) is not safe.

Safety properties Enforcement

No arbitrary memory access Language safety

No arbitrary control-flow transfer Language safety

Type safety Language safety

Safe resource management Runtime protection

Termination Runtime protection

Stack protection Runtime protection

Table 2: Safety properties and the enforcement mecha-

nisms of the proposed extension framework

In our framework, light-weight mechanisms can be effec-

tive for cleaning up kernel resources. We can record allocated

kernel resources and their destructors on-the-fly during pro-

gram execution. When termination is needed, the destructors

of allocated resources are invoked to release the resources.

Since only the trusted kernel crate that interfaces with the

kernel resources is responsible for implementing the afore-

mentioned destructors, all the cleanup code is trusted and

guaranteed not to fail. To deal with dynamic allocation of the

unwind context, we envision using a memory-pool-based

allocation mechanism or avoiding dynamic allocation alto-

gether with a dedicated per-CPU region for storage.

Safety properties. Table 2 summarizes the major safety

properties normally enforced by the verifier that can instead

be enforced by the proposed kernel extension framework

through language safety and runtime protection. Unlike

eBPF, they are achieved without restrictions on loop and

program size. We discuss other verified properties in §4.

3.2 Safety without escape hatches

The fact that Rust is a high-level Turing-complete language

provides the advantage of better programmability in contrast

to the restricted subset of C in the current eBPF programming

model. In this section, we discuss classes of helper functions

that can either be completely eliminated by leveraging the

increased expressiveness of Rust, or be simplified and made

safer by rewriting some aspects of the functions in safe Rust.

First, the helpers introduced to compensate for the lack

of expressiveness of the eBPF language can be retired. We

use bpf_loop, bpf_strtol and bpf_strncmp as three repre-

sentative examples: (1) bpf_strtol can be replaced by the

built-in core::str::parse in Rust, (2) bpf_strncmp can be

implemented entirely in safe Rust, without the need to call

into unsafe C code in the kernel, and (3) bpf_loop can be

directly removed given that it merely provides a loop mecha-

nism. According to a preliminary study [33], 16 of the helper

functions fall in this category and may be retired.

Second, many helpers for interfacing with kernel objects

and procedures cannot be entirely removed but can be greatly

simplified, with safe Rust replacing error-prone C code. Ta-

ble 1 shows two bugs that cause reference count leaks in two

154

HotOS ’23, June 22–24, 2023, Providence, RI, USA Jinghao Jia, Raj Sahu, Adam Oswald, Dan Williams, Michael V. Le, and Tianyin Xu

helper functions, bpf_get_task_stack and bpf_sk_lookup [34,

35]. With Rust, such vulnerabilities can be prevented using

the ownership system. Using the RAII pattern, a Rust ab-

straction of the referenced object can be implemented to

hold the reference for its lifetime, effectively releasing the

reference count when it goes out-of-scope. Another example

is integer arithmetic. Since Rust prohibits undefined behav-

ior stemming from integer errors (e.g. overflow, as the bug

in array map helpers [36]) via runtime checks, integer arith-

metic can be moved from helpers into safe Rust. When a

program invokes such a helper using the interface provided

by the kernel crate, integer operations are performed before

the Rust code calls into the unsafe kernel implementation,

thereby preventing integer errors in unsafe code.

Lastly, helpers can be made safer by implementing a safe

interface on top of the unsafe code. The interface can provide

mitigations for vulnerabilities that manifest from unsanitized

input to helpers that the verifier fails to check. In Table 1,

bpf_task_storage_get has a null pointer dereferencing bug

when the helper receives a null task_struct pointer [42]. The

helper can be wrapped in Rust with the task_struct pointer

argument being a reference type—the Rust compiler will

ensure the program always has to borrow the reference from

a valid object, effectively preventing such vulnerabilities.

The same interface can be implemented for bpf_sys_bpf,

mitigating the vulnerability discussed in §2.2.

We believe that refactoring the cubersome, complex helper

interface into a simple, well-specified interface can largely

resolve the battle between safety and expressiveness, as ex-

plored in other contexts [24].

4 OPEN QUESTIONS AND DISCUSSION

Further verification guarantees. Most verifier guarantees

are achievable either through Rust or a runtime mechanism.

Recently, the verifier has included logic to reject / sanitize

programs that contain gadgets that train branch predictors

or similar to facilitate transient execution side channel at-

tacks [46, 47]. While similar strategies could be applied on

the Rust-level or binary level, there is a fundamental trade-

off between increased expressiveness for extensions (which

helps reduce unsafe helper functions) and the availability of

program information to statically provide guarantees. We

believe that safe Rust provides a good balance given the cur-

rent state of the art. Furthermore, efforts to bridge the gap

by providing formal guarantees about Rust are ongoing [6].

Dynamic memory allocation. The existing eBPF subsys-

tem does not support dynamic memory allocation in eBPF

programs, which makes them easier to verify [19]. With the

proposed approach in Rust, it is possible to integrate a mem-

ory allocation framework for the extension programs. Such

a framework can use a pre-allocated memory pool imple-

mentation [17], given that extension programs often run in

a non-sleepable context (e.g., from kernel interrupts). Dy-

namic allocation greatly enhances the programmability of

kernel extensions, allowing them to support more compli-

cated use cases. Certainly, dynamic memory management

brings challenges to ensure safety. Even though the user pro-

gramming interface can be implemented in safe Rust, as the

case of the current Rust standard library, low-level memory

management code usually has to be written in unsafe Rust.

Protection from unsafe code. The concept of a single ad-

dress space system, where language safety provides isolation

between processes [25], thereby eliminating the need for

expensive hardware context switches, has recently been re-

visited in the context of Rust [12, 37]. For kernel extensions,

however, the threat of an errant write from unsafe code into

code or data belonging to the safe extension is unavoidable.

Unsafe code is used to invoke helper functions or implement

low-level systems routines in the kernel crate; in fact, the

majority of the kernel itself is unsafe. Lightweight hardware-

supported memory protection [27, 30, 33] seem a promising

technique to protect safe code from unsafe code, but raise

an interesting question: if we must resort to hardware pro-

tection mechanisms, is language safety or verification still

necessary to protect the kernel and extensions from one

another? Even if not, the use of safe languages is one step

towards the future possibility of an entirely safe kernel that

can realize the benefits of prior single address space systems.

5 CONCLUSION

The vast potential of safe kernel extensions is being stunted

by limitations of the in-kernel eBPF verifier. Moving away

from the verifier will lead to a safer, more expressive kernel

extension framework. The key is a balance of static analy-

sis techniques with lightweight dynamic mechanisms. The

Rust ecosystem provides the ideal properties for such bal-

ance, while also being well positioned to leverage improve-

ments to program verification. At the same time, by sep-

arating concerns, a Rust-based extension framework can

utilize increasingly lightweight hardware features. Finally,

as Rust extensions enable more and more kernel code (e.g.,

helper functions) to migrate to safe Rust, new opportunities

arise, not only for kernel extension use cases, but also to

re-implement critical kernel subsystems and ultimately lead

to a safe, trustworthy OS kernel.

ACKNOWLEDGEMENT
We thank Md Sayeedul Islam and Wentao Zhang for early
participation in the project. Williams’ group is supported in
part by NSF grant CNS-2236966. Xu’s group is supported in
part by NSF grant CNS-1956007 and an Intel gift.

155

Kernel extension verification is untenable HotOS ’23, June 22–24, 2023, Providence, RI, USA

REFERENCES
[1] CVE-2021-29154. https://nvd.nist.gov/vuln/detail/CVE-2021-29154.

[2] CVE-2021-31440. https://nvd.nist.gov/vuln/detail/CVE-2021-31440.

[3] CVE-2021-45402. https://nvd.nist.gov/vuln/detail/CVE-2021-45402.

[4] CVE-2022-23222. https://nvd.nist.gov/vuln/detail/CVE-2022-23222.

[5] CVE-2022-2785. https://nvd.nist.gov/vuln/detail/CVE-2022-2785.

[6] ERC Project "RustBelt". https://plv.mpi-sws.org/rustbelt/.

[7] RAII - Rust By Example. https://doc.rust-lang.org/rust-by-example/

scope/raii.html.

[8] Rust for Linux - GitHub. https://github.com/Rust-for-Linux.

[9] Balasubramanian, A., Baranowski, M. S., Burtsev, A., Panda, A.,

Rakamarić, Z., and Ryzhyk, L. System Programming in Rust: Beyond

Safety. In Proceedings of the 16th Workshop on Hot Topics in Operating

Systems (HotOS’17) (May 2017).

[10] Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski, M. E.,

Becker, D., Chambers, C., and Eggers, S. Extensibility, Safety and

Performance in the SPIN Operating System. In Proceedings of the 15th

ACM Symposium on Operating Systems Principles (SOSP’15) (Dec. 1995).

[11] Bhat, S., and Shacham, H. Formal Verification of the Linux Kernel

eBPF Verifier Range Analysis. https://sanjit-bhat.github.io/assets/pdf/

ebpf-verifier-range-analysis22.pdf, May 2022.

[12] Boos, K., Liyanage, N., Ijaz, R., and Zhong, L. Theseus: An Ex-

periment in Operating System Structure and State Management. In

Proceedings of the 14th USENIX Conference on Operating Systems Design

and Implementation (OSDI’20) (Nov. 2020).

[13] Borkmann, D. bpf: Fix kernel address leakage in atomic cmpxchg’s

r0 aux reg. https://git.kernel.org/pub/scm/linux/kernel/git/stable/

linux.git/commit/?id=a82fe085f344ef20b452cd5f481010ff96b5c4cd, Dec.

2021.

[14] Borkmann, D. bpf: Fix kernel address leakage in atomic

fetch. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/

commit/?id=7d3baf0afa3aa9102d6a521a8e4c41888bb79882, Dec. 2021.

[15] Borkmann, D. bpf: Fix insufficient bounds propaga-

tion from adjust_scalar_min_max_vals. https://git.kernel.

org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=

3844d153a41adea718202c10ae91dc96b37453b5, July 2022.

[16] Corbet, J. Calling kernel functions from BPF. https://lwn.net/Articles/

856005/, May 2021.

[17] Corbet, J. A BPF-specific memory allocator. https://lwn.net/Articles/

899274/, June 2022.

[18] Corbet, J. The BPF panic function. https://lwn.net/Articles/901284/,

July 2022.

[19] Gershuni, E., Amit, N., Gurfinkel, A., Narodytska, N., Navas, J. A.,

Rinetzky, N., Ryzhyk, L., and Sagiv, M. Simple and Precise Static

Analysis of Untrusted Linux Kernel Extensions. In Proceedings of the

40th ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’19) (June 2019).

[20] Ghigoff, Y., Sopena, J., Lazri, K., Blin, A., and Muller, G. BMC:

Accelerating Memcached using Safe In-kernel Caching and Pre-stack

Processing. In Proceedings of the 18th USENIX Symposium on Networked

Systems Design and Implementation (NSDI’21) (Apr. 2021).

[21] Gregg, B. Linux Extended BPF (eBPF) Tracing Tools. https://www.

brendangregg.com/ebpf.html.

[22] Gupta, P. bpf: Disallow unprivileged bpf by default.

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/

commit/?id=8a03e56b253e9691c90bc52ca199323d71b96204, Oct. 2021.

[23] Høiland-Jørgensen, T., Brouer, J. D., Borkmann, D., Fastabend,

J., Herbert, T., Ahern, D., and Miller, D. The EXpress Data Path:

Fast Programmable Packet Processing in the Operating System Ker-

nel. In Proceedings of the 14th International Conference on Emerging

Networking EXperiments and Technologies (CoNEXT ’18) (Dec. 2018).

[24] Howell, J., Parno, B., and Douceur, J. R. Embassies: Radically Refac-

toring the Web. In Proceedings of the 10th USENIX Symposium on

Networked Systems Design and Implementation (NSDI’13) (Apr. 2013).

[25] Hunt, G. C., Larus, J. R., Abadi, M., Aiken, M., Barham, P., Fahn-

drich, M., Hawblitzel, C., Hodson, O., Levi, S., Murphy, N., Steens-

gaard, B., Tarditi, D., Wobber, T., and Zill, B. An Overview of the

Singularity Project. Tech. Rep. MSR-TR-2005-135, Microsoft Research,

Oct. 2005.

[26] Jia, J., Zhu, Y., Williams, D., Arcangeli, A., Canella, C., Franke,

H., Feldman-Fitzthum, T., Skarlatos, D., Gruss, D., and Xu, T.

Programmable System Call Security with eBPF. arXiv:2302.10366 (Feb.

2023).

[27] Kirth, P., Dickerson, M., Crane, S., Larsen, P., Dabrowski, A.,

Gens, D., Na, Y., Volckaert, S., and Franz, M. PKRU-Safe: Automat-

ically Locking down the Heap between Safe and Unsafe Languages.

In Proceedings of the 17th European Conference on Computer Systems

(EuroSys’22) (Apr. 2022).

[28] Kroah-Hartman, G. Cves are dead, long live the cve! https://kernel-

recipes.org/en/2019/talks/cves-are-dead-long-live-the-cve/, Sept.

2019.

[29] Kuo, H.-C., Chen, K.-H., Lu, Y., Williams, D., Mohan, S., and Xu, T.

Verified Programs Can Party: Optimizing Kernel Extensions via Post-

Verification Merging. In Proceedings of the 17th European Conference

on Computer Systems (EuroSys’22) (Apr. 2022).

[30] Li, H., Gu, J., Xia, Y., Zang, B., and Chen, H. Memory Isolation

Mechanism of eBPF Based on PKS Hardware Feature. In Journal of

Software (China) (2022), pp. 1–18.

[31] Li, J., Miller, S., Zhuo, D., Chen, A., Howell, J., and Anderson, T.

An Incremental Path towards a Safer OS Kernel. In Proceedings of the

18th Workshop on Hot Topics in Operating Systems (HotOS’21) (June

2021).

[32] Li, Y. bpf: Fix wrong reg type conversion in release_reference().

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/

commit/?id=f1db20814af532f85e091231223e5e4818e8464b, Nov. 2022.

[33] Lu, H., Wang, S., Wu, Y., He, W., and Zhang, F. MOAT: Towards Safe

BPF Kernel Extension. arXiv:2301.13421 (Mar. 2023).

[34] Marchevsky, D. bpf: Refcount task stack in bpf_get_task_stack.

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/

commit/?id=06ab134ce8ecfa5a69e850f88f81c8a4c3fa91df, Mar. 2021.

[35] Maxwell, J. bpf: Fix request_sock leak in sk lookup helpers.

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/

commit/?id=3046a827316c0e55fc563b4fb78c93b9ca5c7c37, June 2022.

[36] Nakryiko, A. bpf: fix potential 32-bit overflow when accessing ARRAY

map element. https://git.kernel.org/pub/scm/linux/kernel/git/stable/

linux.git/commit/?id=87ac0d600943994444e24382a87aa19acc4cd3d4,

July 2022.

[37] Narayanan, V., Huang, T., Detweiler, D., Appel, D., Li, Z., Zell-

weger, G., and Burtsev, A. RedLeaf: Isolation and Communication in

a Safe Operating System. In Proceedings of the 14th USENIX Conference

on Operating Systems Design and Implementation (Nov. 2020).

[38] Nelson, L., Van Geffen, J., Torlak, E., and Wang, X. Specification

and Verification in the Field: Applying Formal Methods to BPF Just-in-

Time Compilers in the Linux Kernel. In Proceedings of the 14th USENIX

Conference on Operating Systems Design and Implementation (OSDI’20)

(Nov. 2020).

[39] Nelson, L., Wang, X., and Torlak, E. A proof-carrying approach

to building correct and flexible in-kernel verifiers. In Linux Plumbers

Conference (Sept. 2021).

[40] Reid, A. Automatic Rust verification tools (2021). https://alastairreid.

github.io/automatic-rust-verification-tools-2021/, June 2021.

[41] Scannell, S. Fuzzing for ebpf jit bugs in the linux kernel. https:

//scannell.io/posts/ebpf-fuzzing/, 2021.

156

HotOS ’23, June 22–24, 2023, Providence, RI, USA Jinghao Jia, Raj Sahu, Adam Oswald, Dan Williams, Michael V. Le, and Tianyin Xu

[42] Singh, K. bpf: Local storage helpers should check nullness of owner

ptr passed. https://git.kernel.org/pub/scm/linux/kernel/git/stable/

linux.git/commit/?id=1a9c72ad4c26821e215a396167c14959cf24a7f1,

Jan. 2021.

[43] Singh, K. BPF Signing and IMA integration. https://lpc.events/event/

16/contributions/1357/, Sept. 2022.

[44] Starovoitov, A. bpf: allow bpf programs to tail-call other bpf pro-

grams. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.

git/commit/?id=04fd61ab36ec065e194ab5e74ae34a5240d992bb, May

2015.

[45] Starovoitov, A. bpf: introduce function calls (verification).

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/

commit/?id=f4d7e40a5b7157e1329c3c5b10f60d8289fc2941, Dec. 2017.

[46] Starovoitov, A. bpf: Prevent memory disambiguation at-

tack. https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/

commit/?id=af86ca4e3088fe5eacf2f7e58c01fa68ca067672, May 2018.

[47] Starovoitov, A. bpf: prevent out-of-bounds speculation.

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/

commit/?id=b2157399cc9898260d6031c5bfe45fe137c1fbe7, Jan. 2018.

[48] Starovoitov, A. bpf: introduce bpf_spin_lock. https:

//git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/

?id=d83525ca62cf8ebe3271d14c36fb900c294274a2, Jan. 2019.

[49] Vernet, D. Long-lived kernel pointers in BPF. https://lwn.net/Articles/

900749/, July 2022.

[50] Vishwanathan, H., Shachnai, M., Narayana, S., and Nagarakatte,

S. Sound, Precise, and Fast Abstract Interpretation with Tristate Num-

bers. In Proceedings of the 2022 IEEE Symposium on Code Generation

and Optimization (CGO’22) (Apr. 2022).

[51] Wang, X., Lazar, D., Zeldovich, N., Chlipala, A., and Tatlock., Z.

Jitk: A trustworthy in-kernel interpreter infrastructure. In Proceed-

ings of the 11th USENIX Symposium on Operating Systems Design and

Implementation (OSDI’14) (Oct. 2014).

[52] Zhong, Y., Li, H., Wu, Y. J., Zarkadas, I., Tao, J., Mesterhazy, E.,

Makris, M., Yang, J., Tai, A., Stutsman, R., and Cidon, A. XRP:

In-Kernel storage functions with eBPF. In Proceedings of 16th USENIX

Symposium on Operating Systems Design and Implementation (OSDI’22)

(July 2022).

[53] Zhou, Y., Wang, Z., Dharanipragada, S., and Yu, M. Electrode:

Accelerating Distributed Protocols with eBPF. In Proceedings of the 20th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI’23) (Apr. 2023).

[54] Zingerman, E. bpf: Fix for use-after-free bug in inline_bpf_loop.

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/

commit/?id=fb4e3b33e3e7f13befdf9ee232e34818c6cc5fb9, June 2022.

157

