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ABSTRACT

Access control is often reported to be “profoundly broken” in real-
world practices due to prevalent policy misconfigurations intro-
duced by system administrators (sysadmins). Given the dynamics
of resource and data sharing, access control policies need to be
continuously updated. Unfortunately, to err is human—sysadmins
often make mistakes such as over-granting privileges when chang-
ing access control policies. With today’s limited tooling support
for continuous validation, such mistakes can stay unnoticed for a
long time until eventually being exploited by attackers, causing
catastrophic security incidents.

We present P-DIFF, a practical tool for monitoring access control
behavior to help sysadmins early detect unintended access control
policy changes and perform postmortem forensic analysis upon
security attacks. P-DIFF continuously monitors access logs and
infers access control policies from them. To handle the challenge of
policy evolution, we devise a novel time-changing decision tree to
effectively represent access control policy changes, coupled with a
new learning algorithm to infer the tree from access logs. P-DIFF
provides sysadmins with the inferred policies and detected changes
to assist the following two tasks: (1) validating whether the access
control changes are intended or not; (2) pinpointing the historical
changes responsible for a given security attack.

We evaluate P-DIFF with a variety of datasets collected from five
real-world systems, including two from industrial companies. P-
DIFF can detect 86%–100% of access control policy changes with an
average precision of 89%. For forensic analysis, P-DIFF can pinpoint
the root-cause change that permits the target access in 85%–98% of
the evaluated cases.
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1 INTRODUCTION

1.1 Motivation

As the de factomechanism for protecting computer systems against
unauthorized access, access control has been reported as “pro-
foundly broken” due to prevalent misconfigurations introduced by
system administrators (sysadmins) [15, 31, 55, 68]. In recent years,
access control misconfigurations have become one major cause of
security incidents such as data theft and system compromises, as
quantified by security analysis reports [24, 61] and exemplified by
the newsworthy security incidents listed in Table 1.

Time Incident Organization

2017.6 198 million US voter records leaked [39] Deep Root Analytics
2017.7 14 million customer records leaked [42] Verizon
2017.9 Half million vehicle records leaked [28] SVR Tracking
2018.2 119,000+ personal IDs exposed [29] FedEx
2018.3 42,000 patients information leaked [17] Huntington hospital
2018.4 63,551 patients records breached [16] Middletown medical
2019.1 24 million financial records leaked [19] Ascension
2019.9 20 million citizen records exposed [76] Novaestrat

Table 1: Recent publicly-reported security incidents caused

by access control misconfigurations.

One of the key missing pieces in today’s access-control manage-
ment is continuous behavior validation, which allows sysadmins to
validate whether a system behaves as they expect after a config-
uration change. Access control configuration is never a one-time
effort but requires continuous policy changes to accommodate the
dynamics of data and resource sharing, as well as high churn and
updates of new protection domains and organizational roles. 1 The
following lists a few common cases when sysadmins need to modify
the access control policy to accommodate user, data, functionality
and domain changes.
• User change: Users may join, depart or change roles within an
organization or a project.
• Data change: Some data may become sensitive or may start to
contain sensitive information.

1We define an access control policy to be a complete set of access control rules. Each
rule is codified by access control configurations.
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• Functionality change: New features, accesses or services are
added for the public or a certain group of user to access.
• Domain change: Data need to be reorganized into different do-
mains or subdomains.

Unfortunately, to accommodate changes listed above, sysadmins
may introduce misconfigurations. Accommodating the changes
may not be easy, because changing the access control policy may
involve modification to multiple components, such as web server,
application server, database and file system, etc. Meanwhile, sysad-
mins may have time pressure when they are requested to make
the changes. One common case is about handling access-denied
issue: when a user complains about being denied to something
that she is supposed to have access, sysadmins need to address the
issue quickly for her. Because of the time pressure, sysadmins may
perform some quick changes as workarounds without carefully
checking if the changes grant the least requested privilege or grant
additional unexpected permissions. In this case, such changes are
prone to be access control misconfigurations. A recent analysis
on the resolutions of real-world access-denied issues shows that
38.1% of the changes introduced misconfigurations that over-grant
permissions and create vulnerabilities [68].

Despite a number of efforts on testing and verifying access con-
trol configurations [8, 9, 15, 20, 34, 37, 54], it is still prohibitively
difficult to eliminate all access control misconfigurations in real-
world systems (§12). Specifically, state-of-the-art detection tools
for access control misconfiguration [8, 9, 15] mostly detect incon-
sistencies of configurations and cannot understand configurations
at a higher policy level. As noted in [15], given frequent configu-
ration changes and their ad-hoc, one-off nature, it is very difficult
for automated tools to deduce the exact and complete list of access
control misconfigurations.

As a consequence, without continuous validation on access con-
trol behavior changes, access control misconfigurations often stay
unnoticed for a long time until being exploited by malicious users
on an attack. The reason is unlike other types of misconfigura-
tions [71, 73], access control misconfigurations cannot be mani-
fested through observable symptoms (e.g., crashing behavior, dys-
functions, or performance degradation). According to a recent re-
port [33], it takes 206 days on average for US companies to detect a
data breach, which is too late for any remedies.

Unfortunately, there is little tooling support for access control
behavior validation. One potential approach is to track all the con-
figuration changes with a version control system, and let sysadmins
validate all the changes. However, there is still a gap between the
static access control configurations and the actual running system
behavior. In many systems, the access control behavior is deter-
mined by multiple heterogeneous components and their configura-
tions. As shown in Figure 1, access control is typically implemented
in heterogeneous configurations and code across multiple differ-
ent components in large-scale, complex systems. It is non-trivial
(if not impossible) to reason about the end-to-end access control
behavior by inspecting the configurations and code statically. This
paper proposes to infer the access control behavior and behavior
changes from the access logs that record the end-to-end access
results (typically the output by the top-tier components). Once a
behavior change is detected, sysadmins will be notified to validate

if the change is intended. Once an unintended change is detected,
sysadmins can fix the access control timely and avoid potential
security incidents (such as data leakage) in the future.

1.2 Contributions

This paper presents P-DIFF, a practical tool for inferring access
control behavior and behavior changes from access logs. As we will
show in §2, existing access logs generated by most software systems
contain enough information for inferring the changes. Therefore,
P-DIFF does not require any modifications to existing systems other
than enabling access logs. In addition, P-DIFF also does not require
sysadmins to record access control configuration changes, which
can be tedious and also sometimes impossible (some changes, e.g.,
file permissions and network-level firewalls can be done by users
or other superusers without sysadmins’ awareness).

By detecting access control behavior changes, P-DIFF effectively
assists sysadmins in the following two important tasks:

• Change validation.When P-DIFF observes changes of access con-
trol behavior, it notifies sysadmins with the observed changes.
This enables sysadmins to examine the changes to identify and
fix access control misconfigurations that open up security vul-
nerabilities.
• Forensic analysis. For postmortem analysis upon a security inci-
dent, P-DIFF can backtrack all the behavior changes related to
a malicious access. This provides clues for sysadmins to under-
standwhen andwhat changes opened up the access. Those clues
can help sysadmins narrow down the changes record they need
to investigate in their logbooks or the version control systems.

There are two major challenges for designing and implementing
P-DIFF. The first challenge is to represent access control behavior in
a generic and informative way. As different systems take different
access attributes to control access (such as IP, user, and URL), it is
necessary to provide the access-decisive attributes together with
the behavior changes so that sysadmins can make informative vali-
dations. However, it is non-trivial to provide a general abstraction
for representing different attributes.

To handle the first challenge, we adopt a decision-tree repre-
sentation to encode access control behaviors in an organized and
condensed rule-like format (referred to as inferred policies). This de-
sign decision is made based on two reasons. First, we observed that
access control decisions are made by a set of binary decisions (cf.
§2). Therefore, a decision-tree structure is capable of encoding them.
Second, the decisive attributes of access control may inherently
have a hierarchical structure, such as the hierarchical namespace
of active directory domains, files and directories, IP addresses, and
URLs. A tree-based structure is a natural fit to effectively encode
those hierarchical attributes.

The second challenge is to handle behavior changes while infer-
ring the decision tree. Existing decision-tree inference algorithms
all rely on an assumption that the encoded rules always have con-
stant results (e.g. ALLOW or DENY for access control). However, this
assumption is not true in the case of access control rules. For exam-
ple, a web server administrator disabled public access to a directory
“ABC” on May 1st, thus accesses to this directory before May are
allowed, and accesses after May 1st are denied. In this case, existing

Session 1D: Forensics CCS ’19, November 11–15, 2019, London, United Kingdom

114



Figure 1: Examples of access logs (the inputs of P-DIFF) and the configurations and code implementation of access control in

theWikipedia system. (a) Each component has its own implementation of access control, either in configuration or in code: the

heterogeneitymakes comprehension and analysis challenging; (b) The access logs record the end-to-end access control behavior
and has simple and clear semantics. We build our solution, P-DIFF, using only access logs.

inference algorithms cannot decide whether “ABC” is a decisive
attribute in the rules because of the related result changes (cf. §8).

To address the second challenge, we extend the traditional deci-
sion tree to support time-series information, referred in this paper
as Time-Changing Decision Tree (TCDT). In TCDT, each rule re-
sult is represented as a time series instead of a single binary value
(ALLOW or DENY). We design a new TCDT learning algorithm to
infer the new decision tree by treating access logs as a sequence of
access events ordered by access time instead of an unordered set of
events (cf. §8). TCDT not only can precisely model access control
rules at any given time, but also can capture the evolution of access
control rule changes.

We evaluate P-DIFFwith datasets collected fromfive real systems,
including two from industrial companies. For change validation, P-
DIFF can detect 86%–100% of the rule changes with an average
precision of 89%. For forensic analysis, P-DIFF can pinpoint the
root-cause change that is responsible for permitting the target
access in 85%–98% of the evaluated cases.

2 OBSERVATIONS OF REAL-WORLD ACCESS

CONTROL SYSTEMS

The design of P-DIFF is driven by a few important observations of
real-world access control implementations. This section discusses
these observations and explains the rationales behind our design
decisions.

2.1 Access-Control Configurations

Despite the uniform model of access control (e.g., access-control
matrix [30]), real-world access-control implementations are highly
customized to specific applications, resulting in distinct access-
control configurations in terms of syntax, semantic, and schema.

First, different software systems implement various access con-
trol models. For instance, the Unix file system adopts discretionary
access control (DAC) [46] to restrict access to files based on the iden-
tity of users and groups. The Apache web server adopts attribute-
based access control (ABAC) [27], e.g., any access from a certain
IP address should be denied (the address is treated as an attribute).
MySQL uses role-based access control (RBAC) [51] where privileges
are granted by assigning one or more roles to each user. Different
access control implementations require distinct access control con-
figurations.

Second, even for the same access control model, different soft-
ware systems often implement the model differently with cus-
tomized syntax and formats. For instance, many web servers (e.g.,
Apache, Nginx, and IIS) adopt the attribute-based access control
model; however, each of them implements its own configuration
directives and parameters.

The heterogeneity of access control configurations imposes sig-
nificant challenges for building generic, automated tools to directly
interpret and validate configurations. Implementing specific parsers
or interpreters for every target software project requires significant
engineering and maintenance effort.

2.2 Access Logs

We observe that access logs of different software systems tend to
have a unified format and are easy to parse. No matter how complex
the configurations are, access logs record identical information—the
results (either ALLOW or DENY) of an access request— represented
as a tuple < S,O,A,R > where S , O , A, and R denote subject, object,
action, and result respectively. Within a system, access logs are
typically generated by a few unified logging statements.

Table 2 shows access log formats of nine different software sys-
tems of various types [4, 12, 41, 45, 53, 60]. It shows that most
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Software Type S O A R

Apache2 Web server Y Y Y Y
Jetty Web server Y Y Y Y
Squid Proxy Web cache Y Y Y Y
MySQL Database Y Y Y Y
HDFS File system Y Y Y N
SELinux Kernel sec. Y Y Y Y
pureftpd FTP server Y Y Y N
iptables Firewall Y Y Y Y
openssh SSH server Y N N Y

Table 2: Information encoded in access logs of different soft-

ware. S = subject, O = object, A = action, R = result.

access logs of the studied systems encode the required information.
Therefore, it is straightforward to build a uniform parser that takes
a few simple format annotations to work with different systems.

Furthermore, the access results (ALLOW or DENY) recorded in
the access logs of one software component reflect the end-to-end
access control behavior which includes the access control of all the
downstream components. For example in Figure 1, the access logs
of the web server reflect the end-to-end access control behavior of
the entire Wikipedia system including the web server itself as well
as the downstream app server and database server. If the request is
denied at the app server or the database server, a DENY will also
be recorded in the access log of the top-level web server.

In order to make our solution practical, we explore the feasibility
of building a solution on top of the end-to-end access logs only,
instead of attempting to understand the complex, heterogeneous
access control configurations of every single component in the
system (which may not be feasible for closed-source, proprietary
software or hardware components).

2.3 Access-Control Policies

An access-control policy is composed of a set of rules. Each rule can
be represented by an IF-THEN statement that evaluates a subject
attribute and an object attribute, and the concrete action in order to
make a decision (ALLOW or DENY). Within the same subject/ob-
ject attribute, all the subjects/objects are treated as identical. For
instance, an access control rule for a web server could be:

1 IF ($method is "GET") THEN
2 IF ($url is "/confidential/*") THEN

3 IF (group($user) is "admin") THEN

4 ALLOW

The observation drives the following two design decisions of
P-DIFF: (1) We are able to encode the access control policy using
a decision tree based on the IF-THEN representation. Certainly,
traditional decision trees cannot deal with time-series sequences
and cannot encode policy changes. Therefore, we design a novel
decision tree named Time-Changing Decision Tree in §6; (2) The
policy inference should work at the granularity of subject/object
attributes rather than each individual subject/object for efficiency
and scalability.

3 DESIGN DECISIONS

3.1 Inferring Policy from Access Logs

There are two information sources fromwhich access control policy
changes can be inferred: (1) configuration change history and (2)
access logs. We decide to build P-DIFF on top of the access logs for
the following considerations.

In our experience, inferring the policy changes from the config-
uration change history is difficult with non-technical barriers. First,
as access control policy is implemented and enforced by multiple
components as exemplified in Figure 1, the configurations of each
component could be managed by different teams (e.g., web server
administrators, app developers, and database administrators) with-
out a holistic authoring system [55, 56]. It is technically challenging
to keep track of every single configuration change in a large-scale,
complex system, not to mention the cultural challenges of enforcing
the practice of tracking everything. On the other hand, access logs
are the output of the running systems and can be collected without
much extra overhead.

Second, as discussed in §2.2, access logs reflect the precise end-
to-end access control behavior of the entire system. We only need
to collect the access logs of the top-tier components. Instead, a
configuration based solution requires to understand the interactions
among multiple components which could be challenging in large-
scale, complex systems. Furthermore, due to misconfigurations and
bugs in the configuration handling code, the configuration settings
may not be consistent with the policy or the mental model of
sysadmins [69, 70]. Access logs, as the output of the access control
system, precisely records the end-to-end behavior.

Third, comprehension and analysis of various configuration and
code are challenging, especially for closed-source, proprietary soft-
ware and hardware components. As shown in [64], reverse engineer-
ing of an application’s access-control configurations is challenging
and requires non-trivial human efforts. Oftentimes, understanding
the access control configurations of a single component is non-
trivial [22], let alone analyzing the interactions between multiple
components. On the other hand, access logs have simple and clear
semantics, as discussed in §2.2.

3.2 Using Decision Tree Based Models

As discussed in §2.3, an access control policy is essentially a “classi-
fier” that labels an access to be either allowed or denied. There are
many machine learning algorithms that can infer such classifiers
from data, such as Decision Tree [47], Association rule learning [1],
Logistic Regression [25] and Neural Networks [23]. We choose
Decision Tree for two reasons:

• Decision trees are easy to interpret. As our goal is to inform
human administrators of policy changes for validation, it is
important to use a machine learning algorithm that generates
human-understandable classifiers. Many algorithms, such as
Logistic Regression and Neural Networks, generate classifiers
with hard-to-understand weights and thus are not suitable for
our use case.
• Decision trees can effectively represent access control policies.
As discussed in §2.3, an access control policy consists of mul-
tiple steps of decision-making and may contain decisions on
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(a) DAC: Unix file

permissions

IF $dir==“/homework”

Allow

DenyIF $file==

“que.pdf”

Deny

!"#$ %&'($

%&'($!"#$

IF $role==“director”

Allow

Allow IF $role ==

“engineer”

Deny

!"#$ %&'($

%&'($!"#$

(b) RBAC: hierarchal

roles in a tech company
(c) ABAC: web server

access control

IF $url == “/private.htm”

Allow

AllowIF $IP ==

“127.0.0.1”

Deny

!"#$ %&'($

%&'($!"#$

Figure 2: Decision tree representations of three access con-

trol models. The tree structure can effectively represent ac-

cess control hierarchies for (a) files, (b) roles, and (c) URLs

with multiple decision steps based on different attributes.

hierarchical attributes, which can naturally be represented by a
decision tree. Figure 2 gives an example of how decision trees
can effectively represent policies implemented in different ac-
cess control models, including DAC, RBAC, and ABAC. Some
other algorithms, such as Association Rule Learning can only
infer correlations between attributes but cannot deal with hier-
archical relations of them.

3.3 Dealing with Sparse Logs

A key challenge of inferring access control policies from access logs
is to deal with sparse logs that only contain a fraction of all possible
requests. Access logs are often sparse because users typically do
not request every resource in a system in a short period, which has
been reported in prior studies [13] as well as the access logs we
collected from real-world deployments (used for evaluation).

Given that access logs are often sparse, one cannot assume ev-
ery possible tuple of < S,O,A,R > (§2.2) can be observed from
historical logs. In other words, one cannot train a classifier with
the complete dataset of every < S,O,A,R > tuple. To address this
challenge, we design a decision tree learning algorithm to infer the
result R of unobserved requests from observed access records. As
shown in Figure 3, our learning algorithm groups observed and
unobserved requests and uses the observed request results to infer
the group policies. The detailed algorithm is described in §7.

4 THREAT MODEL

P-DIFF targets on detecting the attacks that aim to steal data by
exploiting access control vulnerabilities. The typical cases include
that a sysadmin mistakenly over-grant the permissions of resources,
e.g., make a private web page accessible to unexpected users (e.g.
anonymous) and then the attackers steal the data by acting as those
users. As reported by a number of recent studies [7–9, 15, 52, 55, 56,
68], such misconfigurations of access control are among the most
common and severe security risks in modern information systems.

However, P-DIFF does not target on password attacks or spoofing
attacks in which attackers try to guess a password and pretend to
be a normal user. In those cases, P-DIFF cannot differentiate a
malicious access from a normal access because they have the same
access-decisive attribute (i.e. user name) in the log.

The correctness and effectiveness of P-DIFF rely on that the
access logs faithfully reflect the system behavior. This is based on

Figure 3: Example of sparse accesses to a course website and

the decision tree inferred from them. In (a), a green|redmark

means the access was allowed|denied. A vacancy means the

access did not happen, and thus the policy is not reflected

in the accesses. To address it, our learning algorithm groups

vacancy with green|red marks and infers a group policy as

shown in (b).

three specific assumptions. First, we assume the sysadmins enable
access logs in the system settings. This is a reasonable assumption
because the default settings of most programs (e.g. web server) have
access logs enabled. In addition, since only one log entry needs to be
recorded for each access, this will not cause too much performance
or storage overhead. Second, we assume that the monitored system
can always correctly generate access logs. If the system is modified
by attackers so that no log or fake logs are generated, P-DIFF may
not be able to detect the behavior changes. Third, we assume that
there is no rootkit or malware at the storage layer which can modify
the generated logs.

5 P-DIFF OVERVIEW

P-DIFF is a tool that infers access control policies from access logs.
P-DIFF is able to detect policy changes, when it observes deviation
of access results from its known policy. P-DIFF supports two use
cases, change validation and forensics, by (1) detecting new policy
changes and (2) extracting historical changes.

Figure 4 illustrates the end-to-end workflow of P-DIFF. P-DIFF in-
fers access control policies and maintains the policy change history
in internal decision-tree like data structure. When P-DIFF observes
a new access result, it checks whether or not the result adheres
to the latest known policy. If not, P-DIFF treats the violation as a
policy change.

Change validation is done by asking sysadmins to validate the
policy changewhenever a change is detected. To avoid over-alarming,
by default, P-DIFF only notifies system admins when an access that
previous was denied is now granted. This is the common pattern
of illegal accesses caused by over-granting misconfigurations, as
discussed in §1.1. P-DIFF presents both the changed rules, together
with the accesses that were affected by the rule changes to make
the validation effective.

For forensic analysis, given an access of interest (e.g., illegal
access that caused security incidents like data breaches), P-DIFF
searches the change history and identifies the rule change that
causes a previously denied access to be granted. If the access is
allowed from the beginning, P-DIFF outputs the initial state as the
root cause.
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IF $prefix1 == "/proj"

True

IF $method == "GET"

True False

False

...

Policy 

Inference

Time-Changing Decision Tree (TCDT)

Access logs

T1, PUT, /proj/1.html DENY

T2, GET, /proj/2.html DENY

T3, GET, /proj/3.html DENY

T4, GET, /proj/4.html ALLOW

T5, GET, /proj/5.html ALLOW

T6, PUT, /proj/6.html DENY

... 

Change validation:

Detect new policy 
changes

Forensics:

Diagnose accesses 
of interest

Sysadmin

ALLOW

DENY

Timestamp

Status

T2 T3
T4 T5

ALLOW

DENY

Timestamp

Status
T1 T6

Figure 4: The workflow of P-DIFF. P-DIFF infers access control policies from access logs. It maintains the inferred policies

in a data structured named Time-Changing Decision Tree which records the entire change history. P-DIFF supports two uses

cases, change validation and forensics analysis, as elaborated in §5.

P-DIFF needs to address three main challenges: (1) How to effec-
tively maintain the evolution of access control policies? (2) How to
accurately learn access control policies from access logs? and (3)
How to manage the policy changes?

To address the first challenge, we design a novel data struc-
ture named Time-Changing Decision Tree (TCDT) to encode rule
changes as time series. In a TCDT, each leaf node of the tree is no
longer associated with a percentage of ALLOW/DENY as in the tra-
ditional decision tree, but with the history of all the access results
related to the rule. In this way, TCDT not only can precisely model
access-control policies at any given time, but also can capture the
evolution of policy changes.

For the second challenge, we design a decision-tree-based learn-
ing algorithm to automatically infer policies from access logs. As
discussed in §2.3, access-control policies have an IF-THEN form
and inherent namespaces hierarchies, which can be encoded in a
decision tree model with each internal node representing a condi-
tion associated with an attribute and each path from the root node
to a leaf node representing an access control rule.

Addressing the third challenge requires a learning algorithm
that can infer access control rules alone with its evolution history.
Traditional decision tree learning cannot deal with time-series se-
quences and thus cannot be used by P-DIFF (cf. §12 for details). We
design a new data structure named Time-Changing Decision Tree
(TCDT) and the learning algorithm which is capable of learning
access control policy changes over time and encoding the change
history in a TCDT.

P-DIFF is implemented with Python based on the NumPy and
Pandas data analysis libraries [40, 43]. It can be deployed on differ-
ent platforms that support Python.

6 POLICY REPRESENTATION

Access control policies can be naturally represented using a series
of IF-THEN statements and be maintained in decision-tree-based
data structures (cf. §2.3). In this section, we first present how to use
traditional decision trees to encode static access control policies. We
then present a novel data structure called Time-Changing Decision

Tree (TCDT) to encode the evolution history of access control
policies.

Decision Tree (DT). A decision tree is a predictive model that
generates a result value based on the observed attributes of an
item [47]. It encodes the result generation rule in each tree path
that walks from the root node to a leaf node. A DT has two types of
nodes: internal nodes and leaf nodes. An internal node encodes a
pair of (AttributeName,AttributeValue) and has two outgoing edges
corresponding to a predicate whether or not an item with an at-
tribute name has the corresponding attribute value. A leaf node
encodes (r ,pr ) where r ∈ {True|False} is the final decision result
and pr ∈ [0, 1] is the probability of the result.

A decision tree can encode access control policies by treating
subjects (e.g., IP), objects (e.g., file), and actions (e.g., GET or SET)
as access attributes, and access results (ALLOW or DENY) as result
values. Each internal node encodes (Access Attribute Name, Access
Attribute Value), each leaf node encodes the access result with
the probability, and each path from the root node to a leaf node
represents an access rule. An access attribute name refers to “IP”,
“file” and “GET”, etc., and the corresponding access attribute value
is a binary value deciding whether an access is allowed or denied
at the point. Figure 5 illustrates how an access rule is encoded
in a decision tree based on Apache web server’s access control
implementation.

The IF-THEN structure of DT can also effectively encode rules
with regular expressions. For example, a rule that allows access to
“/proj/*/1.htm” can be encoded as:

1 IF ($prefix1 is "/proj") THEN
2 IF ($prefix2 is "1.htm") THEN

3 ALLOW

Time-Changing Decision Tree (TCDT). One key limitation of
the traditional decision tree is that it cannot work with time-series
data where policies change over time, and thus cannot represent
access control policy changes. As a result, P-DIFF cannot be built
using traditional DT techniques.
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Access logs

T1, GET, /proj/1.htm ALLOW

T2, PUT, /proj/2.htm DENY

T3, GET, /proj/3.htm ALLOW

T4, PUT, /proj/4.htm DENY

T5, GET, /proj/5.htm ALLOW

T6, PUT, /proj/6.htm DENY

... 

IF $prefix1== "/proj"

IF $method== "GET"

100% DENY

True False

Decision Tree RepresentationConfiguration

<Location /project>

  AllowMethods GET

</Directory>

...

100% ALLOW

True False

Figure 5: An example of access-control policies in configu-

ration files, access logs, and a decision tree. T1-T6 are the

timestamps.

In order to maintain the evolution history of access control poli-
cies, we design TCDT. A TCDT has a similar exterior structure as a
traditional DT. Differently, TCDT makes each leaf node encodes a
time series T :

T = ((τ1, r1), (τ2, r2), · · · , (τn , rn )) (1)

which represents the result values during the time period (ri repre-
sents the result value of the interval [τi ,τi+1]).

Figure 6 shows a TCDT generated from access logs in Figure 4
and compares it with a traditional DT generated from the same logs.
We can see that with the time series in each leaf node, historical rule
changes can be easily represented. For applications like continuous
access control monitoring, the precision can be largely improved by
learning from recent results instead of aggregating all the results,
as shown in our evaluation result in §10.4. Note that the application
of TCDT is not limited to access control monitoring and forensics.
The TCDT data structure and the TCDT learning algorithm can
be used in other works that need to infer rules from continuously
changing time-series data.

TCDT is fundamentally different from Time-Series Decision
Tree in machine learning literature [72]. A time-series decision tree
classifies a sequence (attributes of a period) into different categories.
However, TCDT classifies a “point” (attributes at a single time) into
different categories. We position TCDT in the machine learning
literature and discuss the related work in detail in §12.

Unknown attributes and values. The attributes and values in
both DT and TCDT are limited to the one observed in the access
logs. However, when a decision-tree is adopted to classify the access
result of a new-coming access, the related attributes and values may
not be seen before. In a traditional decision tree, classification will
be done with the probability in a leaf node of the False branches.
This may cause false classifications and thus miss changes. We
address this problem by adjusting our TCDT to explicitly classify
such an access as UNKNOWN. When an access is detected as UNKNOWN,
P-DIFF will conservatively notify system admins to validate if there
is a change. Then P-DIFF will build a new TCDT so that those
unknown attributes and values can be encoded. We show in §10.6
that building a new TCDT is efficient. It takes 19 minutes to build a
TCDT from 320 million log entries collected from the Wikipedia
website (cf. Figure 12 in §10.7).

IF $method == "GET"

Traditional Decision Tree 

Representation

50% ALLOW

50% DENY

True False

IF $method == "GET"

Time-Changing Decision Tree 

Representation

True False

ALLOW

DENY

Timestamp

Status

T2 T3 T4 T5

......

IF $prefix1 == "/proj"

True

IF $prefix1 == "/proj"

TrueFalse False

... ...

Figure 6: A traditional decision tree and a Time-Changing

Decision Tree (TCDT) generated from the logs in Figure 4.

Both decision trees have the same internal nodes; however,

in a traditional decision tree, the leaf nodes are associated

with proportional results; in a TCDT, the leaf nodes are as-

sociated with the time-series results which can be used to

represent policy changes.

7 POLICY INFERENCE

This section describes the algorithms and mechanisms for inferring
access control policies from access logs. Note that we do not con-
sider policy changes in this section and thus do not differentiate a
traditional decision tree versus a TCDT. We discuss policy change
management in §8.

7.1 Parsing Access Logs

P-DIFF parses logs based on sysadmins’ annotations on the log
format. To reduce the manual work and to make it general, P-DIFF
does not require detailed annotation of each field’s semantics, such
as URL, IP, user and group etc. Instead, P-DIFF abstracts fields into
five types: timestamp, hierarchical features, normal features, access
results, and other non-related fields. Table 3 shows the meaning of
each type. P-DIFF recognizes the timestamp for time-series ordering
and access results as a label of each access. P-DIFF differentiates
hierarchical features and normal features to further exploit the
inherent hierarchical namespace of access rules (cf. §7.3).

7.2 Policy Learning Algorithm

P-DIFF uses a classic decision tree learning algorithm [47] to build
the tree structure based on the access logs, described in Algorithm 1.
Before starting the algorithm, the access log needs to be transformed
into the algorithm’s input format

L = {(xi1 , . . . ,xin ,y)|i ∈ [1,m]} (2)

where (xi1 , . . . ,xin ) is the feature vector generated from the access
attributes (subject, object, action), y is the prediction label from ac-
cess result r , andm is the number of log entries. Each subject, object
and action attribute could have more than one feature, respectively
and each feature is transformed into a unique field in (xi1 , . . . ,xin ).
For instance, a subject can have features of both username and
group, so two fields are created in the feature vector. P-DIFF ex-
pands the hierarchical features using the methods described in §7.3
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Field Annotation Semantics

Timestamp %t Timestamp of each access
Hierarchical
feature

%h(*) Features with hierarchical names-
pace, such as IP address, URL, etc. *
is a delimiter character.

Normal
feature

%n Non-hierarchical features

Access re-
sult

%l ALLOW or DENY

Irrelevant %o Irrelevant fields
Table 3: Annotations of the log format. P-DIFF requires

users to annotate the access log format, which is a one-time

effort for a given system.

and transforms the expanded features into a feature vector with
one-hot encoding [66].

Algorithm 1 takes L as input and grows the tree recursively. In
each recursive step, the algorithm splits one node into two child
nodes, by selecting a feature j and its value xi j that split L into two
subsets with the purest labels, i.e. subsets with as large proportion
of ALLOW or DENY as possible. The two generated subsets are

Ll = {(xk1 , . . . ,xkn ,y)|k ∈ [1,m] ∧ xkj = xi j } (3)

Lr = L − Ll (4)

To find the feature j and its value xi j , a metric function is adopted to
measure the label purity of a set. Traditional DT learning algorithms
use either entropy or Gini Impurity [10, 47] as the metric. We will
show that those metrics cannot handle policy changes in §8, and
the new metric we design for P-DIFF to learn TCDTs.

7.3 Namespace Inference

Decision trees inherently have the capability of representing hi-
erarchical namespaces in access-control rules. Unfortunately, tra-
ditional decision tree learning algorithms (e.g., Algorithm 1) do
not recognize hierarchical features well and thus cannot generate
the inherent hierarchical structure. For instance, given a file path
as a feature, such as "/projects/proj1.html", it is treated as
a single string; therefore, a node may be generated with a condi-
tion "path==/proj/1.html" but not with "prefix1==/proj".
To extend that, P-DIFF generates rules not only for the path, but
also for its parent directory "/proj".

P-DIFF makes two efforts to generate hierarchical rules. First,
P-DIFF adopts Quinlan-encoding [3] to expand the hierarchical
features. P-DIFF takes the annotations of hierarchical features (Ta-
ble 3) with a delimiter and expands a string with all its prefixes.
In the case of file path, once the feature is annotated as hierarchi-
cal and delimited with "/", then prefix features will be generated,
such as "prefix0==/" and "prefix1==/projects". Note that
the annotation is a one-time effort.

Second, P-DIFF adopts a hierarchy-aware mechanism [77] for
the best-split step (Algorithm 1, Line 3) in the decision tree learning.
Specifically, P-DIFF follows a hierarchical order to choose a feature
that best-splits the input data. Let us assume that there exist three

Algorithm 1 Decision Tree Learning

1: function DTL(L) a
2: root← treenode()
3: i,xi j ← best_split(L) b

4: Ll ,Lr ← split(L, i,xi j )
c

5: mд← metric_gain(L,Ll ,Lr ) d

6: if mд! = 0 then
7: root.left← DTL(Ll )
8: root.right← DTL(Lr )
9: return root

aL = {(xi1, . . . , xin , y) |i ∈ [1,m]}, the training data.
bFind the feature j and its value xij that split L into two purest subsets, i.e.
subsets with as large proportion of ALLOW or DENY as possible.

cSplit L into Ll = {(xk1, . . . , xkn , y) |k ∈ [i,m] ∧ xkj = xij } and
Lr = L − Ll .
dCalculate metric(Ll )+metric(Lr )-metric(L), where metric is a function measures
the label purity of a set, e.g. entropy or Gini Impurity.

attributes ["user","method", "file path"]. P-DIFF first ex-
pands the three attributes to five features in the feature vector:
["user","method","prefix0", "prefix1","file name"].
P-DIFF then tries to choose a best-splitting feature from ["user",
"method","prefix0"] and if no feature results in change reduc-
tion, it tries ["prefix1"] and ["file name"] in order. Once
P-DIFF finds a feature with metric gain, it ensures that features at
a higher level of the hierarchy are considered before features at a
lower level.

8 POLICY CHANGE MANAGEMENT

8.1 Algorithm

Algorithm 1 and the other traditional decision tree (DT) learning
algorithms cannot deal with policy changes for two reasons. First,
traditional DTs cannot encode changes over time. P-DIFF addresses
this by using TCDT (§6).

Moreover, traditional algorithms (e.g., CART, ID3 and C4.5 [10,
47, 48]) cannot directly work with TCDT. This is because the split-
ting metrics (Gini Impurity and entropy) employed by traditional
algorithms do not consider rule changes over time—both Gini Impu-
rity and entropy are calculated based on the aggregated results and
fail to take the time information into account. Figure 7 shows two
cases that the splitting metrics in traditional DT learning cannot
decide whether to split or not in Algorithm 1’s split step, because
all the “purity metrics” are same before and after the split (Row
3). On the other hand, the correct split decision can be made if the
“time series” information is taken into account (Row 4).

Therefore, we design a TCDT learning algorithm. Learning a
TCDT requires different training input and splitting metric from
Algorithm 1. For TCDT, the training input is a time-series sequence:

L = ((τ1,x11 . . . x1n ,y1), . . . , (τm ,xm1 . . . xmn ,ym )) (5)

where τi < τj for i < j, xi1 , . . . ,xin is the feature vector generated
from timestamped access attributes denoted as (timestamp, subject ,
object ,action), and yi ∈ {0, 1} is the prediction label from the ac-
cess result r . For splitting metric, we propose a new metric, change-
count, to effectively differentiate multiple unchanged rules from
one changed rule only based on logs, as shown in Figure 7.
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Case 2: Multiple rule changes (should split)Case 1: A single rule change (should not split)

T1, GET, /proj/1.htm DENY

T2, GET, /proj/1.htm ALLOW

T3, GET, /proj/2.htm DENY

T4, GET, /proj/2.htm ALLOW

 

T1, GET, /proj/1.htm DENY

T2, GET, /proj/2.htm DENY
T3, GET, /proj/1.htm ALLOW

T4, GET, /proj/2.htm ALLOW

GET, /proj/1.htm DENY      ALLOW

GET, /proj/2.htm DENY      ALLOW

Policy 

Change

Access log

subset

Time 

Series

Purity 

metrics

allow

deny

Timestamp

Status

T1 T2 T3 T4
allow

deny

Timestamp

Status

T1 T2 T3 T4

pallow: 0.5, pdeny: 0.5
Gini Impurity: 0.5

Entropy: 1

ChangeCount: 3ChangeCount: 1

pallow_left: 0.5, pallow_right: 0.5
Gini Impurity: 0.5

Entropy: 1

GET, /proj/* DENY      ALLOW

allow

deny

Timestamp

Status

T1 T2 T3 T4

ChangeCount: 2

pallow_left: 0.5, pallow_right: 0.5
Gini Impurity: 0.5

Entropy: 1

pallow: 0.5, pdeny: 0.5
Gini Impurity: 0.5

Entropy: 1

allow

deny

Timestamp

Status

T1

T2

T3 T4

ChangeCount: 2

If not split If split If not split If split

Figure 7: Examples that demonstrate splitting events in TCDT-based policy learning (cf. §8). Case 1 does not require splitting,

while Case 2 does due to the condition: if prefix2=="/proj/1.htm". Traditional splitting metrics cannot decide whether

to split if a change is involved, because the possibility of ALLOW or DENY is always 0.5 in each subset (Gini Impurity: 1 −
(pallow )

2−(pdeny )
2 = 0.5, Entropy: −pallow log(pallow )−pdeny log(pdeny ) = 1). The time-series change counts differ in the subsets

and can guide correct splitting events.

Intuitively, the change-count of a time-series sequence is how
many times the end result is changed. Mathematically, for the time
series L, the change-count is defined as:

CC(L) =
n−1∑
i=1
|yi+1 − yi | (6)

When splitting L into two sequences Ll and Lr , the algorithm
tries to find the feature j and its value xi j in the way:

i, j = argmax
i ∈[1,m], j ∈[1,n]

(CC(L) −
∑

Lk ∈split (L, j,xij )

CC(Lk )) (7)

where split(L, j,xi j ) is a function that splits a sequence L by ex-
amining whether xi′j = xi j , where i ′ ∈ [1,m].

We set the splitting goal to be generating the least changes
possible—generating a new rule should reduce the total change-
count as many as possible. The goal can effectively decide when to
split in both cases of a single rule change and multiple rule changes,
as shown in Figure 7. Also, in the case that there is no rule change,
the goal can also make the correct splitting so that different rules
are generated, as shown in Figure 8.

8.2 Optimizations

Calculating change-counts, CC(L), defined in Equation (6) has a
significant impact on the training time for model generation, as
it needs to be calculated many times for every feature j and value
xii in Equation (7). Note that the change-counts are different for
different features and values, and the results cannot be directly
reused. Therefore, without an efficient implementation of change-
counts, P-DIFF cannot build the model in a short amount of time for

large volumes of access logs (e.g., the Wikipedia dataset evaluated
in §10 has more than 300 million log entries).

Our initial change-count implementation is to loop through the
entire access result array that stores the access result (with 0 to
represent ALLOW and 1 to represent DENY), as shown in Figure 9.
However, we find that this straightforward implementation is in-
efficient. It takes 51 minutes to train a model from 20 million log
entries, and more than 2 hours for 40 million log entries. Hence, it
cannot work with datasets at the similar scales of our Wikipedia
dataset (369 million entries).

To accelerate the training time, we design and implement the
following two optimizations as illustrated in Figure 9:

(1) We observed that in typical cases, ALLOW is much more
frequent than DENY. Therefore, looping through the entire
access result array is unnecessary. To improve it, our first
optimization only loops through all the DENYs and checks
for possible changes next to each DENY. Note that given
that the change-count needs to be calculated many times, we
generate an index of all the 1 values after the first change-
count calculation and use the index in the subsequent ones.

(2) We further adopt discrete convolution [50] to calculate the
sum of every two adjacent result numbers: if the sum is 1,
there is a change. We use the implementation of discrete
convolution as efficient vectorized operations in the Numpy
library [40].

With these two optimizations, our implementation of P-DIFF
is able to handle the entire Wikipedia dataset. Our evaluation in
§10.7 shows P-DIFF only takes 19 minutes to train a model from
320 million log entries.
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Multiple rules without change (should split)

Policy 

Access 

log

subset

Time 

Series

T1, GET, /proj/1.htm DENY

T2, GET, /proj/2.htm ALLOW

T3, GET, /proj/1.htm DENY

T4, GET, /proj/2.htm ALLOW

 

GET, /proj/1.htm DENY 

GET, /proj/2.htm ALLOW

allow

deny

Timestamp

Status

T1 T2 T3 T4

ChangeCount: 3

allow

deny

Timestamp

Status

T1 T2 T3 T4

ChangeCount: 0

If not split If split

Figure 8: An example that demonstrates TCDT learning

algorithm can infer rules even there is no rule change.

In this case, a splitting is required on the condition: if
prefix2=="/proj/1.htm". The time-series change count fa-

vors this splitting as the change count decreases from 3 to 0

after splitting.

9 USE CASES

P-DIFF supports two use cases, change validation and forensics
diagnosis, on top of its TCDT-based access control policy learning
described in §6–§8. In this section, we show how to use the learned
TCDT as a policy evolution representation for supporting the two
use cases.

9.1 Change Validation

P-DIFF continuously monitors the new-coming access results from
the access logs. For each access, P-DIFF calculates the expected
access results (ALLOW or DENY) based on the policy maintained
in the TCDT. When P-DIFF observes that the access results deviate
from the policy it currently maintains, P-DIFF treats the deviation
as the result of a policy change. P-DIFF then notifies sysadmins with
the changed access control rules and asks sysadmins to validate the
changes. If the sysadmins confirm the change to be expected, P-DIFF
updates the TCDT to incorporate the policy changes. Otherwise,
P-DIFF detects access control misconfigurations. It discards the
access results and keeps monitoring new access results (after the
misconfigurations get fixed by the sysadmins).

P-DIFF presents the change policy by extracting it from the cor-
responding path in the TCDT. Figure 10 (left) shows an example
of change validation. When monitoring a new access at timestamp
T5, P-DIFF calculates its access result based on the TCDT (which
is DENY); however, P-DIFF finds that the access was actually AL-
LOWed in the access log. The deviation leads to the validation
request.

9.2 Forensic Analysis

Given an access of interest (e.g., an illegal access that steals confi-
dential information), P-DIFF can pinpoint the policy change that
permitted the access by searching the policy evolution history

Figure 9: Two optimizations to efficiently calculate change-

count. The naïve implementation is to loop through the

whole access result array and count the changes. Optimiza-

tion 1 improves it by only looping through the seldom oc-

curred DENYs (value 1). Optimization 2 uses discrete convo-

lution [50] (f ∗ д)[n] to calculate the sum of every two adja-

cent numbers (if the sum is 1, there is a change).

maintained in the TCDT. This is achieved by finding the path in
the TCDT that determines the result of the access and searching
for the change that started permitting the target access in time
series encoded at the leaf node. Figure 10 (right) shows an example
of forensic analysis. Given a target access at T4, P-DIFF finds the
corresponding leaf node in TCDT and backtracks through the time
series to find out the root-cause policy change happened between
T2 and T3.

Note that forensic analysis can be done in-situ or serve as an
independent tool postmortem to any security incidents in which P-
DIFF reads historical access logs and builds the TCDT by analyzing
the history.

10 EVALUATION

We evaluate P-DIFF using controlled experiments based on datasets
collected from five real-world deployments of various systems with
different scales, including the Wikipedia website, the firewall of a
software company, and three websites hosted by academic organi-
zations. Table 4 describes these datasets.

10.1 Systems and Datasets

• Wikipedia. A free online encyclopedia website that has 33
million registered users. We collect access logs from a public
dataset of request traces to Wikipedia in September 2007 [62],
the largest trace dataset we can find online. Its access control is
implemented by the MediaWiki wiki engine [35]. Its protected
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IF $method == "PUT"

True False

...

IF $prefix1 == "/proj"

True

IF $method == "GET"

True False

...

IF $prefix1== "/proj"

True

New-coming access: 
T5, PUT, /proj/1.htm ALLOW

Access of interest: 
T4, GET, /proj/1.htm ALLOW

ALLOW

DENY

Timestamp

Status

T1 T2

T3 T4

Policy change to validate: 
T4-T5, PUT, /proj DENY      ALLOW

Change forensics: 
T2-T3, GET,  /proj DENY      ALLOW

ALLOW

DENY

Timestamp

Status
T1 T2

T3

T5T4

Figure 10: Two use cases with P-DIFF: (a) change validation

and (b) forensic analysis. For (a), P-DIFF detects a policy

change based on the deviation of the access results at T5
and the policymaintained in TCDT. P-DIFF then notifies the

sysadmins with the policy change for validation. For (b), P-

DIFF backtracks the time series at the leaf node to pinpoint

the root-cause change between T2 and T3 that permitted the

access.

resources include protected pages of different protection levels,
such as full-protected and semi-protected pages, which can only
be modified by sysadmins and registered users respectively.
• Center A web server hosting home pages, online tools and
personal pages for a research center with more than 10 faculty
members and 50 graduate students in a research university. Its
resource protection is through the configuration of the Apache
HTTPD server (Figure 1). The protected resources include a
public website for news and personal pages, and an internal
website for group-internal resources. The protection policies
of the whole server are maintained by a sysadmin, but each
member can modify the protection policies of their own pages.
• CourseAdepartment-wide coursewebsite hosting 300+ courses
each year. Its resources are mainly protected by the Linux file
permissions. The protected resources include public and pri-
vate web pages of course materials. The protection policies of
different courses are maintained by the corresponding instruc-
tors and teaching assistants. Course materials can be changed
from private to public during the semester and changed back
to private after the semester.
• Company An Iptable firewall deployed by a software company
that serves millions of users. The policies include blocking IPs
and IP ranges to protect the company network against Internet-
based attacks.
• Group A website hosting group pages and personal pages for
a research group with more than 20 researchers. The resource
protection (mostly for private web pages) is done through the

Dataset Configuration Time Span # Access

Wikipedia Application logic 2 weeks 369M
Center Web server configuration 11 months 5.9M
Course File permission 11 months 3.8M
Company Firewall 3 hours 100K
Group File permission 1 month 32K
Table 4: Datasets used in our evaluation. The datasets cover

a variety of systems, protection mechanisms, access control

configurations at different scales (§10.1).

Linux file permissions. The access policies are maintained by
one sysadmin.

10.2 Experimental Design

In order to evaluate the effectiveness of P-DIFF, it requires two
pieces of information: (1) access logs that records access requests
and access results, and (2) access control policy changes that con-
trolled the access results (the ground truth).

The Wikipedia dataset [62] includes both of the two pieces of in-
formation. The policy changes can be obtained based on Wikipedia’s
page protection change history [36], which records the protection
changes of each page (e.g., changed from publicly editable to only
accessible by specific users).

For Center, Course, Company and Group, we do not have the
policy change history (configuration changes in these systems were
not tracked). Therefore, we randomly generated policy changes and
synthesized access results for requests recorded in the access logs
(the original access results are ignored). If a generated change is
“DENY to ALLOW”, then the results for the related requests before the
change are set to DENY and after the change are set to ALLOW. Vice
versa, if a generated change is “ALLOW to DENY”, then the results
are set to ALLOW and DENY respectively. If a request has no related
change generated, it is set to ALLOW by default. In this way, we
also generated a random initial policy. Note another possible way
to synthesize access results is using a learning algorithm to infer
the initial policy from logs and applying the generated changes to
the initial policy. However, in this way the derived initial policy is
already easy to infer for a learning algorithm and so the synthesized
policy is also biased to be easy to infer. To avoid the bias, we use a
random initial policy instead of a learned initial policy.

As shown in Table 5, we generate different types of policy changes
to cover different scenarios. For each type, different attributes (sub-
ject, object, and actions) are selected to be changed. We also se-
lectively change policies that affect objects with different access
frequencies, categorized as “rare”, “normal”, and “frequent”. This
experiment design allows us to study how access frequency affects
P-DIFF’s policy learning. We randomly choose a time to make a
policy change for a given dataset. In total, each dataset contains 60
policy changes across its time span, with 15 changes in each type,
as detailed in Table 5.

All the experiments are conducted on an AWS instance, with
Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz CPU (16 cores), 64GB
memory, and Ubuntu 16.04.
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Category Change Types Dataset

(# Changes) Applied

File Type 1: allow file access (15) Course
permission Type 2: block file access (15) Group

Type 3: allow directory access (15)
Type 4: block directory access (15)

Web server Type 5: allow user access (15) Center
ACL Type 6: block user access (15)

Type 7: allow GET/PUT method (15)
Type 8: block GET/PUT method (15)

Iptable Type 9: allow ip access (15) Company
ACL Type 10: block ip access (15)

Type 11: allow subnet (15)
Type 12: block subnet (15)

Table 5: Different types of access control policy changes used

in the experiments for the Center, Course, Company, and
Group datasets. The detailed experiment design can be re-

ferred to in §10.2.

10.3 Overall Results

10.3.1 Change Validation. We evaluate P-DIFF’s effectiveness
in detecting policy changes. For each dataset, we divide the time
span (cf. Table 4) of the access logs into two parts: the first part is
used for training (observed accesses) and the second part is used
for testing (upcoming accesses). The first part takes 7

10 of the time
span, and the second part takes the rest 3

10 . If a real policy change
is not detected, we count it as a false negative. If a detected policy
change is incorrect, we count it as a false positive.

Table 6 shows the number and percentage of policy changes
P-DIFF detects from each dataset. In total, P-DIFF detects 93 (94%)
out of 99 rule changes with 12 false positives and 6 false negatives.
For each dataset, P-DIFF generates less than 6 false positives and
less than 3 false negatives. For Wikipedia and Group datasets,
P-DIFF generates 0 false positives and negatives. This shows that P-
DIFFworks effectively on small education systems (Group, Course,
Center), medium commercial systems (Company with millions of
users) as well as large-scale popular websites (Wikipedia ranked
the 7th popular website in the world [2]).

10.3.2 Forensic Analysis. To evaluate the effectiveness of foren-
sic analysis, we select an access of interest after each policy change.
The access of interest is an access that was supposed to be denied
based on the policy before the change, but is allowed after the policy
change. In other words, if the policy change is misconfigured, the
access could be illegal. We feed the access of interest into P-DIFF
and evaluate whether P-DIFF can pinpoint the root-cause policy
change that permits the access.

As shown in Table 7, P-DIFF pinpoints the root-cause policy
change for 283 (93%) out of 303 accesses of interest. For Wikipedia
and Center datasets, our inferred TCDT correctly encodes 114 out
of 123 changed rules on normal objects (i.e. user and method). For
the Course, Company and Group datasets, TCDT correctly encodes
169 out of 180 changed rules on hierarchical objects (i.e. directory

Dataset # Total # Detected Precision Recall

changes changes (FP) (FN)

Wikipedia 25 25 (100%) 1.0 (0) 1.0 (0)
Center 18 16 (89%) 0.76 (5) 0.89 (2)
Course 18 17 (94%) 0.85 (3) 0.94 (1)
Company 21 18 (86%) 0.81 (4) 0.86 (3)
Group 17 17 (100%) 1.0 (0) 1.0 (0)
Total 99 93 (94%) 0.89 (12) 0.94 (6)

Table 6: Policy changes detected by P-DIFF. FP stands for

false positive and FN stands for false negative.

Dataset # Access Pinpointing

of interest root-cause changes

Wikipedia 63 61 (97%)
Center 60 53 (88%)
Course 60 59 (98%)
Company 60 51 (85%)
Group 60 59 (98%)
Total 303 283 (93%)

Table 7: Effectiveness of forensic analysis. P-DIFF can pin-

point the root-cause policy changes that permit the access

of interest in the evaluation.

and subnet). Once a rule is correctly encoded, P-DIFF can always
correctly backtrack the corresponding time series.

We investigate the 18 accesses of interest for which P-DIFF fails
to pinpoint the root-cause policy changes. In 50% of the cases (9 out
of 18), the objects being accessed are rarely accessed in the history
(refer to §10.2 for the experiment design). In these cases, P-DIFF
fails to generate any rules and thus cannot pinpoint the rules. In
the remaining 9 cases, P-DIFF generated inaccurate rules (i.e. on the
parent directory instead of on the child directory), and therefore
fails to pinpoint the precise root cause change.

10.3.3 Effectiveness Discussion. For policy change detection,
the goal of P-DIFF is to detect as many true changes as possible
while minimizing the reports of false changes. Our evaluation re-
sult in Table 6 shows P-DIFF detects 93 out of 99 changes, which
means only six (7%) changes are missed. P-DIFF generates 12 posi-
tives which increase sysadmins’ validation overhead. Overall, the
validation overhead is reasonably small. Taking Wikipedia, one of
the most popular online services, as an example, the sysadmins of
Wikipedia only need to validate 25 changes in 4.2 days (which is
the testing period).

For forensic analysis, as shown in Table 7, P-DIFF successfully
pinpoints root-cause changes of 283 out 303 accesses of interest,
This means that sysadmins can use P-DIFF to efficiently diagnose
93% of the target access event. Without P-DIFF, the sysadmins may
have to go through either a large number of access logs or various
configuration and code in different components as discussed in §2.
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Figure 11: Precision, recall, and F-score of TCDT classify-

ing access results for the Center and Course datasets. The
x-axis shows the time of the testing data, which is a month

of logs in the dataset. The training data is the three continu-

ous months of logs before the testing month.

10.4 Precision, Recall, and F-Score

The detection of policy changes is based on detecting the deviation
of access results. We look into how well Time-Change Detection
Tree (TCDT) can serve as a classifier to decide the access results by
whether the decision matches the actual access results. Higher accu-
racy means more accurate policy learning. We compare TCDT with
an implementation of the traditional decision tree implemented
using Apache Spark MLlib [57] denoted as Spark-DT.

The experiment is conducted on the Center and Course datasets
as they have longer duration of logs and enable a comparison be-
tween different testing sets. Every three months of logs are used as
training set and the last month of logs are used as testing set.

Figure 11 shows that P-DIFF’s TCDT achieves a precision of 0.997,
a recall of 0.92, and a F-score of 0.94, while Spark-DT achieves a
precision of 0.83, a recall of 0.86, a F-score of 0.80. P-DIFF-TCDT
improves precision by 19.5%, recall by 6.5%, and F-score by 17.3%.
P-DIFF’s TCDT improves the prediction precision of Spark-DT for
all testing sets, and the improvement is more prominent when the
training set contains more rule changes, e.g. the training set for
the February testing set in the Center dataset. P-DIFF-TCDT also
improves the prediction recall for the other testing sets.

P-DIFF-TCDT does not increase the prediction accuracy on ac-
cesses happened in Nov in Figure 11 (a). We consulted the sysadmin
and learned that this month the website had a major change: it is
ported to another server and many new pages are added. P-DIFF
has no knowledge of these new pages and so reports accesses to
them as UNKNOWN (cf. §6). Although this hurts the accuracy in our
evaluation, in real usage P-DIFF will retrain a new TCDT with the
new accesses and gets good accuracy. As shown from the result of
Dec, Jan, and Feb in Figure 11 (a), after training TCDT with the
new accesses, P-DIFF gets precision and recall both above 0.9.

Dataset # Log entries Training Validation Forensics

for training time (per access) (per access)

Wikipedia 258 M 746 s 963 µs 12.8 ms
Center 4.13 M 43.7 s 10.8 µs 2.7 ms
Course 1.73 M 20.3 s 13.0 µs 4.8 ms
Company 70.0 K 2.46 s 26.1 µs 2.8 ms
Group 17.6 K 9.93 s 38.2 µs 3.7 ms
Table 8: Performance of P-DIFF: training time, and time for

validation and forensics per access.

10.5 False Positive and False Negative

P-DIFF generates false positives and negatives when the training
set does not have enough information. For false positives, P-DIFF
may generate wrong rules. In one case, P-DIFF generates a rule
that access to “/proj1” should be denied based on the observation
that accesses to “/proj1/1.htm” and “/proj1/2.htm” are all
denied in the training phase. In the detecting phase, P-DIFF observes
accesses to “/proj1/3.htm” are allowed and then decides a rule
change on “/proj1”. But in fact, the access rules are in the file level
instead of the directory level and accesses to “/proj1/3.htm” are
always allowed. P-DIFF generates a wrong rule because there is no
access to “/proj1/3.htm” in the training set.

False negatives are mainly because of “rare” objects (§ 10.2). P-
DIFF fails to infer the rules and thus cannot detect the change.
For example, in the training phase, P-DIFF observes all accesses
from an IP “192.168.1.1” are allowed and so infers an allow
rule for this IP. In the detecting phase, P-DIFF observes accesses
from “192.168.1.2” are denied. Since P-DIFF has no rule for
“192.168.1.2”, it cannot detect the change and the change is
actually access to subnet “192.168.1.*” has been modified from
ALLOW to DENY.

10.6 Execution Time

Table 8 shows the execution time of P-DIFF for training, validation,
and forensics, respectively in previous validation and forensic exper-
iments (cf. §10.3). P-DIFF’s training is very efficient. For the largest
dataset (Wikipedia) with 258 million log entries, the training that
learns the TCDT only takes 12 minutes. For smaller datasets, P-
DIFF takes less than 1 minute for training. Note that the training is
an offline process without the need of being real-time.

The validation and forensics can be done in microseconds and
milliseconds per access. The efficiency is decided by the depth of the
TCDT—the deeper the TCDT is, the more time it takes. Therefore,
the time taken for validation and forensics in Wikipedia dataset
is larger than the others. Forensics takes a longer time for back-
tracking the time series. The performance for forensics is satisfying,
given that forensics is typically postmortem to the security inci-
dents and is done offline. For validation, P-DIFF needs to validate
every access recorded in the access log. Note that this does not
need to be done sequentially but can be done in parallel as each
access is independent. Therefore, we conclude that the execution
time of P-DIFF is acceptable in real-world settings.
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10.7 Scalability

To understand how P-DIFF scales with real-world access log data,
we evaluate P-DIFF with different numbers of log entries using the
Wikipedia dataset. We use the continuous log entries of 10 million,
20million, and all the way up to 320million logs as different training
sets. Note that 320 million is the number of logs from Wikipedia
for 12 days out of the total 14 days of logs, which is the largest
real-world dataset we can collect by far (the remaining 2 days of
logs are used as the testing set). The results in §10.3 show that less
than 320 million of logs have already been effective for P-DIFF to
do an accurate change detection (100% precision and recall) and
forensic analysis (97% success). Therefore, in practice, we can only
maintain the most recent 12 days of logs for P-DIFF to be effective
for Wikipedia.

Figure 12 shows the training, validation and forensics time re-
spectively.When the number of log entries increases from 10million
to 320 million, the training time increases linearly from 2 seconds
to 19 minutes, as shown in Figure 12 (a). The linear increase of the
training time is due to the fact that P-DIFF needs to go through
every log entry to infer policies and policy changes. Considering
training is an offline process, it is acceptable to take 19 minutes
to train a TCDT once a while. Training is only necessary for the
first time usage of P-DIFF or when P-DIFF encounters too many
UNKNOWN accesses (cf. §11).

The validation and forensics time for an access only takes a
few milliseconds, as shown in Figure 12 (b). Both validation and
forensics need to search the decision tree to find the leaf node
applies for a given access. Therefore, the depth of the leaf node
decides the execution time of the validation and forensics. The
average validation and forensics time are decided by the depth of
the leaf node that encodes a dominant policy, which applies to
most accesses. In Wikipedia, there is a dominant policy that “all
page read should be allowed”. This dominant policy node can be
located in different depth based on the training set. This explains the
variation of the execution time for validation and forensic analysis
in Figure 12(b). Overall, the variance is small enough for efficient
validation and forensics.

10.8 Validation Overhead

There are two types of validation that sysadmins need to perform.
The first one is when P-DIFF detects a change, it would inform
sysadmins to validate whether the change is intended or not. Our
evaluation results show the overhead for this type of validation is
acceptable. Take Wikipedia dataset as an example, only 25 valida-
tion needs to be done for the tested 111 million accesses during the
test period.

The second type of validation is when P-DIFF reports an UNKNOWN
access after a new object (e.g., a file) is added to the system. In the
five datasets used in the evaluation, only 12 new objects were un-
observed during the training period. Therefore, only 12 validations
need to be done for those UNKNOWN cases (shown as false positives
in Table 6). Intuitively, popular objects should be observed during
the training period, while rare objects, even not observed during the
training period, would not incur too much overhead for validation
because of its rareness.
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Figure 12: Scalability analysis in terms of execution time

for training, validation, and forensics with the increasing

numbers of log entries from the Wikipedia dataset. Train-
ing time is linear to the number of log entries; it takes 19

minutes to train a model from 320 million log entries. Vali-

dation and forensics time are always low (1–10milliseconds).

Moreover, the overhead for importing new objects (e.g., files)
should not be excessive, because sysadmins typically do not need
to validate every single new object but can validate the higher
level hierarchy. For example, typically all the files in the same
directory have the same permission settings and so the directory
can be validated in total, avoiding validating individual new files.
Certainly, in a case that every file under the same directory has
distinct permission settings, the sysadmin needs to validate them
one by one (but this also reflects a pathological practice in the
security management).

11 DISCUSSIONS AND LIMITATIONS

P-DIFF learns access control policies from access logs, and thus is
limited to the information recorded in access logs. As discussed in
§6, if a new access with an unseen attribute or value in logs, P-DIFF
explicitly classifies it as UNKNOWN and notify sysadmins to validate
it. There are two cases that could cause UNKNOWN. First, some new
attributes or values are added to the access control policies, such
as the creation of new users, roles, and files, etc. In this case, the
UNKNOWN is a real change and so is desirable to be validated. Sec-
ond, if the resource is extremely cold (there are very few accesses),
P-DIFF may not be able to learn the related rules due to the lack of
information. We observe in our datasets that public resources are
more frequently accessed than private resources. In a few extreme
cases, the private resources are only accessed once a month. In this
case, the validation request on UNKNOWN is also acceptable because
a rarely accessed resource is desired to be manually examined and
it will not cause too much burden for sysadmins for its rareness. In
addition, in both cases, P-DIFF will retrain a new TCDT so that the
unknown attributes and values can be learned for future classifica-
tion. As shown in §10.6, the training time of a TCDT in real-world
datasets is in the range of 2 seconds to 19 minutes. Therefore, it is
acceptable to retrain a new TCDT in a normal frequency like once
an hour or once a day.

P-DIFF cannot work with access logs that miss important infor-
mation (i.e., subject, object, action, and result). As shown in Table 2,
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although most of the studied software systems record the required
information in their access logs, there do exist some systems that
missing certain key information, such as subject and access results.
P-DIFF cannot infer rules from access logs of those systems before
the logs are enhanced. As discussed in [11, 68], incomplete access
logging is a significant flaw that impairs auditing and forensics and
thus should be fixed. Enhancing logging is beyond the scope of
P-DIFF. Future work in automatically enhancing access logs would
be a valuable direction to be explored.

12 RELATEDWORK

12.1 Access Control Misconfigurations

Despite the extensive works in access control modeling and de-
sign, only a few efforts have been conducted in the past related
to access-control misconfiguration detection. Most of the prior
works attempt to detect access-control misconfiguration by find-
ing inconsistencies between access-control policies [8, 9, 15, 54].
However, inconsistencies only reflect a very small, specific set of
access-control misconfigurations. As acknowledged in these works,
misconfigurations could totally be consistent, which often leads to
even more severe consequences. In addition, these works require
domain knowledge to interpreting specific access-control policies
of different software. P-DIFF is complementary to the aforemen-
tioned works as we focus on access-control policy changes along
with time instead of policy inconsistencies at a particular moment.
Moreover, P-DIFF automatically infers access control policies from
access logs without any domain knowledge or specification from
sysadmins and thus is more general.

Testing and verification approaches [20, 34, 37] have been pro-
posed to detect access control misconfigurations. While testing and
verification have demonstrated promising results, they have not
been widely deployed in practice due to the extensive efforts in writ-
ing testing cases or verification specifications. Especially, existing
testing and verification approaches require a unified and central-
ized model (e.g., XACML); however, today’s systems access control
policies are kept in various forms including various configuration
file formats, file permissions or database privilege table. It is hard
to cover all the combinations of the access control configurations.
Exactly due to this problem, P-DIFF chooses to infer access control
policies from access logs regardless of configuration formats.

12.2 Other Types of Misconfigurations

To tackle misconfigurations, previous work has been done on de-
tecting or troubleshooting system misconfigurations [5, 6, 49, 63,
65, 67, 75, 78, 79]. While those techniques are effective for detecting
or troubleshooting misconfigurations that lead to system failures,
they cannot deal with access control misconfigurations. Access
control misconfigurations are fundamentally different from general
software misconfigurations that lead to functional failures or per-
formance degradation (which is assumed by the aforementioned
techniques). Instead, they can go unnoticed for months until being
exploited by malicious users. In addition, access control miscon-
figurations are typically “valid” configuration settings but do not
conform to users’ or organizational security policy.

12.3 Access Control Code Vulnerability

Besides misconfigurations, vulnerabilities can also be introduced by
software bugs, e.g. the software could miss permission checks. Sun
et al. [59] use static analysis to infer the protected domains from the
source code of a web applications, and then detect any unchecked
accesses to these pages. Resin [74] is a runtime system that enforces
data-flow assertions to prevent exploits of web application security
vulnerabilities. Nemesis [14] is a runtime system for preventing
authentication and access control bypass attacks. Space [38] is
a tool to find access control bugs in web application based on
a catalog of patterns. Our work has a complementary focus on
access control misconfigurations—even if we have a correct coded
software, misconfigurations can still introduce security holes.

12.4 Intrusion Detection

One related research area on security-related log analysis is intru-
sion detection [18]. An intrusion detection system (IDS) monitors
system or network events, detects malicious activities, and reports
them to sysadmins. Previous works on IDS can be classified into
signature-based and anomaly-based methods. Signature-based IDS
detects known attacks by recognizing their patterns, such as a
specific sequence of network traffic. Anomaly-based IDS detects un-
known attacks by heuristics or rules [32]. P-DIFF aims at detecting
access control policy changes (that may open up to attacks) instead
of detecting the attacks. It can help backtrack the configuration
change that permitted the detected intrusions.

12.5 Decision Tree Algorithms

Handling time-changing data, known as concept drift adaption in
the literature, has been one of the main challenges in machine
learning [21]. Concept drift means the underlying model of the
data is changed along with time, i.e., an access control policy is
changed from ALLOW to DENY in our case. Previously most works
propose to build concept drift decision tree by learning multiple
trees, each with the data in a time window [26, 44, 58]. However,
it is hard to apply those approaches in the access-control policy
change problem, due to the challenges of choosing the appropriate
time window length, as different policies change can be performed
by sysadmins at some random time. To address this problem, we
propose a new TCDT learning algorithm which treats the whole
dataset as a consecutive time series instead of discrete time win-
dows and encodes all the policies along with their changes in a
single decision tree. Although the TCDT is designed for the access-
control policy change problem, it can be applied to other binary
classification problem with concept drift.

13 CONCLUSION

This paper presents P-DIFF, a practical tool for continuously moni-
toring access logs to help sysadmins detects unintended access
control policy changes as well as help identify historical policy
changes for a known security incident. We propose a novel TCDT
structure and learning algorithm to automatically infer access poli-
cies and changes from access logs. We evaluate P-DIFF with access
logs from five real-world systems. The results show P-DIFF is effec-
tive in both detection of access control policy changes and forensic
investigation of security incidents. In addition, although our TCDT

Session 1D: Forensics CCS ’19, November 11–15, 2019, London, United Kingdom

127



learning algorithm is only used for inferring access control policies
in this paper, it can be generally adopted to address the challenges
in inferring other policies with result changes.
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