
Multi-Grained Specifications for Distributed System

Model Checking and Verification

Lingzhi Ouyang
SKL for Novel Soft. Tech.
Nanjing University, China

lingzhi.ouyang@smail.nju.edu.cn

Xudong Sun
University of Illinois

Urbana-Champaign, IL, USA
xudongs3@illinois.edu

Ruize Tang
SKL for Novel Soft. Tech.
Nanjing University, China
tangruize@smail.nju.edu.cn

Yu Huang∗
SKL for Novel Soft. Tech.
Nanjing University, China
yuhuang@nju.edu.cn

Madhav Jivrajani
University of Illinois

Urbana-Champaign, IL, USA
madhavj2@illinois.edu

Xiaoxing Ma
SKL for Novel Soft. Tech.
Nanjing University, China

xxm@nju.edu.cn

Tianyin Xu
University of Illinois

Urbana-Champaign, IL, USA
tyxu@illinois.edu

Abstract

This paper presents our experience specifying and verify-
ing the correctness of ZooKeeper, a complex and evolving
distributed coordination system. We use TLA+ to model fine-
grained behaviors of ZooKeeper and use the TLC model
checker to verify its correctness properties; we also check
conformance between the model and code. The fundamental
challenge is to balance the granularity of specifications and
the scalability of model checking—fine-grained specifications
lead to state-space explosion, while coarse-grained specifica-
tions introduce model-code gaps. To address this challenge,
we write specifications with different granularities for com-
posable modules, and compose them into mixed-grained
specifications based on specific scenarios. For example, to
verify code changes, we compose fine-grained specifications
of changed modules and coarse-grained specifications that
abstract away details of unchanged code with preserved
interactions. We show that writing multi-grained specifica-
tions is a viable practice and can cope with model-code gaps
without untenable state space, especially for evolving soft-
ware where changes are typically local and incremental. We
detected six severe bugs that violate five types of invariants
and verified their code fixes; the fixes have been merged to

∗Corresponding author

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1196-1/25/03
https://doi.org/10.1145/3689031.3696069

ZooKeeper. We also improve the protocol design to make it
easy to implement correctly.

CCS Concepts: • Software and its engineering→Model

checking; • Computer systems organization→ Relia-

bility.

Keywords: Distributed systems, model checking, reliability

ACM Reference Format:

Lingzhi Ouyang, Xudong Sun, Ruize Tang, Yu Huang, Madhav
Jivrajani, Xiaoxing Ma, and Tianyin Xu. 2025. Multi-Grained Speci-
fications for Distributed System Model Checking and Verification.
In Twentieth European Conference on Computer Systems (EuroSys
’25), March 30-April 3, 2025, Rotterdam, Netherlands.ACM, New York,
NY, USA, 19 pages. https://doi.org/10.1145/3689031.3696069

1 Introduction

Distributed systems that implement complex protocols are
notoriously difficult to develop and maintain. It is non-trivial
to implement non-deterministic, asynchronous behavior and
reason about correctness and fault tolerance. Formalmethods
have been increasingly used to verify protocol designs [53, 77,
78, 80, 84, 102–104] and system code [55, 57, 88, 89, 98]. Re-
cently, formal methods start to go beyond academic research
towards validating and verifying production distributed sys-
tems [32, 35, 52, 81]. For example, companies like Amazon,
Azure, MongoDB, and LinkedIn all use TLA+ to specify and
model-check production systems [31, 36, 65, 74, 106].
This paper presents our experience specifying and veri-

fying ZooKeeper [58], a complex, evolving distributed co-
ordination system which uses a totally ordered broadcast
protocol, known as Zab [60, 61, 85]. ZooKeeper is actively
maintained as an open-source project [17]; it is widely used
in practice as a critical infrastructure system for storing ser-
vice metadata and for fault tolerance [27, 39, 56, 93]. We aim

1

ar
X

iv
:2

40
9.

14
30

1v
2

 [
cs

.S
E

]
 2

4
Se

p
20

24

https://orcid.org/0000-0001-7523-8759
https://orcid.org/0009-0005-6734-0928
https://orcid.org/0009-0001-0590-1620
https://orcid.org/0000-0001-8921-036X
https://orcid.org/0009-0000-9170-6524
https://orcid.org/0000-0001-7970-1384
https://orcid.org/0000-0003-4443-8170
https://doi.org/10.1145/3689031.3696069
https://doi.org/10.1145/3689031.3696069

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands L. Ouyang, X. Sun, R. Tang, Y. Huang, M. Jivrajani, X. Ma, and T. Xu

to verify not only the Zab protocol, but also the implemen-
tation in ZooKeeper. We use TLA+ to specify ZooKeeper’s
behavior and use the TLC model checker to verify that ev-
ery execution satisfies all correctness properties [25, 66]. To
ensure that our model correctly describes the implemen-
tation’s behavior, we run conformance checking to detect
discrepancies between the model and the implementation
(§3.4). Note that we target existing ZooKeeper code written
in Java, mostly maintained by developers with little formal
method expertise; so, rewriting ZooKeeper with machine-
checked proofs in verification-aware languages [43, 67, 71]
or frameworks [57, 89] is not realistic in the short term.

The fundamental challenge is to balance the scalability of
model checking and the granularity of specifications in mod-
eling code-level implementation. On one hand, fine-grained
specifications, whichmodel code-level behavior, lead to state-
space explosion. As a data point, model checking using TLC
on ZooKeeper’s official system specification in TLA+ cannot
finish in ten days with a standard configuration of three
nodes, three transactions, up to three node crashes, and up
to three network partitions [79]. In fact, this TLA+ specifi-
cation omits several important code behavior (§2.1.2) like
multithreading concurrency; modeling those would be even
more costly. Unfortunately, as subtle bugs often reside in
deep states, extensive state-space exploration is inevitable.
On the other hand, coarse-grained specifications intro-

duce model-code gaps—the specification does not effectively
reflect code-level implementation; consequently, verification
or model checking cannot capture subtle bugs whose mani-
festations are abstracted away from the model. We find that
model-code gaps are prevalent. One main reason is that im-
plementations are highly optimized and the optimizations
are rarely modeled in existing specifications. A typical case
is that an atomic action in the Zab protocol is implemented
by several concurrent operations in ZooKeeper (for perfor-
mance optimization). If the specification only models the
protocol, bugs manifested via interleavings of concurrent
operations cannot be exposed. Such gaps are common in
distributed systems projects: we inspected TLA+ specifica-
tions of MongoDB [21], CCF [20], TiDB [10], etcd [24], and
CosmosDB [9]; local concurrency is often abstracted away.
To address this challenge, we write multi-grained speci-

fications, i.e., multiple specifications with different granu-
larities for composable modules, and compose them into
mixed-grained specifications for specific scenarios. For exam-
ple, to verify a code change, we compose a mixed-grained
specification using fine-grained specifications of changed
modules and coarse-grained specifications that abstract away
details of unchanged code. Essentially, this approach allows
model checkers to focus on the target modules with fine-
grained modeling that reflects the implementation. To en-
able multi-grained specifications, we write composable spec-
ifications for each module with an interaction-preserving
principle, where a coarse-grained specification coarsens the

corresponding fine-grained specification while preserving
all actions whose effects are visible to the other modules.

To divide the specification into easily composablemodules,
we leverage an opportunity that Zab, like other distributed
protocols (e.g., Paxos, Raft, and 2PC), is designed to run in
phases, with clean boundaries between phases. For example,
Zab runs in four phases (Election, Discovery, Synchroniza-
tion and Broadcast) sequentially if no failure happens. Thus,
we decompose the ZooKeeper specification by phases and
write multi-grained specifications for each phase.

We show that multi-grained specification is a viable prac-
tice and can effectively address model-code gaps without
untenable state-space explosion, especially for evolving soft-
ware where changes are typically local and incremental. We
are able to model low-level system behavior such as local
concurrency in fine-grained specifications and use them to
create mixed-grained specifications with manageable state
space. This practice allows us to capture deep bugs that can-
not be found with existing TLA+ specifications; it also allows
us to efficiently verify code changes and bug fixes, which
can introduce new bugs or fail to resolve the root cause. The
efforts of writing multiple specifications are manageable and
are done incrementally. As many distributed system projects
have already adopted the practice of writing TLA+ specifi-
cations, we demonstrate the methodology to deepen TLA+

specifications to verify system implementations.
We develop a framework for model checking and verifica-

tion of distributed systems with multi-grained specifications,
named Remix. It composes module specifications into mixed-
grained specifications. It also provides conformance check-
ing to preclude deviations that could be introduced when
writing new specifications. Using Remix, we have detected
six deep bugs in ZooKeeper code and verified their fixes. The
effort also helps improve the Zab protocol to make it easy
to implement correctly. Our evaluation shows that mixed-
grained specifications can significantly outperform existing
specifications in verification effectiveness and efficiency.

This paper makes the following main contributions:

• We share our practice of writing multi-grained specifica-
tions with the interaction preserving principle;

• We present our mechanism and tooling for composing
multi-grained specifications of different modules into the
mixed-grained specification;

• We demonstrate the values of fine-grained modeling that
reconciles specifications and code implementation.

• We found six deep bugs in ZooKeeper, verified their code
fixes, and improved the protocol design.

• Our artifact: https://zenodo.org/records/13738672.

2 Background

2.1 Existing Specifications

We started by writing TLA+ specifications for the Zab pro-
tocol and the ZooKeeper system (its realization of the Zab

2

https://zenodo.org/records/13738672

Multi-Grained Specifications for Distributed System Model Checking and Verification EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Phase 2 (Synchronization)
...
!"#$	&. 2.1	Upon receiving the *+,-+./+0(#′, 4) message from 6,

the follower starts a new iteration if &. $ ≠ #′.
If &. $ = #!, then it executes the following actions atomically:

1) It sets &. 9	to #′;
2) For each ⟨;, <⟩ ∈ +(?"!), it accepts ⟨#′, ⟨;, <⟩⟩, and make ℎ# 	= 	4.

Finally, it acknowledges the *+,-+./+0(#′	, ?"!) proposal to the leader,
thus accepting the transactions in 4.

①
②

③

(a) Pen-and-paper description in the Zab paper [61]

FollowerProcessNEWLEADER(i, j) ==
/\ IsFollower(i) /\ IsMyLeader(i, j)
/\ PendingNEWLEADER(i, j)
/\ LET msg == msgs[j][i][1]

epochOk == acceptedEpoch[i] = msg.mepoch
IN \/ /\ ~epochOk

/\ FollowerShutdown(i) /\ ...
\/ /\ epochOk /\ ...

/\ currentEpoch' = [currentEpoch EXCEPT
![i] = acceptedEpoch[i]]

/\ history' = [history EXCEPT ![i] = msg.mhistory]
/\ LET m == [mtype |-> ACKLD,

mzxid |-> LastZxidOfHistory(history'[i])]
IN Reply(i, j, m)

/\ UNCHANGED <<state, zabState, ...>>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

①

②

③

(b) Protocol specification in TLA
+

Figure 1. Pen-and-paper description and TLA
+
specifi-

cation of Step 𝑓 .2.1 in Phase 2 of the Zab protocol.

protocol), respectively. Both are now part of the official TLA+

specifications of the ZooKeeper projects.

2.1.1 Protocol specification. The protocol specification
follows the pen-and-paper description of the original Zab pa-
per [61]. The goal is to formally describe andmodel check the
protocol. Figure 1 shows the snippet of the protocol specifi-
cation of Step 𝑓 .2.1 in Phase 2 (Synchronization) of Zab [61],
where the follower is supposed to atomically execute two
actions upon receiving a NEWLEADER message from the leader:
① updating its current epoch and ② accepting the leader’s
complete history. In the protocol specification, we write the
actions, together with the final acknowledgment, in a TLA+

atomic action FollowerProcessNEWLEADER.
Our TLA+ specifications also specify several missing com-

ponents that are not described in the Zab protocol, e.g., the
Zab protocol does not describe leader election (it uses an
assumed leader oracle) and does not describe certain unex-
pected cases (e.g., when the leader does not receive sufficient
acknowledgments from the followers).

2.1.2 System specification. With the protocol specifica-
tion, we then wrote the system specification of ZooKeeper, as
a precise, testable system design document [81]. The system
specification is developed based on the ZooKeeper source
code, instead of the Zab paper. For example, ZooKeeper im-
plements a fast leader election algorithm, which is specified

while (self.isRunning()) {

readPacket(qp);

switch (qp.getType()) { ...

case Leader.NEWLEADER:

...

self.setCurrentEpoch(newEpoch);

zk.startupWithoutServing();

if (zk instanceof FollowerZooKeeperServer) {

FollowerZooKeeperServer fzk = zk;

for (PacketInFlight p : packetsNotCommitted)

fzk.logRequest(p.hdr, p.rec, p.digest);

 packetsNotCommitted.clear();

}

writePacket(

new QuorumPacket(Leader.ACK, newLeaderZxid, ...));

break;

}} // zookeeper-server/src/.../server/quorum/Learner.java

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

①

②

③

(a) Code implementation (v3.9.1) in Java [28]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

FollowerProcessNEWLEADER(i, j) ==
/\ IsON(i) /\ IsFollower(i) /\ IsMyLeader(i, j)
/\ PendingNEWLEADER(i, j)
/\ LET packetsInSync == packetsSync[i].notCommitted

ms_ack == ACKInBatches(<< >>, packetsInSync)
msg == msgs[j][i][1]
m_ackld == [mtype |-> ACKLD, mzxid |-> msg.mzxid]
queue_toSend == <<m_ackld>> \o ms_ack

IN /\ ...
/\ currentEpoch' = [currentEpoch EXCEPT

![i] = acceptedEpoch[i]]
/\ history' = [history EXCEPT

![i] = @ \o packetsInSync]
/\ packetsSync' = [packetsSync EXCEPT

![i].notCommitted = << >>]
/\ Reply(i, j, queue_toSend)

/\ UNCHANGED <<state, acceptedEpoch, ...>>

①

②

②③

(b) System specification in TLA
+

Figure 2. Code implementation in Java and the corre-

sponding system specification in TLA
+
of Step 𝑓 .2.1 in

Phase 2 of the Zab protocol in ZooKeeper.

in the system specification, which refines the leader oracle
in the protocol specification.
Figure 2a shows the code snippet of ZooKeeper’s imple-

mentation of Step 𝑓 .2.1 of the Zab protocol. When a follower
receives the NEWLEADER message, it ① updates the current
epoch, ② logs every packet that is not committed, and ③
replies to the leader. Figure 2b shows the corresponding sys-
tem specification. Note that the system specification does not
strictly refine the protocol specification. The system imple-
mentation optimizes the synchronization using NEWLEADER

as a signaling message without carrying concrete history,
and the leader’s history will be synchronized in one of three
modes (DIFF, TRUNC, and SNAP), depending on the differences
between the history and the follower’s latest transaction ID
(zxid). In this paper, since our goal is to verify the ZooKeeper
system implementation, we start with the system specifica-
tion instead of the protocol specification.

3

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands L. Ouyang, X. Sun, R. Tang, Y. Huang, M. Jivrajani, X. Ma, and T. Xu

2.2 Model-Code Gaps

Despite that the system specification effectively describes
the ZooKeeper system, it still omits certain implementation
details. We present three common patterns of model-code
gaps which in our experience is important to consider as
they often induce tricky and error-prone implementation.
Overlooking them would allow bugs to escape from model
checking and reduce the confidence of verification results.

2.2.1 Atomicity. As a common model-code gap pattern,
an atomic action in the system specification is not guar-
anteed to be atomically executed at the code level. In this
case, if a specified atomic action is partially executed and
then interrupted, the intermediate states would be missed in
model checking. In Figure 2b, FollowerProcessNEWLEADER is
an atomic action: the state transitions from ① to ② to ③ are
always atomically done in the system specification. However,
ZooKeeper’s code-level execution does not guarantee such
atomicity (Figure 2a). We will show in §5 that model-code
gaps due to false atomicity would miss critical bugs.

We find that atomicity-related model-code gaps are com-
mon in TLA+ specifications of many distributed systems.
One reason is that every action in TLA+ is atomic so it is
convenient to express logically connected steps in an action.

2.2.2 Concurrency. Wefind that specifications commonly
focus on non-deterministic interleavings of actions among
nodes, aka distributed concurrency [70]. Few model local
concurrency within a node (e.g., due to multithreading).
Instead, the specification often models locally concurrent
events in a single action with deterministic orders. However,
if multithreaded code has non-deterministic behavior, model
checking using such specifications would fail to explore bug-
triggering states. For example, in Figure 2a, the follower’s
QuorumPeer thread calls logRequest() (line 11). The imple-
mentation of logRequest sends a logging request, which
would be asynchronously handled by a different thread. How-
ever, the above procedure is simplified as the state transition
of appending all uncommitted requests to the follower’s his-
tory (line 12-13 in Figure 2b), with sending replies to the
leader in a deterministic order (line 16 in Figure 2b). Conse-
quently, checking the specification will miss many possible
states of asynchronous logging (§5).

Similar to atomicity, we find that model-code gaps related
to local concurrency are common in existing TLA+ specifi-
cations of many other distributed systems projects.

2.2.3 Missing state transitions. State transitions in the
specification may be overly simplified compared to the code
implementation. For example, the follower in ZooKeeper
would reply ACK upon receiving an UPTODATE message; in the
specification, the follower does not reply ACK to UPTODATE

for simplicity. Missing state transitions can cause model
checking to miss possible states, and meanwhile, explore
false states that cannot be reached by code-level executions.

2.3 Challenges

The prevalence of model-code gaps in existing specifications
indicates the need to further model important, fine-grained
behavior like non-atomic updates and concurrency for veri-
fying code implementation (which is uncommon in existing
TLA+ specifications). However, doing so would significantly
increase state space, resulting in state-space explosion. Cur-
rently, using TLC to model check the system specification
of ZooKeeper (§2.1.2) cannot finish in ten days with a stan-
dard configuration (three nodes, three transactions, up to
three node crashes, and up to three network partitions) [79].
How to balance the granularity of the specification and the
scalability of model checking is a key challenge.

3 Writing Multi-Grained Specifications

We write multi-grained specifications, i.e., multiple speci-
fications with different granularities for composable mod-
ules, which can be composed into mixed-grained specifica-
tions with preserved interactions. A mixed-grained specifica-
tion consists of fine-grained specifications of target modules
to model code-level behavior and coarse-grained specifica-
tions of other modules to save cost. Mixed-grained spec-
ifications enable us to verify the system module by mod-
ule [29, 30, 41, 59], and to verify code changes or bug fixes.
We write our specifications in TLA+ which offers inher-

ent flexibility to choose and adjust the abstraction level. We
present the principles of writing multi-grained specifications
with composability (§3.1–§3.3). We use conformance check-
ing (§3.4) to match specifications with code implementation.

Concretely, use cases of multi-grained specifications are:
• Verifying protocol designs.We verify the Zab algorithm
using the protocol specification (§2.1.1). As the protocol
specification models high-level algorithms, it is verified in
a traditional way without mixed-grained specifications.

• Verifying system designs. As discussed in §2.1.2, the
system specification could take a long time to check, espe-
cially with complex configurations. Mixed-grained specifi-
cations help the model checker speed up the verification.

• Verifying system implementations.Mixed-grained spec-
ifications enable fine-grained modeling of code behavior
to verify the implementation. The cost of model checking
is managed by coarsening the modules that are not verifi-
cation targets. Conformance checking is needed to ensure
specifications conform to code implementations.

• Verifying code changes. Mixed-grained specification
also allows efficient verification of code changes (e.g., bug
fixes). As code changes are typically local and incremental,
we can use fine-grained specifications for the changed
modules while coarsening the unchanged ones.

3.1 Fine-Grained Specifications

For a given specification, we write its fine-grained coun-
terpart by modeling low-level code behavior. For a target

4

Multi-Grained Specifications for Distributed System Model Checking and Verification EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

action in the original specification, we rewrite the enabling
conditions based on code logic and next-state updates of the
action. We focus on three patterns of model-code gaps (§2.2):

• Atomicity.We rewrite an action that is not guaranteed
to be atomically executed at the code level. We split the
action into multiple separate actions in the specification
and set up their enabling conditions accordingly.

• Concurrency. To model concurrency, we separate state
transitions, which are executed by different threads, into
different actions as per the executing threads. Inter-thread
communications (e.g., message queues for local thread
messages) are also modeled in the specification.

• Missing state transitions. We focus on enhancing state
transitions with existing variables in the target action. If
the enabling condition includes other dependent variables
that are missed, we add them to the specification.

We decide atomic blocks based on how threads/nodes
communicate, following prior work [55]. An atomic block
starts with reading the external state, performing internal
computations, and ends with writing to the external state.
The results of internal computations are invisible to other
threads/nodes, thus can be safely folded in an atomic block.
An example atomic block starts with receiving a message
from the network, and ends with putting another message
in a queue to be handled by another thread.

Case study: Fine-grained modeling of Step 𝑓 .2.1 in Fig-

ure 2b. We rewrite the system specification to model non-
atomic actions and local concurrencywith fine-grained speci-
fications.We first rewrite the atomic FollowerProcessNEWLEADER
action into three actions corresponding to steps ①, ②, and ③
in Figure 2b, as there is no atomicity guarantee at the code
level. The fine-grained model allows model checkers to ex-
plore intermediate states in non-atomic executions. Figure 3
shows the three actions in the refined TLA+ specification.

To set up correct triggering of these fine-grained actions,
we specify their enabling conditions using existing or new
variables based on the code implementation. For example,
action FollowerProcessNEWLEADER_LogAsyncmodels the logic
of queuing requests for asynchronous logging (Figure 3b). It
is enabled when the follower has updated its currentEpoch
(line 4) and there exist packets to be logged (line 5), which
corresponds to the conditions in the code (Figure 2a).

We then rewrite the FollowerProcessNEWLEADER_LogAsync
action for concurrency by specifying the asynchronous log-
ging logic. To do so, we decouple the logging action by a
separate thread from the follower’s message-handling ac-
tions, and make them interact properly. First, we change
the variable for passing requests from the message-handling
actions (line 12-13 in Figure 2b) to a logging action (line 7-8
in Figure 3b). We then model the logging action of the thread
and refactor the message-handling actions to make them
interact with the logging action.

1
2
3
4
5
6

FollowerProcessNEWLEADER_UpdateEpoch(i, j) ==
/\ IsON(i) /\ IsFollower(i) /\ IsMyLeader(i, j)
/\ PendingNEWLEADER(i, j)
/\ currentEpoch[i] /= acceptedEpoch[i] /\ ...
/\ currentEpoch' = [currentEpoch EXCEPT ![i] = acceptedEpoch[i]]
/\ UNCHANGED <<history, packetsSync, msgs, ...>>

①

(a) Action 1: Updating the current epoch

1
2
3
4
5
6
7
8
9
10
11

FollowerProcessNEWLEADER_LogAsync(i, j) ==
/\ IsON(i) /\ IsFollower(i) /\ IsMyLeader(i, j)
/\ PendingNEWLEADER(i, j)
/\ currentEpoch[i] = acceptedEpoch[i]
/\ packetsSync[i].notCommitted /= << >>
/\ LET packetsInSync == packetsSync[i].notCommitted

IN /\ queuedRequests' = [queuedRequests EXCEPT
![i] = @ \o packetsInSync]

/\ packetsSync' = [packetsSync EXCEPT
![i].notCommitted = << >>]

/\ UNCHANGED <<currentEpoch, msgs,...>>

②

(b) Action 2: Queuing requests for asynchronous logging

1
2
3
4
5
6
7
8
9

FollowerProcessNEWLEADER_ReplyAck(i, j) ==
/\ IsON(i) /\ IsFollower(i) /\ IsMyLeader(i, j)
/\ PendingNEWLEADER(i, j)
/\ currentEpoch[i] = acceptedEpoch[i]
/\ packetsSync[i].notCommitted = << >>
/\ LET msg == msgs[j][i][1]

m_ackld == [mtype |-> ACK, mzxid |-> msg.mzxid]
IN Reply(i, j, m_ackld)

/\ UNCHANGED <<currentEpoch, history, ...>>
③

(c) Action 3: Sending ACK to the leader

Figure 3. Fine-grained modeling that splits the atomic

action, FollowerProcessNEWLEADER in Figure 2b, into three

actions (Actions 1–3).

Figure 4a shows the modeling of the asynchronous log-
ging, including an additional variable queuedRequests and a
new action FollowerSyncProcessorLogRequest. The variable
queuedRequests models the implemented queue (line 2-3 in
Figure 4b) that stores the requests to be logged (line 4-6
in Figure 4b). The action FollowerSyncProcessorLogRequest

(line 2-10 in Figure 4a) focuses on the logic of logging re-
quests (line 9-12 in Figure 4b). It takes out a request from
queuedRequests, logs it to disk and sends ACK to the leader.
In this way, we are able to model the actions that are con-
currently executed by different threads in a node, for ex-
ample, FollowerSyncProcessorLogRequest (Figure 4a). The
interleavings of these locally concurrent actions can then be
explored at the model level.

3.2 Coarse-Grained Specifications

When model checking a target module with the fine-grained
specification, the other modules are coarsened to reduce state
space and avoid state-space explosion. To ensure verification
safety, the coarsening must follow the interaction preserving
principle, i.e., for each module, only the internal part can
be omitted while the interactions with other modules must
be preserved, such that another module cannot distinguish
whether it is interacting with the original or a coarsened

5

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands L. Ouyang, X. Sun, R. Tang, Y. Huang, M. Jivrajani, X. Ma, and T. Xu

VARIABLES queuedRequests

FollowerSyncProcessorLogRequest(i, j) ==
/\ IsON(i) /\ IsFollower(i) /\ IsMyLeader(i, j)
/\ queuedRequests[i] /= << >>
/\ LET toBeSaved == queuedRequests[i][1]

m_ack == [mtype |-> ACK, mzxid |-> toBeSaved.zxid]
IN /\ history' = [history EXCEPT ![i] = Append(@, toBeSaved)]

/\ queuedRequests' = [queuedRequests EXCEPT ![i] = Tail(@)]
/\ Send(i, j, m_ack)

/\ UNCHANGED <<state, acceptedEpoch, ...>>

1

2
3
4
5
6
7
8
9
10

(a) Fine-grained specification in TLA
+

class SyncRequestProcessor extends ZooKeeperCriticalThread {
private final BlockingQueue<Request>
queuedRequests = new LinkedBlockingQueue<>();

public void processRequest(final Request request) {
queuedRequests.add(request);

}

public void run() {
while (true) { // Processing every request
Request si = queuedRequests.poll(…);
if (si == null) { flush(); si = queuedRequests.take(); }
if (zks.getZKDatabase().append(si)) {...}
... // flush to disk and reply ACK if needed

} ...
} // zookeeper-server/src/.../server/SyncRequestProcessor.java

1
2
3

4
5
6

7
8
9
10
11
12
13
14

(b) Code implementation in Java

Figure 4. Fine-grained modeling on concurrency with

async logging. queuedRequests is used in Figure 3b.

module. This indistinguishability ensures the correctness of
compositional model checking.

Safe coarsening is done by following the rationale of inter-
action preservation in TLA+. In TLA+, we define the global
states of a distributed system with variables and update the
states with actions. We define dependency variables of an
action as the variables in the enabling condition of the ac-
tion; the dependency relation is transitive—if a dependency
variable is calculated from another variable, that variable
is also a dependency variable. The dependency variables of
a module hence consist of dependency variables of all the
actions in the module, where a module is a set of actions. We
define interaction variables as dependency variables shared
by two modules.1

The coarsening preserves interaction if: (1) all dependency
variables of the target module, as well as all interaction vari-
ables, remain unchanged after the coarsening; (2) all the
updates of the dependency variables and interaction vari-
ables remain unchanged after the coarsening. These two
constraints relate actions of a fine-grained module to those
of the coarsened module through dependency variables and
interaction variables along with their updates.

1Our definition of interaction variables is conservative, because dependency
variables in two modules may not convey any interaction. In practice, this
case is rare so we make the definition concise and easy to use.

We denote a specification 𝑆 that consists of 𝑛 modules as
𝑆 =

⋃
1≤𝑖≤𝑛 𝑀𝑖 , and𝑀𝑖 as a module obtained by coarsening

𝑀𝑖 following the above two constraints. 𝑆𝑖 is denoted as the
specification by coarsening every other module except𝑀𝑖 ,
i.e., 𝑆𝑖 = (⋃𝑗≠𝑖 𝑀 𝑗) ∪𝑀𝑖 .

Let the traces allowed by 𝑆 and 𝑆𝑖 be𝑇𝑆 and𝑇𝑆𝑖 respectively.
When we are only concerned with the states of the target
module𝑀𝑖 , all traces in𝑇𝑆 and𝑇𝑆𝑖 are projected to𝑀𝑖 , which
are denoted as 𝑇𝑆 |𝑀𝑖

and 𝑇𝑆𝑖 |𝑀𝑖
. Then we can talk about the

equivalence relation between traces with respect to a target
module, which is defined as: 𝑇𝑆

𝑀𝑖∼ 𝑇𝑆𝑖
𝑑𝑒𝑓
====== 𝑇𝑆 |𝑀𝑖

= 𝑇𝑆𝑖 |𝑀𝑖
.

The safety of the coarsening is captured by the equivalence
between traces, as in the following theorem.

InteractionPreservationTheorem. Given 𝑆 =
⋃

1≤𝑖≤𝑛 𝑀𝑖

and 𝑆𝑖 = (⋃𝑗≠𝑖 𝑀 𝑗) ∪𝑀𝑖 , we have 𝑇𝑆
𝑀𝑖∼ 𝑇𝑆𝑖 .

Appendix B provides the proof sketch of the theorem.
The key concept of the theorem is inspired by [47] but is

used differently. In [47], interaction preservation is used to es-
tablish the abstraction-refinement relation between different
levels of specifications. In this work, coarse-grained and fine-
grained specifications do not have abstraction-refinement
relations due to model-code gaps. Therefore, coarsening
does not enforce abstraction relations. Both fine-grained
and coarse-grained specifications are checked against im-
plementation for conformance. The correctness of modules
under verification is guaranteed by ensuring invariants of
system design. (The correctness is not guaranteed by abstrac-
tion relations between fine-grained and the coarse-grained
specifications as in [47].) The interaction preservation en-
sures that all possible behaviors of the target module under
verification is systematically explored, without noticing that
internal details of its interacting modules are omitted.
In our experience, identifying interaction variables in

TLA+ specifications is straightforward, especially for systems
designed with modularity and loose coupling. We can also
potentially borrow ideas from implementation-level model
checking [50] to dynamically identify interaction.

Case study: Coarsening the model of the Election and

Discovery phases. In ZooKeeper’s system specification,
the Election and Discovery phases are modeled by eight
atomic actions (Figure 5a). An action may handle an incom-
ingmessage (e.g., LeaderProcessACKEPOCH), send amessage to
a peer (e.g., ConnectAndFollowerSendFOLLOWERINFO), or broad-
casts messages to peers (e.g., FLEHandleNotmsg). If these two
phases are not the target of the verification, we can coarsen
the eight actions into one action, as shown in Figure 5b.
To do so, we first identify internal variables that do not

interact and thus do not affect other phases. For example,
one internal variable is currentVote (line 7 in Figure 5a).
This variable stores the leader information which is only
consumed by the local node; hence, this variable can be
abstracted away in the coarse-grained action.

6

Multi-Grained Specifications for Distributed System Model Checking and Verification EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

(* Actions in Election phase *)
FLEReceiveNotmsg(i, j) == ...
FLENotmsgTimeout(i) == ...
FLEHandleNotmsg(i) == ...
FLEWaitNewNotmsg(i) == /\ ...
/\ state' = [state EXCEPT ![i] =

IF currentVote[i].proposedLeader = i
THEN LEADING ELSE FOLLOWING]

(* Actions in Discovery phase *)
ConnectAndFollowerSendFOLLOWERINFO(i, j) == ...
LeaderProcessFOLLOWERINFO(i, j) == ...
FollowerProcessLEADERINFO(i, j) == /\ ...
/\ zabState' = [zabState EXCEPT ![i] = SYNCHRONIZATION]

LeaderProcessACKEPOCH(i, j) == /\ ...
/\ zabState' = [zabState EXCEPT ![i] = SYNCHRONIZATION]

①

②

②

(a) Before coarsening (eight actions in two modules)

1
2
3
4
5
6

ElectionAndDiscovery(i, Q) ==
/\ i \in Q /\ IsQuorum(Q) /\ ...
/\ state' = [s \in Server |-> IF s = i THEN LEADING

ELSE IF s \in (Q\{i}) THEN FOLLOWING ELSE state[s]]
/\ zabState' = [s \in Server |-> IF s = i \/ s \in (Q\{i})

THEN SYNCHRONIZATION ELSE zabState[s]]

①

②

(b) After coarsening (one action)

Figure 5. Interaction-preserving coarsening of the eight

actions in the Election and Discovery phases.

In comparison, variables state and zabState have external
effects; hence, they cannot be abstracted away. We use ①
to show how the variable state is updated before and after
the coarsening. Before coarsening, the state of a node is
updated according to the leader information, which is stored
in currentVote. After coarsening, all the participating nodes
atomically update their state as either LEADING or FOLLOWING
(line 3-4 in Figure 5b). This coarsening is interaction preserv-
ing, which is checked based on the constraints. We use ②
to show how the variable zabState (i.e., the node phase) is
updated before and after the coarsening. Before the coars-
ening, zabState is updated in different actions (lines 13 and
15 in Figure 5a); after coarsening, all the participating nodes
are collectively transitioned to the Synchronization phase
(line 5-6 in Figure 5b).

3.3 Composition

Composing modules and their actions is naturally supported
by TLA+. The common practice is to define a next-state
action that nondeterministically chooses one action from
one module to run in each step.

We define four modules corresponding to the four phases
of the Zab protocol and compose their specifications into
mixed-grained specifications. The four phases are Election,
Discovery, Synchronization and Broadcast as shown in Fig-
ure 6. Figure 7 shows one example composition, including
one (coarsened) action for both Election and Discovery, (fine-
grained) actions for Synchronization, and actions for Broad-
cast. In addition, the next-state action also includes actions
for modeling faults (e.g., a node crash). The entire specifica-
tion is defined as the initial state (Init) and the state transi-
tion represented by the next-state action ([]Next). Note that

Election Discovery Sync Broadcast

Figure 6. We define four modules and write specifica-

tions per module based on phases in Zab.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

15

(* Next-state action*)
Next ==

(* Abstracted action for Election and Discovery *)
\/ \E i \in Server, Q \in Quorums: ElectionAndDiscovery(i, Q)
(* Actions in Synchronization *)
\/ \E i, j \in Server: FollowerProcessNEWLEADER_UpdateEpoch(i, j)
\/ \E i, j \in Server: FollowerProcessNEWLEADER_LogAsync(i, j)
\/ \E i, j \in Server: FollowerProcessNEWLEADER_ReplyAck(i, j)
\/ \E i, j \in Server: FollowerSyncProcessorLogRequest(i, j)
\/ ...
(* Actions in Broadcast *)
\/ \E i \in Server: LeaderProcessRequest(i) \/ ...
(* Other actions, e.g., for modeling faults *)
\/ \E i \in Server: NodeCrash(i) \/ ...

Spec == Init /\ []Next

①

②

③

Figure 7. Composition of coarse- and fine-grained ac-

tions. ①: the coarsened action for Election and Discovery
(Figure 5b). ②: the fine-grained actions for Synchronization
(Figure 3 and Figure 4a). ③: the actions for Broadcast.

[] is the temporal operator □ which, in this context, means
that the next-state action keeps running forever.
This style of composition captures non-deterministic na-

tures of distributed systems. In each step, Next chooses any
possible action to run since it is defined as the disjunction
(\/) of all actions. If the action involves certain leader or
follower node, Next also chooses any possible node using the
existential quantifier (\E). So, the definition of Next allows
any (enabled) action with any server to happen at any point.

In this way, we compose different combinations of coarse-
and fine-grained modules into different specifications for
checking different phases of the Zab implementation.

3.4 Conformance Checking

We ensure that all the TLA+ specifications we wrote, de-
spite their granularities, match the implementation through
conformance checking. For a specification, the conformance
checker explores model-level state space to generate traces,
replays them in the implementation, and compares model-
and code-level execution traces (§3.5.2).
If the conformance checking detects a discrepancy be-

tween the model and the implementation, we debug the
discrepancy and revise the specification to match code be-
havior. The deterministic replay provided by our confor-
mance checker makes it easy to debug at the code level. After
the specification is updated, we run a new round of confor-
mance checking until it passes. The continuous conformance
checking helped us find several discrepancies, ranging from
inconsistent message types between specification and im-
plementation, to incorrect conditional branches and wrong
variable assignments that lead to unrealistic state transitions.

7

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands L. Ouyang, X. Sun, R. Tang, Y. Huang, M. Jivrajani, X. Ma, and T. Xu

Limitation. The conformance checking is unsound. It could
miss behaviors in implementation that are not modeled by
the specification, while the discrepancy is not detected dur-
ing conformance checking. We consider improving it with
refinement checking and abstraction mapping [44, 95]. We
only check safety properties instead of liveness properties
(which are hard for conformance checking).

3.5 Remix: Tooling Support

We wrote Remix as a framework and tooling support for
creating mixed-grained specifications by composing multi-
grained specifications of different modules, interfacing the
model checker (TLC), and providing conformance checking.

3.5.1 Workflow. We select the specification of each mod-
ule and compose them into a mixed-grained specification for
the entire system. We write the specifications in a compos-
able manner (§3.3) so composing them is straightforward.
Currently, the selection is done manually; future work can
automate it based on time budget of model checking. If there
is no specification at the desired granularity, one can write a
new specification (see §3.1 and §3.2). The new specification
will then be added into Remix. In case that the specifica-
tions are not composable, parsing or semantic errors will be
reported by the TLC model checker.

With multi-grained specifications, a specification is asso-
ciated with protocol- and code-level invariants (§4.2). Remix
automatically selects invariants when composing specifica-
tions, which will be checked during model checking.
We run continuous conformance checking to ensure the

specification in Remix is synchronized with the implementa-
tion (§3.4). We describe our conformance checker which is
built on top of deterministic execution.

3.5.2 Conformance checker. The conformance checker
randomly explores the model-level state space to obtain a set
of traces under a predefined time budget (e.g., 30 minutes).
For each trace, the conformance checker deterministically
replays it at the code level (§3.5.3) and reports a discrepancy
if (1) a model-level variable and its code-level counterpart
have different values, or (2) a model-level action’s code-level
counterpart, once enabled, never takes place (in 50 seconds).
Our conformance checker is not guaranteed to detect all

discrepancies through random exploration, similar to prior
work [35, 40, 94]. To avoid false alarms caused by discrepan-
cies, Remix deterministically replays each model-level trace
that violates some safety property to confirm the safety vio-
lation also happens in the implementation.
Our conformance checker also reports implementation

bugs with obvious symptoms like assertion failures when
replaying traces. Developers can mark such traces and later
during model checking Remix will focus on exploring other
traces since the marked traces are already known as buggy.

3.5.3 Deterministic execution. The conformance checker
needs to deterministically replay model-level traces at the
code level. Remix realizes deterministic execution by having
a central coordinator that intercepts and coordinates actions
from different threads on different nodes. The coordinator
takes a model-level trace as the input, schedules the code-
level actions one by one accordingly, and injects faults (e.g.,
node crashes) when needed.
To deterministically replay a model-level trace, the coor-

dinator needs to map each model-level action to the code,
and precisely control the interleaving between code-level
actions. Remix currently requires developers to provide a
mapping from each model-level action to the events that rep-
resent the beginning and the end of the corresponding code-
level action. Remix then instruments around such events to
control the interleaving. For example, the model-level ac-
tion FollowerProcessNEWLEADER(f,l)’s corresponding code-
level action begins with the leader l calling the writeRecord

method to send a NEWLEADER message to the follower f, and
ends with f sending back an ACK message (the writeRecord

method is used for sending messages between ZooKeeper
nodes). Developers provide this mapping and then Remix
instruments writeRecord to inject an RPC client that calls
the coordinator during runtime with the context informa-
tion (e.g., arguments and the caller of writeRecord). The call
returns only when the coordinator schedules this action ac-
cording to the model-level trace. The coordinator will not
schedule any other actions until the currently running action
ends. In this way, the coordinator deterministically decides
when each code-level action begins and controls the inter-
leaving between code-level actions.
If the implementation can interleave events that appear

atomic at the model level and generate discrepant states,
developers must either revise the specification to enable the
code-level interleaving, or provide amore precise mapping to
make the conformance. For example, the election messages
can interleave during Election, with a non-deterministic
leader generated. For a coarsened Election action that elects
a target leader at the model level, developers can set the
messages that vote for the target leader with higher priority.
In this way, the deterministic replay is able to generate a
matched state required by the model-level action. The de-
bugging process is iterative until the specification and the
mapping reach satisfactory conformance.
The deterministic execution is also useful for debugging

safety violations. For a trace that violates a safety property
during model checking, Remix deterministically reproduces
it at the code level, so that developers can diagnose the root
cause of the safety violation.
Remix implements the deterministic execution coordina-

tor using the Java RemoteMethod Invocation [23] framework
and instruments ZooKeeper using AspectJ [18] to inject the
RPC clients. For each version of the specification, developers

8

Multi-Grained Specifications for Distributed System Model Checking and Verification EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

need to provide a mapping from each model-level action to
the corresponding code-level action.

An alternative option for realistic execution is to intercept
system calls [94]. Intercepting system calls avoids system-
specific instrumentation and leaves the target system unmod-
ified. However, we choose to instrument the target system
because it is hard to control user-level threads (e.g., event
handlers in ZooKeeper) accurately at the system call level.

4 Verifying ZooKeeper

We wrote the protocol specification of Zab (§2.1.1), as well
as the system specification of ZooKeeper (§2.1.2), including
the specification of the Fast Leader Election (FLE) which was
not a part of the original Zab protocol [61]. We use the TLC
model checker to verify both of them.We build on the system
specification as the baseline to develop code specifications
and compose mixed-grained specifications as discussed in
§3. The mixed-grained specifications are then used to verify
the implementation of ZooKeeper and its code changes.

4.1 Mixed-Grained Specifications for Log Replication

We present the mixed-grained specifications composed us-
ing Remix to verify the log replication of ZooKeeper. We
focus on log replication because it is the main procedure
for achieving consensus in ZooKeeper.2 It involves both the
Synchronization and Broadcast modules. The log replication
implementation has been greatly optimized during the evo-
lution of ZooKeeper; hence, the code, especially the Synchro-
nization module, can be described by neither the protocol
nor the system specifications effectively. As a result, severe
bugs (e.g., those that lead to data loss or inconsistencies)
were constantly reported, such as [1, 3–5, 7].

Our first step is to ensure the system specifications match
the ZooKeeper implementation. We run conformance check-
ing and find a discrepancy where the model-level traces
cannot be successfully replayed at the code level due to an un-
expected exception. The root cause is that at the code level, if
the follower receives the COMMITmessage after the NEWLEADER
message, it will throw an unexpected NullPointerException

and terminate the Synchronization phase. The issue had been
reported in ZK-4394 [8] but was (still is) not resolved. So,
we adjusted the specification by adding new conditions and
a new commit assertion to check the NullPointerException

and avoiding further exploration once ZK-4394 occurs.
Based on the conformed system specification, we create

the following mixed-grained specifications (Table 1).

• mSpec-1. Since we target log replication, we coarsen the
Election and Discovery modules. Section 3.2 described the
coarseningwhich coarsens the eight actions of the Election

2We also verify the other part of ZooKeeper and find bugs including ZK-
2776, ZK-3336, ZK-3707, ZK-4040, ZK-4416 and ZK-4781. These bugs are
known bugs but still exist in the checked versions.

Log Replication

Spec Election Discovery

Synchronization Broadcast

SysSpec Baseline Baseline Baseline Baseline
mSpec-1 Coarsened Baseline Baseline
mSpec-2 Coarsened Fine-grained (atom.) Baseline

mSpec-3 Coarsened Fine-grained
(atom.+ concur.)

Fine-grained
(concur.)

mSpec-4 Baseline Baseline Fine-grained
(atom.+ concur.)

Fine-grained
(concur.)

Table 1. Mixed-grained specifications for verifying log

replication, composed from multi-grained specifica-

tions. “SysSpec” refers to the system specification that passes
conformance checking (used as the baseline).

and Discovery modules in the system specification into
one ElectionAndDiscovery action.

• mSpec-2. Wewrite a fine-grained specification of the Syn-
chronization module to model the non-atomic updates of
epoch and history when a follower receives the NEWLEADER
message (§3.1). So, the model checker can explore inter-
mediate states between the updates of epoch and history,
which is induced by node crashes. As we focus on log repli-
cation, mSpec-2 uses the coarsened action for the Election
and Discovery modules in mSpec-1.

• mSpec-3. This specification further models multithread-
ing concurrency in log replication. There are three main
threads in the follower process, for handling incomingmes-
sages, logging transactions, and committing transactions,
respectively. We distinguish the asynchronous actions exe-
cuted by different threads, and specify them into separate
actions, as demonstrated in §3.1. mSpec-3 also uses the
coarsened ElectionAndDiscovery.

• mSpec-4.As a reference, we create mSpec-4 by composing
system specifications of the Election and Discovery mod-
ules and fine-grained log replication modules in mSpec-3.

4.2 Invariants

We specify 14 invariants that are checked throughout the
model checking, as shown in Table 2. Ten invariants are
safety properties defined by the Zab protocol [60], including
both core properties and lemmata; these invariants must be
satisfied by any Zab implementations. During model check-
ing, these ten invariants are checked upon state transition.
These invariants apply to specifications of any granularity.

We also define other four types of invariants (11 instances
in total) based on the code-level implementation of ZooKeeper.
We observe that developers add additional checks on specific
behavior (e.g., by throwing exceptions and using assertions).
Some of them are not reflected by the safety properties of the
Zab protocol, and thus shall be included in fine-grained spec-
ifications. Some of them are caused by known, but still not
resolved bugs in the code, such as ZK-4394 discussed in §4.1.
Essentially, each of these invariants specify the execution is

9

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands L. Ouyang, X. Sun, R. Tang, Y. Huang, M. Jivrajani, X. Ma, and T. Xu

ID Invariant(s) Source

I-1 Primary uniqueness. There is at most one established leader for each epoch. Protocol
I-2 Integrity. If some process delivers 𝑡 , then some primary has broadcast 𝑡 . Protocol
I-3 Agreement. If some process 𝑓 delivers 𝑡 , and some process 𝑓 ′ delivers 𝑡 ′ , then 𝑓 ′ delivers 𝑡 or 𝑓 delivers 𝑡 ′ . Protocol
I-4 Total order. If some process delivers 𝑡 before 𝑡 ′ , then any process that delivers 𝑡 ′ must also deliver 𝑡 and deliver 𝑡 before 𝑡 ′ . Protocol
I-5 Local primary order. If a primary broadcasts 𝑡 before it broadcasts 𝑡 ′ , then a process 𝑓 that delivers 𝑡 ′ must also deliver 𝑡 before 𝑡 ′ . Protocol
I-6 Global primary order. If a process 𝑓 delivers both 𝑡 (in epoch 𝑒) and 𝑡 ′ (in epoch 𝑒′ , 𝑒 < 𝑒′), then 𝑓 must deliver 𝑡 before 𝑡 ′ . Protocol
I-7 Primary integrity. If a primary 𝜌𝑒 broadcasts 𝑡 and some process 𝑓 delivers 𝑡 ′ st. 𝑡 ′ has been broadcast by 𝜌𝑒′ , 𝑒′ < 𝑒 , Protocol

then 𝜌𝑒 must deliver 𝑡 ′ before it broadcasts 𝑡 .
I-8 Initial history integrity. Let 𝑒 , 𝑒′ be epochs, 𝑒 < 𝑒′ , and 𝑒 be an established epoch. 𝐼𝑒 ⊑ 𝐼𝑒′ . Protocol
I-9 Commit consistency. Let Δ𝑓 be the delivered transaction sequence of process 𝑓 , and 𝑓 .𝑒 be 𝑓 ’s last committed epoch. 𝐼𝑓 .𝑒 ⊑ Δ𝑓 . Protocol
I-10 History consistency. For any two processes 𝑓 and 𝑓 ′ that participate in epoch 𝑒 , either ℎ𝑓 ⊑ ℎ𝑓 ′ or ℎ𝑓 ′ ⊑ ℎ𝑓 . Protocol

I-11 Bad states (4 instances). Exceptions or false assertions on the server states upon receiving certain types of messages. Code
I-12 Bad acknowledgments (2 instances). Exceptions or false assertions on the ACK message content processed by the leader. Code
I-13 Bad proposals (2 instances). Exceptions or false assertions on the PROPOSAL message content processed by the follower. Code
I-14 Bad commits (3 instances). Exceptions or false assertions upon handling the COMMIT message or committing a transaction. Code

Table 2. Invariants including safety properties of the Zab protocol and the code-level assertions by developers. 𝑡 : a
transaction; ℎ𝑓 : (transaction) history of process 𝑓 ; 𝜌𝑒 : primary of epoch 𝑒 ; ⊑: the relation of prefix; 𝐼𝑒 : initial history of epoch 𝑒 .

Specification diff. Lines Variables Actions Instr. Hour

mSpec-1 − SysSpec +64, -342 29 (-8) 16 (-7) 31 (+0) 18
mSpec-2 − mSpec-1 +34, -19 29 (+0) 17 (+1) 32 (+1) 8
mSpec-3 − mSpec-2 +188, -118 31 (+2) 19 (+2) 36 (+4) 40

Table 3. Efforts of writing multi-grained specifications.

“#Instr.” refers to the number of instrumentation pointcuts.

on an error path. These invariants are checked whenever the
model checker reaches the corresponding execution path.
Note that code-level invariants are specific to certain granu-
larities that model the corresponding execution.

4.3 Efforts

Table 3 shows the efforts of writing multi-grained speci-
fications in Table 1. The efforts of writing and maintain-
ing multi-grained specifications are manageable, especially
when baseline specifications are available. Fine-grained mod-
eling and coarsening can be done incrementally on top of the
reference specification. For example, the differences between
the specifications are less than 500 lines. Following compos-
able formal methods, all invariants and most variables in
the baseline specification are directly reused. In addition, we
need to provide a mapping from the newly added (coarse- or
fine-grained) model-level actions to the code-level actions so
that Remix can instrument code for deterministic execution
(§3.5.3) at different granularities. Overall, the effort is done
within 40 person-hours, and is done by one person who is
familiar with the ZooKeeper code and is proficient in TLA+.
Further, as more specifications are written, the reusability of
composable components grows higher, amortizing the cost.

4.4 Setup

We use a configuration of a three-node ZooKeeper cluster
with up to four transactions, up to three node crashes, and up
to three network partitions. This configuration is a common

practice used in prior work [69, 76, 94, 97]. We use TLC to
run model checking on TLA+ specifications on a single ma-
chine. We use TLC’s breath-first search (BFS) as the strategy
for state-space exploration. With BFS, once an invariant is
violated, we can obtain the buggy trace with minimal depth.

5 Results and Experience

5.1 Verification Results

We start to systematically model check ZooKeeper using
mixed-grained specifications since version v3.9.1. ZooKeeper
did not pass the verification. The model checking exposes
a total of six severe bugs, as shown in Table 4. All these
bugs have serious consequences, including data loss, data
inconsistencies, and data synchronization failures. All these
bugs are deep bugs, as their manifestations take minimal
depths of tens of actions and more than tens of thousands
of states, which are hard for developers to reason about. For
the same reason, they are also hard to fix (§5.3).
Those bugs are found when TLC reports violations of

invariants in the traces during model checking. We then con-
firmed the bugs by deterministically replaying the traces at
the code level using Remix (§3.5). To debug a violation, we
analyze the model-level trace to understand the triggers and
locate the root cause in the code. The debugging is eased by
traces with minimal depth explored by the BFS strategy. In
practice, we start the model checking from a small configu-
ration (e.g., one node crash) to a large one (up to three node
crashes), which helps us obtain a simple and concise trace.
Table 4 shows the most efficient specification that found

each bug. All the bugs except one (ZK-4394) require mSpec-
2 and mSpec-3. In other words, finding these bugs needs
fine-grained modeling of non-atomic actions and local con-
currency; these bugs cannot be found by the baseline system
specification (§2.1.2). The results show the importance of
closing the model-code gap with fine-grained specifications

10

Multi-Grained Specifications for Distributed System Model Checking and Verification EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Bug ID Impact Spec. Time Depth #States Inv.

ZK-3023 Data sync failure mSpec-3 11 sec 13 78,892 I-11
ZK-4394 Data sync failure mSpec-1* 9 sec 20 14,264 I-14
ZK-4643 Data loss mSpec-2 17 sec 21 208,018 I-8
ZK-4646 Data loss mSpec-3 109 sec 21 2,880,498 I-8
ZK-4685 Data sync failure mSpec-3 10 sec 12 67,418 I-12
ZK-4712 Data inconsistency mSpec-3 11 sec 13 73,293 I-10

Table 4. Bug detection in ZooKeeper v3.9.1. “Spec.” shows
the most efficient mixed-grained specification to find the bug.
“Inv.” shows the first violated invariant triggered by the bug.
ZK-4394 is not fixed yet so we masked it in our specifications;
mSpec-1* refers to the specification before masking it.

that reflect code-level behavior. We discussed ZK-4394 in
§4.1. It can be found by mSpec-1 with conformance checking.
The bug can be found with the system specification also;
but, compared with the system specification, mSpec-1 sig-
nificantly reduces the time to find the bug. In fact, all the
bugs were found in less than two minutes with the bene-
fits of specification coarsening. We discuss more about the
efficiency of coarse-grained specifications in §5.2.

Three of the six bugs violate protocol-level invariants and
the others violate code-level invariants. We find that code-
level invariants are important, as developers often directly
throw exceptions to abort the execution in certain critical
cases, which is not defined in the protocol (§4.2).

Appendix A describes these bugs in more details.

5.2 Efficiency

Mixed-grained specifications effectively improve efficiency
of verifying the target modules. We evaluate the verification
efficiency of the five specifications in Table 1. We set the time
budget to be 24 hours and the violation limit to be 10,000. We
use each of these specifications to verify ZooKeeper v3.7.0.
We run TLC (v1.7.0) with the BFS mode for exploration. All
the experiments were run on an Ubuntu 22.04 server with
two AMD EPYC 7642 processors at 3.3GHz; each proces-
sor has 48 cores and 96 hyperthreads. Each specification is
checked by 16 workers (threads) with 32 GB memory.

Table 5 shows verification efficiency results in two modes:
(5a) stopping at the first violation, and (5b) running to com-
pletion (till the limit). The mixed-grained specifications with
fine-grained modeling (mSpec-2, -3, and -4) detect violations
within the time limit. The baseline (system specification)
and mSpec-1 find no violation because of not modeling fine-
grained behavior. The baseline and mSpec-4 cannot finish in
24 hours, and we observe that TLC spends most of the time
in the Election module without reaching other modules (the
leader election algorithm is complex and takes many steps).
mSpec-4 costs 2793× more time to detect the first violation
compared to mSpec-3 as it does not coarsen the Election
and Discovery modules. In comparison, mSpec-1, -2, and -3
coarsen the Election and Discovery modules, enabling TLC
to more efficiently check the log replication modules. As a

Spec Time Depth # States # Violated Inv.

Baseline >24h 26 2,271,335,268 None
mSpec-1 12m20s 56 17,586,953 None
mSpec-2 1m15s 21 2,237,960 I-8
mSpec-3 11s 13 77,179 I-10
mSpec-4 8h32m6s 24 967,810,552 I-10

(a) Stopping at the first violation

Spec Time Depth # States # Violation # Vio. Inv.

Baseline >24h 26 2,271,335,268 0 None
mSpec-1 12m20s 56 17,586,953 0 None
mSpec-2 15m55s 62 24,211,064 1,404 I-8
mSpec-3 5m10s 21 1,727,234 >10,000 I-10, I-11, I-12
mSpec-4 >24h 26 2,478,453,900 35 I-10, I-11, I-12

(b) Running to completion

Table 5. Verification efficiency of specifications with

different granularities. The configuration is three servers,
two transactions, two crashes, and two partitions. “Depth”
refers to the number of state transitions; “States” refers to
the distinct states explored (and reported) by TLC.

ZK-2678∗

ZK-4643

ZK-3642∗
ZK-3023
ZK-3911∗

ZK-2845∗
ZK-4712
ZK-4685
ZK-4646
ZK-4394

(Optimizations of
data recovery)

Figure 8. Bugs introduced in ZooKeeper’s log replica-

tion implementation. * refers to those with fixes merged.

result, these three mixed-grained specifications can finish in
tens of minutes, with mSpec-2 and -3 finding the first viola-
tion in minutes. So, mixed-grained specifications provide the
flexibility to help the model checker focus on target modules
with fine-grained models, which is critical to finding bugs
and receiving prompt feedback.

5.3 Verifying Bug Fixes

Fixing bugs is challenging—it is easier to prevent specific
symptoms, but harder to rule out root causes due to the
complexity of reasoning about all interleavings of actions.
We first fixed ZK-4712, but found the other bugs are much
harder to fix. They are rooted in various performance opti-
mizations since 2017, triggered by ZK-2678 [2]. These opti-
mizations have introduced over ten data loss/inconsistency
bugs [3, 4, 6–8, 11–13, 15, 16, 26]. Some of them were fixed,
while others were not. Without sufficient verification at the
time, some accepted fixes introduced new bugs (Figure 8).

Mixed-grained specifications enable us to verify bug fixes
efficiently. We verify four Pull Requests (PRs) that attempted
to fix the bugs in Table 4. All the PRs use multithreading with
non-atomic updates of epoch and history in the Synchroniza-
tion phase. Therefore, we use the specification of mSpec-3 as
the base specification. With the fix of ZK-4712, we updated
mSpec-3, referred to as mSpec-3+ (verified using TLC). For

11

https://issues.apache.org/jira/browse/ZOOKEEPER-3023
https://issues.apache.org/jira/browse/ZOOKEEPER-4394
https://issues.apache.org/jira/browse/ZOOKEEPER-4643
https://issues.apache.org/jira/browse/ZOOKEEPER-4646
https://issues.apache.org/jira/browse/ZOOKEEPER-4685
https://issues.apache.org/jira/browse/ZOOKEEPER-4712
https://issues.apache.org/jira/browse/ZOOKEEPER-2678
https://issues.apache.org/jira/browse/ZOOKEEPER-4643
https://issues.apache.org/jira/browse/ZOOKEEPER-3642
https://issues.apache.org/jira/browse/ZOOKEEPER-3023
https://issues.apache.org/jira/browse/ZOOKEEPER-3911
https://issues.apache.org/jira/browse/ZOOKEEPER-2845
https://issues.apache.org/jira/browse/ZOOKEEPER-4712
https://issues.apache.org/jira/browse/ZOOKEEPER-4685
https://issues.apache.org/jira/browse/ZOOKEEPER-4646
https://issues.apache.org/jira/browse/ZOOKEEPER-4394

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands L. Ouyang, X. Sun, R. Tang, Y. Huang, M. Jivrajani, X. Ma, and T. Xu

Spec. Change Time Depth #States Inv.

PR-1848 mSpec-3+ +68, -29 274s 21 8,166,775 I-8
PR-1930 mSpec-3+ +102, -66 17s 13 270,881 I-12
PR-1993 mSpec-3+ +71, -51 34s 15 765,437 I-11
PR-2111 mSpec-3+ +70, -43 38s 15 808,697 I-11

Table 6. Verifying bug fixes (pull requests). mSpec-3+ is
the specification of mSpec-3 with the fix of ZK-4712.

each PR, we map the code changes to mSpec-3+ and update
mSpec-3+ accordingly. Table 6 shows the verification results
with the mode of stopping at the first violation. All four fixes
are detected with invariant violations within five minutes.
The challenge of fixing these bugs is that all of them in-

volve the logic of handling the NEWLEADER message. So, it is
hard to fix them in isolation—the fix of one bug can make it
hard to fix the others. For example, PR-1993 targets ZK-4646
and ZK-4685, without considering other bugs like ZK-4394.
To further fix ZK-4394 based on PR-1993 need heavy revision
on the code logic of PR-1993. If we consider the full picture,
PR-1993 is not a good step towards a complete solution. Some
fixes lead to new bugs, e.g., the merged fix for ZK-3911 did
not prevent the same violation, but opened new triggering
paths of ZK-3023 and induced new bugs like ZK-4685.

The mixed-grained specifications help us understand the
root causes and systematically verify whether a given code
fix is completed by exhaustively exercising all the possible
interleavingsmodeled by the fine-grained specification.With
a holistic understanding, we developed a fix that resolves
all the bugs in Figure 8, and verify it with extensive model
checking. We discuss our resolution in §5.4. The verified
fixes have been merged to the latest version of ZooKeeper.

5.4 Improving the Zab Protocol

One essential reason for the error-proneness of log replica-
tion is rooted in deviation of the implementation in ZooKeeper
from the Zab protocol. For example, the atomicity of updat-
ing epoch and history is explicitly required by the protocol,
but is not followed by the implementations.3 Basically, the
protocol no longer guides the implementation. To fix existing
bugs and also make it easy to implement correctly, we re-
move the atomicity requirement of the two updates from the
Zab protocol but require their order—the follower updates
its history before updating its epoch.

We update the protocol specification (§2.1.1), which splits
the action of handling a NEWLEADER message into two serial-
ized actions of updating history and epoch. In this way, the
model checker can explore traces when a follower crashes
right after it updates history. We add a variable servingState
to help express the enabling conditions of updating history
and epoch. We run extensive model checking with TLC to
verify the new protocol specification and it passes all the ten
protocol-level invariants (Table 2).
3The Zab protocol implemented in ZooKeeper [86] has evolved in several
other ways different from original papers [60, 61].

We then update the implementation based on the new
protocol, and address all the bugs in Figure 8 by enforcing
the order of several critical events. We change asynchro-
nous logging into synchronous logging and the overhead
is acceptable as it only occurs when the follower receives
COMMIT before handling the NEWLEADERmessage (synchronous
logging is already used in v3.9.2). The new implementation
conforms to the new protocol specification. We updated
mSpecs in Table 1 which passed model checking.

6 Discussion

Writing TLA+ specifications for distributed protocols and
systems has become a common practice [31, 36, 52, 65, 74, 81,
106]. As articulated in [81], writing specifications enforces
clear thinking, precise designs, and unambiguous documents.
We started from the protocol and system specifications (§2.1).
However, it is clear to us that code-level implementation
evolves fast and inevitably deviates from the protocol and
system designs due to performance optimizations. As a con-
sequence, deep bugs often reside in the model-code gaps
(§2.2). We advocate for reconciling formal specifications with
code implementations by fine-grained modeling of several
important implementation aspects, such as multithreading
and non-atomic updates. We show that such modeling is
beneficial and helps understand and address a few complex,
long-lasting issues in ZooKeeper.

We cope with the enlarged state space introduced by fine-
grained modeling with mixed-grained specifications which
are composed of multi-grained specifications. In essence,
mixed-grained model checking is a divide-and-conquer strat-
egy which leverages good modularity and loose coupling
of distributed systems like ZooKeeper. Apart from model
checking, multi-grained specifications also bring benefits
such as enforcing precise thinking, communication, and doc-
umentation across the ladder of abstractions (§5.3).

Compared with implementation-level model checking [50,
69, 76, 101], our philosophy is different. We intend to do
checking at the model level, which is more efficient and
scalable than running heavy distributed system code. It is
harder to reduce unnecessary overheads at the code level
such as network and disk operations and code that is not
targeted for verification. Prior work [50] developed dynamic
interface reduction, but can only reduce to node locally. Our
goal is to develop models that effectively reflect the code and
have the flexibility to choose granularities by phases. In our
experience, it is not easy to define a clean local/non-local
boundary for nodes in existing TLA+ specifications due to
the common use of global variables in TLA+.

Amazon recently shared their practice of using property-
based testing with randomly generated test input to exer-
cise both the implementation and the executable model and
checks whether they agree [35]. We cannot directly apply
this approach: (1) our model in TLA+ is not executable and

12

https://github.com/apache/zookeeper/pull/1848
https://github.com/apache/zookeeper/pull/1930
https://github.com/apache/zookeeper/pull/1993
https://github.com/apache/zookeeper/pull/2111

Multi-Grained Specifications for Distributed System Model Checking and Verification EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

(2) existing property-based testing framework [22] cannot
directly control event interleaving inside the system un-
der test. So, our conformance checker follows a top-down
approach, i.e., using the TLC model checker to generate
event traces and replays them in the implementation by
deterministically controlling event interleaving, as used in
SandTable [94]. Conformance can also be checked with a
bottom-up approach, i.e., generating implementation-level
traces and checking whether they are allowed by the model,
as adopted by VYRD [44], CCF [40] and etcd [14]. We choose
the top-down approach as it can be easily reused for deter-
ministic replay and bug confirmation in the implementation
once some safety violation is found at the model level.

We believe that our practice of writing multi-grained spec-
ifications is viable and can be generalized beyond ZooKeeper.
As we show in §4.3, the efforts on writing multi-grained spec-
ifications and instrumentations are reasonable and can be
amortized, and the specifications are written by one person
who knows deeply about the protocol and the implementa-
tion. On the other hand, maintaining multi-grained models
can be more expensive. We have no silver bullet beyond run-
ning continuous conformance checking upon code changes
and updating the specifications accordingly. Modern contin-
uous integration is an opportunity to update models incre-
mentally. Since most code changes are local, most modules
and high-level specifications stay unchanged. The cost of
running conformance checking upon changes and updating
specifications accordingly mainly lies in the changed mod-
ules and fine-grained specifications. The mix-grained models
can make continuous verification more efficient.

7 Related Work

We documented our preliminary work in [82]. At that time,
we were writing three types of specifications: (1) protocol
specification, (2) system specification as super-doc, and (3)
test specification for testing of ZooKeeper. Those specifi-
cations were not coherent and could not meet the goal of
verifying ZooKeeper implementation in this paper.

In [82], we defined a test specification as a refinement of
a system specification. However, we later find that refine-
ment is not the right approach to addressing model-code
gaps (§2.2); thus we no longer enforce refinement relations.
Instead, we write fine-grained specifications to close model-
code gaps and write coarse-grained specifications to speed-
up exploration of global states. For the same reason, unlike
in [82] where we viewed a system specification as an abstrac-
tion of a test specification, we no longer enforce the abstrac-
tion relation during coarsening but only ensuring interaction
preserving. For example, when specifying atomicity-related
behavior, the coarse-grained specification does not abstract
away any variable from the fine-grained one, but has fewer
transitions compared to the fine-grained one, so no obvious
abstraction or refinement relation exists.

Verification. TLA+ has been widely used for modeling
and verifying distributed systems. Recent work [52, 81] uses
TLA+ to model and verify system designs, but not imple-
mentations. Recently, TLA+ based techniques have also been
developed to test and verify distributed system implementa-
tions [82, 94, 97]. From the tooling perspective, SandTable [94]
is a close approach. LikeRemix, SandTablemodels distributed
systems in TLA+, verifies systems using model checking and
ensures the specification quality using conformance check-
ing. Therefore, we believe that SandTable can effectively
benefit from multi-grained specifications. Notably, we notice
that unlike Remix, SandTable cannot check thread interleav-
ing because it intercepts at the system-call level and thus is
hard to differentiate between user-level threads. This is one
reason we choose to instrument application code so as to
control user-level thread interleaving.
Programming languages with built-in model checking

support [43, 48, 51, 62, 63, 100] can help build clean-slate
verified distributed systems. Unfortunately, it is hard for us to
use them for ZooKeeper, which requires major revisions. We
were mostly looking for “lightweight” formal methods [35].

Compared to implementation-level model checking [50,
69, 76, 90, 101], we take a different approach by exploring
state space at themodel level to avoid code-level overhead, as
discussed in §6. Among implementation-level model check-
ers, DeMeter [50] also takes a divide-and-conquer strategy
and decomposes the problem of model checking a distributed
system into model checking each node locally. Differently,
our approach decomposes the model checking problem into
model checking each phase and thus is complementary.

Prior work also explored model checking support for dis-
tributed systems [54, 68, 87]. In particular, DBSS [87] de-
composes model checking by focusing on variables relevant
to the property being checked, and verifies protocol-level
correctness. Our decomposition is agnostic of any specific
property, and we focus on verifying whether the system
correctly implements the protocol.
Refinement checking and trace validation are also stud-

ied [14, 40, 44, 95]. Tasiran et al. [95] validates hardware
designs by connecting the specification and simulation and
using model checking to monitor correctness and cover-
age. VYRD [44] implements I/O and view refinement check-
ing to detect runtime refinement violations for concurrent
programs. Our approach verifies the implementation by
exploring specification-level states, with the checking of
specification-implementation conformance. The conformance
checking shares a similar iterative process of selecting com-
mit points in implementation and debugging the mapping
between specification and implementation in [44, 95].

Besides, deductive verification approaches have been used
to build verified distributed system implementations [55, 57,
88, 89, 92, 98]. Deductive verification does not need a checker

13

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands L. Ouyang, X. Sun, R. Tang, Y. Huang, M. Jivrajani, X. Ma, and T. Xu

to explore state space. However, deductive verification re-
quires hard efforts to write proofs and cannot be directly
applied to existing distributed systems.
Bug finding. Many testing techniques [19, 33, 34, 37, 38,
45, 46, 49, 64, 75, 91, 96, 99] detect bugs in distributed sys-
tems by fault injection. These tools typically inject faults
randomly [83, 96] or focus on a system’s vulnerable points
with manual guidance [19, 38, 49, 64] or automated anal-
ysis [33, 37, 75, 99]. Besides, several projects [72, 73, 105]
detect distributed concurrency bugs caused by unexpected
interleaving among node events by analyzing happen-before
relationships between events [72, 73] or manipulating event
ordering [105]. Recent works have also used model checkers
to generate test cases for distributed systems [42, 97]. Devel-
opers at Amazon have applied property-based testing to test
a production system against executable specifications [35].
Despite their effectiveness in detecting bugs, none of these
techniques can verify a distributed system by exhaustively
exploring its state space.

8 Concluding Remarks

In this paper, we show that formal methods like TLA+ can
not only verify protocol and system designs, but also help
verify system implementation by modeling important code-
level behavior with conformance checking. We advocate for
the practice of multi-grained specification and show that
the composed mixed-grained specifications provide useful
capabilities to manage the state space, making model check-
ing and verification efficient and more usable. With formal
methods like TLA+ being widely accepted and adopted, we
hope that our work leads to a forward step in empowering
formal methods to benefit distributed systems in practice.

Acknowledgment

We thank the anonymous reviewers and our shepherd, Ser-
dar Tasiran, for their insightful comments. Huang’s group
is supported by the National Natural Science Foundation
of China (62025202, 62372222), the CCF-Huawei Populus
Grove Fund (CCF-HuaweiFM202304), the Cooperation Fund
of Huawei-NJU Next Generation Programming Innovation
Lab (YBN2019105178SW38), and the Postgraduate Research
&Practice Innovation Program of Jiangsu Province (KYCX24_
0235). Xu’s group is supported in part by NSF CNS-2130560,
CNS-2145295, and a VMware Research Gift.

A Descriptions of Detected Bugs

We provide more information of the bugs in Table 4. The
detection of these bugs is described in §5.1. Two of these
bugs are known bugs, while the others are new bugs detected
during the process of verifying ZooKeeper using Remix. All
the bugs are deep safety bugs that are hard to trigger without
model checking—each of them takes tens of actions and tens
of thousands of states to manifest (see Table 4).

ZK-3023 [4]. The follower fails to catch up with the up-to-
date committed data after data recovery is finished. It was
caused by the asynchronous commit of the transactions dur-
ing the Synchronization phase. The bug is triggeredwhen the
leader handles ACK of UPTODATE before the follower commits
the pending requests. The bug was known but Remix still de-
tected it in the latest version by then. This bug was originally
reported by a test, but the test cannot reliably trigger the
buggy interleaving. Our tool deterministically reproduced
this bug by detecting violations of I-11 (bad states).
ZK-4394 [8]. This bug could unexpectedly terminate data
recovery, which can occur repeatedly and make the follower
unavailable. When a follower cannot match the COMMIT mes-
sage to a received request in the Synchronization phase, it
throws NullPointerException. The bug is triggeredwhen the
follower, after processing the NEWLEADER message, receives a
COMMITmessage before the UPTODATEmessage. It was a known
bug but still in the latest version of ZooKeeper we verified.
ZK-4643 [12]. This bug results in data loss. The implemen-
tation fails to guarantee that the follower atomically updates
the history with the epoch (an atomic action in the original
Zab protocol). It manifests when a follower crashes after
updating its epoch, becomes the new leader with stale com-
mitted history, and then truncates the committed data of
others. The triggering involves a follower crash between the
update of epoch and the update of history, together with two
crashes of other nodes across three rounds of Election, Dis-
covery, and Synchronization. This is a new bug we detected.
ZK-4646 [13]. This bug causes data loss. The root cause lies
in the asynchronous logging of the followers when the leader
starts serving clients, which is assumed to be synchronously
done by the protocol. It manifests when the uncommitted
data is seen by clients and then be removed later. The bug is
triggered when leader and followers all crash after a client
reads the data that a majority of followers have not persisted
in disk, and then one of the follower is elected as the new
leader. This is a new bug we detected.
ZK-4685 [15]. This bug fails data recovery among nodes,
which increases recovery time and reduces system availabil-
ity. The root cause is that the leader fails to recognize an ACK,
which blocks the leader and then leads to the shutdown of
all nodes from the Synchronization phase. To trigger this,
the follower replies to the leader with ACK of PROPOSAL before
ACK of NEWLEADER when the leader is collecting a quorum of
ACKs of NEWLEADER. This is a new bug we detected.
ZK-4712 [16]. This bug causes data inconsistency, as a
follower keeps extra transactions in its log even after data
recovery, making clients obtain inconsistent views from dif-
ferent servers. It was caused by the asynchronous logging
during the follower’s shutdown. To trigger it, a follower goes
back to the Election phase with a non-empty request queue
for logging, and then updates its latest transaction ID before
processing requests in the queue. It is a new bug we detected.

14

Multi-Grained Specifications for Distributed System Model Checking and Verification EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

B Proof Sketch of the Interaction

Preservation Theorem

We prove that interaction-preserving coarsening does not
affect the correctness of model checking.

We denote a specification 𝑆 that consists of 𝑛 modules as
𝑆 =

⋃
1≤𝑖≤𝑛 𝑀𝑖 , and we define 𝑀𝑖 as a module obtained by

coarsening𝑀𝑖 following the constraints of interaction preser-
vation (§B.2). 𝑆𝑖 is denoted as the specification by coarsening
every other module except𝑀𝑖 , i.e., 𝑆𝑖 = (⋃𝑗≠𝑖 𝑀 𝑗) ∪𝑀𝑖 .

Let the traces allowed by 𝑆 and 𝑆𝑖 be𝑇𝑆 and𝑇𝑆𝑖 respectively.
When we are only concerned with the states of the target
module𝑀𝑖 , all traces in𝑇𝑆 and𝑇𝑆𝑖 are projected to𝑀𝑖 , which
are denoted as 𝑇𝑆 |𝑀𝑖

and 𝑇𝑆𝑖 |𝑀𝑖
. Then we can talk about the

equivalence relation between traces with respect to a target
module, which is defined as: 𝑇𝑆

𝑀𝑖∼ 𝑇𝑆𝑖
𝑑𝑒𝑓
====== 𝑇𝑆 |𝑀𝑖

= 𝑇𝑆𝑖 |𝑀𝑖
.

The safety of the coarsening is captured by the equivalence
between traces, as in the following theorem:

InteractionPreservationTheorem. Given 𝑆 =
⋃

1≤𝑖≤𝑛 𝑀𝑖

and 𝑆𝑖 = (⋃𝑗≠𝑖 𝑀 𝑗) ∪𝑀𝑖 , we have 𝑇𝑆
𝑀𝑖∼ 𝑇𝑆𝑖 .

Proof. The basic idea of the proof is that, if the target mod-
ule𝑀𝑖 cannot distinguish whether it is interacting with the
original module 𝑀 𝑗 or the coarsened module 𝑀 𝑗 , then the
behavior of𝑀𝑖 is not affected by the coarsening.

We define the notations used in the theorem and the proof
and present the rule for ensuring interaction preservation. In
the proof, we first present the condensation of traces (𝑇𝑆 |𝑀𝑖

),
to restrict our attention to the target module 𝑀𝑖 . Then we
establish the equivalence between 𝑇𝑆 |𝑀𝑖

and 𝑇𝑆𝑖 |𝑀𝑖
.

B.1 Notations

TLA
+
basics. In the TLA+ specification language, a system

is specified as a state machine by describing the possible
initial states and the allowed state transitions called 𝑁𝑒𝑥𝑡 .
Specifically, the specification of system design contains a
set of system variables V . A state is an assignment to the
system variables. 𝑁𝑒𝑥𝑡 is the disjunction of a set of actions
𝑎1 ∨𝑎2 ∨ · · · ∨𝑎𝑝 , where an action is a conjunction of several
clauses 𝑐1 ∧ 𝑐2 ∧ · · · ∧ 𝑐𝑞 . A clause is either an enabling
condition, or a next-state update. An enabling condition is a
state predicate which describes the constraints the current
state must satisfy, while the next-state update describes how
variables can change in a step (i.e., successive states).

Whenever every enabling condition 𝜙𝑎 of an action 𝑎 is
satisfied in a given “current” state, the system can transfer
to the “next” state by executing 𝑎, assigning to each variable
the value specified by 𝑎. We use “𝑠1

𝑎→ 𝑠2” to denote that
the system state goes from 𝑠1 to 𝑠2 by executing action 𝑎,
and 𝑎 can be omitted if it is obvious from the context. Such
execution keeps going and the sequence of system states
forms a trace of system behavior.

A system usually consists of several modules, each imple-
menting some specific function. For the TLA+ specification
of a distributed system, we define:

Definition 1 (module). A module is a set of actions. All the
modules form a partition of all actions in the specification.

Assume that we write a specification 𝑆 =
⋃

1≤𝑖≤𝑛 𝑀𝑖 for
the system under verification. Our target module is𝑀𝑖 , and
we coarsen every other module, obtaining 𝑆𝑖 = (⋃𝑗≠𝑖 𝑀 𝑗) ∪
𝑀𝑖 . The coarsening ensures interaction preservation (§B.2).

We define the set of all possible traces allowed by 𝑆 (resp.
𝑆𝑖) as𝑇𝑆 (resp.𝑇𝑆𝑖).𝑇𝑆 and𝑇𝑆𝑖 are different, and𝑇𝑆 usually has
a much larger size than 𝑇𝑆𝑖 . With target module 𝑆𝑖 in mind,
we omit unrelated details in the traces by condensation (§B.3),
and then show that the two sets of traces are equivalent with
respect to the target module𝑀𝑖 (§B.4).

B.2 Interaction Preservation

Modules interact with each other through the system vari-
ables. To capture this, we first define the dependency variable
of an action and that of a module:

Definition 2 (dependency variable). Suppose module𝑀 =

{𝑎1, 𝑎2, · · · , 𝑎𝑚}, dependency variables of𝑀 , denoted asD𝑀 ,
is obtained recursively according to the following rules:
1. For any action 𝑎𝑖 ∈ 𝑀 , its dependency variables D𝑎𝑖 are

the variables which appear in some enabling condition
𝜙𝑎𝑖 of 𝑎𝑖 .

2.
⋃

1≤𝑖≤𝑚 D𝑎𝑖 ⊆ D𝑀 . That is, the dependency variables of
each action in𝑀 belong to D𝑀 .

3. For any 𝑣 ∈ D𝑀 and any action 𝑎𝑖 ∈ 𝑀 , if the next-state
update of 𝑎𝑖 assigns to 𝑣 a value calculated from multiple
variables (denoted by variable set 𝑉𝑑𝑒𝑝), then 𝑉𝑑𝑒𝑝 ⊆ D𝑀 .
This is due to transitivity of the dependency relation, i.e.,
if𝑀 depends on some variable 𝑣 and 𝑣 depends on another
variable𝑤 , then𝑀 also depends on𝑤 .

Given the definitions above, we can now say that module
𝑀 𝑗 interacts with𝑀𝑖 by modifying D𝑀𝑖

.
The notion of dependency variable alone is not sufficient

to capture interactions among modules, since even if 𝐷𝑀𝑖

are not modified by some action in 𝑀 𝑗 , 𝑀𝑖 may still be af-
fected indirectly. Suppose 𝑥 ∈ D𝑀𝑖

, an action in another
module𝑀 𝑗 assigns to 𝑥 the value of 𝑦 (note that 𝑦 will not
be added to D𝑀𝑖

by the Rule 3 in Definition 2, since 𝑥 is
assigned the value of 𝑦 in module 𝑀 𝑗 , not in 𝑀𝑖). In this
case, any assignment to 𝑦 may also change the value of 𝑥
in subsequent actions. To capture such indirect interactions
among modules, we define the set of interaction variables I:

Definition 3 (interaction variable). Suppose the specifica-
tion contains 𝑘 modules:𝑀1, · · · , 𝑀𝑘 . The set of interaction
variables I is calculated recursively according to the follow-
ing rules:

15

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands L. Ouyang, X. Sun, R. Tang, Y. Huang, M. Jivrajani, X. Ma, and T. Xu

1.
⋃

1≤𝑖< 𝑗≤𝑘 (D𝑀𝑖
∩ D𝑀𝑗

) ⊆ I. That is, if a variable is a
dependency variable of multiple modules, then it belongs
to I.

2. For any 𝑣 ∈ I and any module 𝑀𝑖 , if an action 𝑎 ∈ 𝑀𝑖

assigns to 𝑣 a value calculated from multiple variables
(denoted by set𝑉𝑖𝑛𝑡𝑟), then add all variables in𝑉𝑖𝑛𝑡𝑟 \D𝑀𝑖

to I. That is, the value assigned to an interaction variable
by any action in 𝑀𝑖 should be calculated from values of
variables in interaction variables or dependency variables
of the module, i.e., I ∪ D𝑀𝑖

.
3. For any variable 𝑣 ∈ D𝑀𝑖

\I in anymodule𝑀𝑖 , if an action
assigns to 𝑣 a value calculated from multiple variables
(denoted by set𝑉 ′

𝑖𝑛𝑡𝑟), then add all variables in𝑉 ′
𝑖𝑛𝑡𝑟 \D𝑀𝑖

to I. That is, the value assigned to a “internal” variable
of 𝑀𝑖 by any action should be calculated from values
of interaction variables or from values of dependency
variables of the module, i.e., I ∪ D𝑀𝑖

.

Note that Rule 1 of this definition is conservative. Some
variable 𝑥 in both D𝑀𝑖

and D𝑀𝑗
may not convey any inter-

action between𝑀𝑖 and𝑀 𝑗 . However, in practice such cases
are rare (see the case study in §4).

The coarsening preserves interaction if: (1) all dependency
variables of the target module, as well as all interaction vari-
ables remain unchanged after the coarsening; (2) all the up-
dates of the dependency variables and interaction variables
remain unchanged after the coarsening. Put it differently,
only variables in V\(I ∪ D𝑀𝑖

) and state updates only in-
volving such variables can be omitted during coarsening.

We use the interaction preservation rules to write coarse-
grained specifications, while not affecting state-space explo-
ration of the target module. Themixed-grained specifications
help us tame state-space explosion.

B.3 Condensation

The basic idea of condensation is to merge a set of equivalent
states into one state. The equivalence between states is estab-
lished based on the projection to the target module𝑀𝑖 . After
condensation of equivalent states in one trace, we can also
condense equivalent traces, also based on the projection to
𝑀𝑖 . Only after condensation, can we define the equivalence
between two sets of traces in §B.4.

For specifications 𝑆 =
⋃

1≤𝑖≤𝑛 𝑀𝑖 , the state 𝑠 is defined as
the valuation of all variables in 𝑆 . State 𝑠 |𝑀𝑖

is defined as the
projection of 𝑠 to𝑀𝑖 , i.e., 𝑠 |𝑀𝑖

is the valuation of all variables
in D𝑀𝑖

∪ I.
For state 𝑠 allowed by specification 𝑆 and state �̃� allowed by

specification 𝑆𝑖 , we say that 𝑠 is equivalent to �̃� if 𝑠 |𝑀𝑖
= �̃� |𝑀𝑖

.
This equivalence relation is denoted as 𝑠 𝑀𝑖∼ �̃� . Similarly, we
can also define the equivalence between two states 𝑠1 and
𝑠2 both from the same trace. We have 𝑠1

𝑀𝑖∼ 𝑠2 if 𝑠1 |𝑀𝑖
=

𝑠2 |𝑀𝑖
. Basically, the equivalence in both cases means that all

variables in D𝑀𝑖
∪ I remain unchanged in two states.

For a state transition 𝑠1 → 𝑠2, the transition is interest-
ing to 𝑀𝑖 , if ¬(𝑠1

𝑀𝑖∼ 𝑠2). The transition is not-interesting, if
𝑠1

𝑀𝑖∼ 𝑠2. In other words, in an interesting transition, one or
more variables in D𝑀𝑖

∪ I are updated. In a not-interesting
transition, all variables in D𝑀𝑖

∪ I remain unchanged.
We define the condensation of a trace as omitting not-

interesting transitions. Given a trace 𝑡 allowed by 𝑆 or 𝑆𝑖 , for
any transition 𝑠1 → 𝑠2 in 𝑡 , if the transition is not-interesting,
we condense the transition by merge 𝑠1 and 𝑠2 to a set of
equivalent states {𝑠1, 𝑠2}. After the condensation, a trace is
the transitions from one set of equivalent states to another.
Since all states merged are equivalent, they can be viewed
as just one state, and the condensed trace can still be viewed
as state transitions.

After the condensation of each trace, we can also condense
a set of traces. For any two condensed traces allowed by
some specification 𝑆 , if the two states of the same index
are equivalent for every index, we deem these two traces
equivalent, and they are merged into a set of equivalent
traces. Similarly, since all traces merged are equivalent, they
can be viewed as just one trace.

B.4 Equivalence

Given that every trace is condensed and the set of traces
is condensed, we can construct the equivalence relation be-
tween two sets of traces 𝑇𝑆 and 𝑇𝑆𝑖 .

After the condensation, any state transition is some update
of state 𝑠 |𝑀𝑖

. Given the equivalence relation between states,
the equivalence relation can also be established between
two sets of traces 𝑇𝑆 and 𝑇

𝑆
. In both cases, the equivalence

relations are with respect to𝑀𝑖 .
We define: 𝑇𝑆

𝑀𝑖∼ 𝑇𝑆𝑖
𝑑𝑒𝑓
====== 𝑇𝑆 |𝑀𝑖

= 𝑇𝑆𝑖 |𝑀𝑖
. Here, by 𝑇𝑆 |𝑀𝑖

=

𝑇𝑆𝑖 |𝑀𝑖
, we mean that: (1) there is a bijective mapping between

𝑡 ∈ 𝑇𝑆 and �̃� ∈ 𝑇𝑆𝑖 ; (2) for every state 𝑠𝑘 ∈ 𝑡 and �̃�𝑘 ∈ �̃� ,
𝑠𝑘

𝑀𝑖∼ �̃�𝑘 .
The bijective mapping between 𝑡 and �̃� can be derived from

the fact that the coarsening ensures interaction preservation.
The mapping is constructed based on the induction on state
index 𝑘 in the trace.
The initial state of model checking is set the same (with

projection to𝑀𝑖) before and after the coarsening. Thus for
any trace 𝑡 ∈ 𝑇𝑆 and �̃� ∈ 𝑇𝑆𝑖 , 𝑠0

𝑀𝑖∼ �̃�0.
By the induction hypothesis, for state 𝑠𝑘 ∈ 𝑡 , we have ex-

actly one corresponding state �̃�𝑘 with 𝑠𝑘
𝑀𝑖∼ �̃�𝑘 . Now consider

the transition 𝑠𝑘 → 𝑠𝑘+1. After the trace condensation, 𝑠𝑘 and
𝑠𝑘+1 are not equivalent, and 𝑠𝑘 → 𝑠𝑘+1 must involve update
of one or more variables in D𝑀𝑖

∪ I.
According to interaction preservation rule (§B.2), the vari-

ables inD𝑀𝑖
∪I and updates of these variables in any action

remain unchanged after the coarsening. So we have the same
updates on the same set of variables, i.e. variables inD𝑀𝑖

∪I,
for 𝑠𝑘 and �̃�𝑘 .

16

Multi-Grained Specifications for Distributed System Model Checking and Verification EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Note that each state transition is deterministic. This is
ensured by the fact that in all our specifications 𝑆 and 𝑆𝑖 , any
state updates in any action is deterministic. The same updates
on the same set of variables deterministically produce one
unique next state, given that we only consider the projection
to𝑀𝑖 . That is, we are only concerned of state updates of the
target module 𝑀𝑖 and ignore other information in the states
and the state transitions. Thus, 𝑠𝑘 and �̃�𝑘 both have their
unique successors 𝑠𝑘+1 and �̃�𝑘+1 respectively, and 𝑠𝑘+1

𝑀𝑖∼ �̃�𝑘+1.
By induction, we have the desired mapping between traces

in 𝑇𝑆 |𝑀𝑖
and 𝑇𝑆𝑖 |𝑀𝑖

. This gives us that 𝑇𝑆
𝑀𝑖∼ 𝑇𝑆𝑖 , which en-

sures the safety of model checking after the coarsening. □

References

[1] ZOOKEEPER-2355. Ephemeral node is never deleted if follower fails
while reading the proposal packet. https://issues.apache.org/jira/
browse/ZOOKEEPER-2355, 2016.

[2] ZOOKEEPER-2678. Large databases take a long time to regain a
quorum. https://issues.apache.org/jira/browse/ZOOKEEPER-2678,
2017.

[3] ZOOKEEPER-2845. Data inconsistency issue due to retaining data-
base in leader election. https://issues.apache.org/jira/browse/
ZOOKEEPER-2845, 2017.

[4] ZOOKEEPER-3023. Assertion fails when follower’s history is not in
sync with the leader’s initial history after leader receives its ACK for
NEWLEADER. https://issues.apache.org/jira/browse/ZOOKEEPER-
3023, 2018.

[5] ZOOKEEPER-3104. Potential data inconsistency due to NEWLEADER
packet being sent too early during SNAP sync. https://issues.apache.
org/jira/browse/ZOOKEEPER-3104, 2018.

[6] ZOOKEEPER-3642. Data inconsistency when the leader crashes right
after sending SNAP sync. https://issues.apache.org/jira/browse/
ZOOKEEPER-3642, 2019.

[7] ZOOKEEPER-3911. Data inconsistency caused by DIFF sync uncom-
mitted log. https://issues.apache.org/jira/browse/ZOOKEEPER-3911,
2020.

[8] ZOOKEEPER-4394. Learner.syncWithLeader got NullPointerExcep-
tion. https://issues.apache.org/jira/browse/ZOOKEEPER-4394, 2021.

[9] Azure Cosmos TLA+ specifications. https://github.com/Azure/azure-
cosmos-tla, 2022.

[10] TLA+ in TiDB. https://github.com/pingcap/tla-plus, 2022.
[11] ZOOKEEPER-4541. Ephemeral znode owned by closed session visible

in 1 of 3 servers. https://issues.apache.org/jira/browse/ZOOKEEPER-
4541, 2022.

[12] ZOOKEEPER-4643. Committed transactions are improperly truncated
when follower crashes right after updating currentEpoch. https:
//issues.apache.org/jira/browse/ZOOKEEPER-4643, 2022.

[13] ZOOKEEPER-4646. Transaction loss when followers crash after re-
plying ACK of NEWLEADER before logging transactions to disk.
https://issues.apache.org/jira/browse/ZOOKEEPER-4646, 2022.

[14] Trace validation for the Raft consensus algorithm in etcd implemen-
tation. https://github.com/etcd-io/raft/pull/113, 2023.

[15] ZOOKEEPER-4685. Unnecessary system unavailability due to leader
shutdown when follower sends ACK of PROPOSAL before ACK of
NEWLEADER. https://issues.apache.org/jira/browse/ZOOKEEPER-
4685, 2023.

[16] ZOOKEEPER-4712. Follower shutdown() does not correctly shutdown
SyncProcessor, which leads to data inconsistency. https://issues.
apache.org/jira/browse/ZOOKEEPER-4712, 2023.

[17] Apache ZooKeeper. https://zookeeper.apache.org/, 2024.
[18] AspectJ. https://eclipse.dev/aspectj/, 2024.

[19] Jepsen. https://jepsen.io/, 2024.
[20] Microsoft CCF TLA+ Specifications. https://github.com/microsoft/

CCF/tree/b10483af676354e21c19432099fcf43bdb6201ee/tla, 2024.
[21] MongoDB TLA+/PlusCal Specifications. https://github.com/

mongodb/mongo/tree/r7.3.2/src/mongo/tla_plus, 2024.
[22] Proptest documentation. https://altsysrq.github.io/proptest-book/,

2024.
[23] The Java Remote Method Invocation API (Java RMI). https://docs.

oracle.com/javase/8/docs/technotes/guides/rmi/index.html, 2024.
[24] TLA+ Specification for etcd Raft. https://github.com/etcd-io/raft/

tree/9ee2dd30d6a67a64a62ec8258bb33316c6f60283/tla, 2024.
[25] TLC and TLA+ Toolbox. https://github.com/tlaplus/tlaplus, 2024.
[26] ZOOKEEPER-4785. Transaction loss due to race condition in

Learner.syncWithLeader() during DIFF sync. https://issues.apache.
org/jira/browse/ZOOKEEPER-4785, 2024.

[27] ZooKeeper Use Cases. https://zookeeper.apache.org/doc/r3.9.1/
zookeeperUseCases.html, 2024.

[28] ZooKeeper’s learner code. https://github.com/apache/zookeeper/
blob/release-3.9.1/zookeeper-server/src/main/java/org/apache/
zookeeper/server/quorum/Learner.java, 2024.

[29] Abadi, M., and Lamport, L. Composing Specifications. ACM Trans-
actions on Programming Languages and Systems 15, 1 (Jan. 1993),
73–132.

[30] Abadi, M., and Lamport, L. Conjoining Specifications. ACM Trans-
actions on Programming Languages and Systems 17, 3 (May 1995),
507–535.

[31] Agrawal, A., and Policzer, Z. TLA+ @ LinkedIn: Ambry & Venice.
In TLA+ Conference (Apr. 2024). https://youtu.be/Jz0J5N77QKk.

[32] Almeida, J. B., Barbosa, M., Barthe, G., Campagna, M., Cohen, E.,
Gregoire, B., Pereira, V., Portela, B., Strub, P.-Y., and Tasiran, S.
AMachine-Checked Proof of Security for AWS Key Management Ser-
vice. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS’19) (Nov. 2019).

[33] Alvaro, P., Rosen, J., and Hellerstein, J. M. Lineage-driven Fault
Injection. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (SIGMOD’15) (May 2015).

[34] Basiri, A., Behnam, N., de Rooij, R., Hochstein, L., Kosewski, L.,
Reynolds, J., and Rosenthal, C. Chaos Engineering. IEEE Software
33, 3 (Mar. 2016), 35–41.

[35] Bornholt, J., Joshi, R., Astrauskas, V., Cully, B., Kragl, B.,
Markle, S., Sauri, K., Schleit, D., Slatton, G., Tasiran, S., Van Gef-
fen, J., and Warfield, A. Using Lightweight Formal Methods to
Validate a Key-Value Storage Node in Amazon S3. In Proceedings of
the ACM SIGOPS 28th Symposium on Operating Systems Principles
(SOSP’21) (Oct. 2021).

[36] Brooker, M. Fifteen Years of Formal Methods at AWS. In TLA+
Conference (Apr. 2024). https://youtu.be/HxP4wi4DhA0.

[37] Chen, H., Dou, W., Wang, D., and Qin, F. CoFI: Consistency-Guided
Fault Injection for Cloud Systems. In Proceedings of the 35th ACM/IEEE
International Conference on Automated Software Engineering (ASE’20)
(Sept. 2020).

[38] Chen, Y., Sun, X., Nath, S., Yang, Z., and Xu, T. "Push-Button
Reliability Testing for Cloud-Backed Applications with Rainmaker".
In Proceedings of the 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’23) (Apr. 2023).

[39] Chou, D., Xu, T., Veeraraghavan, K., Newell, A., Margulis, S.,
Xiao, L., Ruiz, P. M., Meza, J., Ha, K., Padmanabha, S., Cole, K.,
and Perelman, D. Taiji: Managing Global User Traffic for Large-
Scale Internet Services at the Edge. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP’19) (Oct. 2019).

[40] Cirstea, H., Kuppe, M. A., Loillier, B., and Merz, S. Validat-
ing Traces of Distributed Programs Against TLA+ Specifications.
arXiv:2404.16075 (Apr. 2024).

[41] Clarke, E. M., Long, D. E., and McMillan, K. L. Compositional
Model Checking. In Proceedings of the 4th Annual Symposium on

17

https://issues.apache.org/jira/browse/ZOOKEEPER-2355
https://issues.apache.org/jira/browse/ZOOKEEPER-2355
https://issues.apache.org/jira/browse/ZOOKEEPER-2678
https://issues.apache.org/jira/browse/ZOOKEEPER-2845
https://issues.apache.org/jira/browse/ZOOKEEPER-2845
https://issues.apache.org/jira/browse/ZOOKEEPER-3023
https://issues.apache.org/jira/browse/ZOOKEEPER-3023
https://issues.apache.org/jira/browse/ZOOKEEPER-3104
https://issues.apache.org/jira/browse/ZOOKEEPER-3104
https://issues.apache.org/jira/browse/ZOOKEEPER-3642
https://issues.apache.org/jira/browse/ZOOKEEPER-3642
https://issues.apache.org/jira/browse/ZOOKEEPER-3911
https://issues.apache.org/jira/browse/ZOOKEEPER-4394
https://github.com/Azure/azure-cosmos-tla
https://github.com/Azure/azure-cosmos-tla
https://github.com/pingcap/tla-plus
https://issues.apache.org/jira/browse/ZOOKEEPER-4541
https://issues.apache.org/jira/browse/ZOOKEEPER-4541
https://issues.apache.org/jira/browse/ZOOKEEPER-4643
https://issues.apache.org/jira/browse/ZOOKEEPER-4643
https://issues.apache.org/jira/browse/ZOOKEEPER-4646
https://github.com/etcd-io/raft/pull/113
https://issues.apache.org/jira/browse/ZOOKEEPER-4685
https://issues.apache.org/jira/browse/ZOOKEEPER-4685
https://issues.apache.org/jira/browse/ZOOKEEPER-4712
https://issues.apache.org/jira/browse/ZOOKEEPER-4712
https://zookeeper.apache.org/
https://eclipse.dev/aspectj/
https://jepsen.io/
https://github.com/microsoft/CCF/tree/b10483af676354e21c19432099fcf43bdb6201ee/tla
https://github.com/microsoft/CCF/tree/b10483af676354e21c19432099fcf43bdb6201ee/tla
https://github.com/mongodb/mongo/tree/r7.3.2/src/mongo/tla_plus
https://github.com/mongodb/mongo/tree/r7.3.2/src/mongo/tla_plus
https://altsysrq.github.io/proptest-book/
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/index.html
https://github.com/etcd-io/raft/tree/9ee2dd30d6a67a64a62ec8258bb33316c6f60283/tla
https://github.com/etcd-io/raft/tree/9ee2dd30d6a67a64a62ec8258bb33316c6f60283/tla
https://github.com/tlaplus/tlaplus
https://issues.apache.org/jira/browse/ZOOKEEPER-4785
https://issues.apache.org/jira/browse/ZOOKEEPER-4785
https://zookeeper.apache.org/doc/r3.9.1/zookeeperUseCases.html
https://zookeeper.apache.org/doc/r3.9.1/zookeeperUseCases.html
https://github.com/apache/zookeeper/blob/release-3.9.1/zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/Learner.java
https://github.com/apache/zookeeper/blob/release-3.9.1/zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/Learner.java
https://github.com/apache/zookeeper/blob/release-3.9.1/zookeeper-server/src/main/java/org/apache/zookeeper/server/quorum/Learner.java
https://youtu.be/Jz0J5N77QKk
https://youtu.be/HxP4wi4DhA0

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands L. Ouyang, X. Sun, R. Tang, Y. Huang, M. Jivrajani, X. Ma, and T. Xu

Logic in Computer Science (LICS’89) (June 1989).
[42] Davis, A. J. J., Hirschhorn, M., and Schvimer, J. eXtremeModelling

in Practice. In Proceedings of the VLDB Endowment (VLDB’20) (May
2020).

[43] Desai, A., Gupta, V., Jackson, E., Qadeer, S., Rajamani, S., and
Zufferey, D. P: Safe Asynchronous Event-Driven Programming. In
Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’13) (June 2013).

[44] Elmas, T., Tasiran, S., and Qadeer, S. VYRD: VerifYing Concurrent
Programs by Runtime Refinement-Violation Detection. In Proceedings
of the 26th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’05) (June 2005).

[45] Ganesan, A., Alagappan, R., Arpaci-Dusseau, A. C., and Arpaci-
Dusseau, R. H. RedundancyDoes Not Imply Fault Tolerance: Analysis
of Distributed Storage Reactions to Single Errors and Corruptions.
In Proceedings of the 15th USENIX Conference on File and Storage
Technologies (FAST’17) (Feb. 2018).

[46] Gu, J. T., Sun, X., Zhang, W., Jiang, Y., Wang, C., Vaziri, M., Le-
gunsen, O., and Xu, T. Acto: Automatic End-to-End Testing for
Operation Correctness of Cloud System Management. In Proceedings
of the 29th ACM Symposium on Operating Systems Principles (SOSP’23)
(Oct. 2023).

[47] Gu, X., Cao, W., Zhu, Y., Song, X., Huang, Y., and Ma, X. Com-
positional Model Checking of Consensus Protocols via Interaction-
Preserving Abstraction. In Proceedings of the 41st International Sym-
posium on Reliable Distributed Systems (SRDS’22) (Sept. 2022).

[48] Guerraoui, R., and Yabandeh, M. Model Checking a Networked
System Without the Network. In Proceedings of the 8th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI’11)
(Mar. 2011).

[49] Gunawi, H. S., Do, T., Joshi, P., Alvaro, P., Hellerstein, J. M.,
Arpaci-Dusseau, A. C., Arpaci-Dusseau, R. H., Sen, K., and
Borthakur, D. Fate and Destini: A Framework for Cloud Recovery
Testing. In Proceedings of the 8th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’11) (Mar. 2011).

[50] Guo, H., Wu, M., Zhou, L., Hu, G., Yang, J., and Zhang, L. Practical
Software Model Checking via Dynamic Interface Reduction. In Pro-
ceedings of the 23rd ACM Symposium on Operating Systems Principles
(SOSP’11) (Oct. 2011).

[51] Hackett, F., Hosseini, S., Costa, R., Do, M., and Beschastnikh, I.
Compiling Distributed System Models with PGo. In Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’23) (Jan.
2023).

[52] Hackett, F., Rowe, J., and Kuppe, M. A. Understanding Inconsis-
tency in Azure Cosmos DB with TLA+. In Proceedings of the 45th
International Conference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP’23) (May 2023).

[53] Hance, T., Heule, M., Martins, R., and Parno, B. Finding Invariants
of Distributed Systems: It’s a Small (Enough) World After All. In
Proceedings of the 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’21) (Apr. 2021).

[54] Havelund, K., and Pressburger, T. Model Checking Java Programs
Using Java PathFinder. International Journal on Software Tools for
Technology Transfer 2 (2000), 366–381.

[55] Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J. R., Parno, B.,
Roberts, M. L., Setty, S., and Zill, B. IronFleet: Proving Practical
Distributed Systems Correct. In Proceedings of the 25th Symposium
on Operating Systems Principles (SOSP’15) (Oct. 2015).

[56] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D.,
Katz, R., Shenker, S., and Stoica, I. Mesos: A Platform for Fine-
Grained Resource Sharing in the Data Center. In Proceedings of the 8th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’11) (Mar. 2011).

[57] Honoré, W., Kim, J., Shin, J.-Y., and Shao, Z. Much ADO about

Failures: A Fault-Aware Model for Compositional Verification of
Strongly Consistent Distributed Systems. In Proceedings of the 2021
ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’21) (Oct. 2021).

[58] Hunt, P., Konar, M., Junqeira, F. P., and Reed, B. ZooKeeper:
Wait-Free Coordination for Internet-Scale Systems. In Proceedings of
the 2010 USENIX Annual Technical Conference (USENIX ATC’10) (June
2010).

[59] Jonsson, B. Compositional Specification and Verification of Dis-
tributed Systems. ACM Transactions on Programming Languages and
Systems 16, 2 (Mar. 1994), 259–303.

[60] Junqeira, F. P., Reed, B. C., and Serafini, M. Dissecting Zab. Tech.
Rep. YL-2010-007, Yahoo! Research, Dec. 2010.

[61] Junqeira, F. P., Reed, B. C., and Serafini, M. Zab: High-
performance broadcast for primary-backup systems. In Proceedings
of the 41st IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’11) (June 2011).

[62] Killian, C., Anderson, J. W., Jhala, R., and Vahdat, A. Life, Death,
and the Critical Transition: Finding Liveness Bugs in Systems Code.
In Proceedings of the 4th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’07) (Apr. 2007).

[63] Killian, C. E., Anderson, J. W., Braud, R., Jhala, R., and Vahdat,
A. M. Mace: Language Support for Building Distributed Systems. In
Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’07) (June 2007).

[64] Kim, B. H., Kim, T., and Lie, D. Modulo: Finding Convergence Failure
Bugs in Distributed Systems with Divergence Resync Models. In
Proceedings of the 2022 USENIX Annual Technical Conference (ATC’22)
(July 2022).

[65] Kuppe, M. A. Validating System Executions with the TLA+ Tools. In
TLA+ Conference (Apr. 2024). https://youtu.be/NZmON-XmrkI.

[66] Lamport, L. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley Longman Pub-
lishing Co., Inc., Aug. 2002.

[67] Lattuada, A., Hance, T., Cho, C., Brun, M., Subasinghe, I., Zhou,
Y., Howell, J., Parno, B., and Hawblitzel, C. Verus: Verifying
Rust Programs Using Linear Ghost Types. In Proceedings of 2023
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’23) (Apr. 2023).

[68] Lauterburg, S., Dotta, M., Marinov, D., and Agha, G. A Frame-
work for State-Space Exploration of Java-Based Actor Programs. In
Proceedings of the 24th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE’09) (Nov. 2009).

[69] Leesatapornwongsa, T., Hao, M., Joshi, P., Lukman, J. F., and
Gunawi, H. S. SAMC: Semantic-Aware Model Checking for Fast
Discovery of Deep Bugs in Cloud Systems. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation
(OSDI’14) (Oct. 2014).

[70] Leesatapornwongsa, T., Lukman, J. F., Lu, S., and Gunawi, H. S.
TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Dat-
acenter Distributed Systems. In Proceedings of the 21st International
Conference on Architecture Support for Programming Languages and
Operating Systems (ASPLOS’16) (Apr. 2016).

[71] Leino, K. R. M. Dafny: An Automatic Program Verifier for Functional
Correctness. In Proceedings of the 17th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’10)
(Apr. 2010).

[72] Liu, H., Li, G., Lukman, J. F., Li, J., Lu, S., Gunawi, H. S., and Tian,
C. DCatch: Automatically Detecting Distributed Concurrency Bugs
in Cloud Systems. In Proceedings of the 22nd International Conference
on Architecture Support for Programming Languages and Operating
Systems (ASPLOS’17) (Apr. 2017).

[73] Liu, H., Wang, X., Li, G., Lu, S., Ye, F., and Tian, C. FCatch: Automat-
ically Detecting Time-of-fault Bugs in Cloud Systems. In Proceedings

18

https://youtu.be/NZmON-XmrkI

Multi-Grained Specifications for Distributed System Model Checking and Verification EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

of the 23rd International Conference on Architecture Support for Pro-
gramming Languages and Operating Systems (ASPLOS’18) (Mar. 2018).

[74] Loncaric, C. Reverse-Engineering with TLA+ at Oracle. In TLA+
Conference (Apr. 2024). https://youtu.be/dGBSeagCAxw.

[75] Lu, J., Liu, C., Li, L., Feng, X., Tan, F., Yang, J., and You, L. Crash-
Tuner: Detecting Crash-Recovery Bugs in Cloud Systems via Meta-
Info Analysis. In Proceedings of the 26th ACM Symposium on Operating
System Principles (SOSP’19) (Oct. 2019).

[76] Lukman, J. F., Ke, H., Stuardo, C. A., Suminto, R. O., Kurniawan,
D. H., Simon, D., Priambada, S., Tian, C., Ye, F., Leesataporn-
wongsa, T., Gupta, A., Lu, S., and Gunawi, H. S. FlyMC: Highly
Scalable Testing of Complex Interleavings in Distributed Systems.
In Proceedings of the 14th European Conference on Computer Systems
(EuroSys’19) (Mar. 2019).

[77] Ma, H., Ahmad, H., Goel, A., Goldweber, E., Jeannin, J.-B., Kaprit-
sos, M., and Kasikci, B. Sift: Using Refinement-guided Automation
to Verify Complex Distributed Systems. In Proceedings of the 2022
USENIX Annual Technical Conference (ATC’22) (July 2022).

[78] Ma, H., Goel, A., Jeannin, J.-B., Kapritsos, M., Kasikci, B., and
Sakallah, K. A. I4: Incremental Inference of Inductive Invariants for
Verification of Distributed Protocols. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP’19) (Oct. 2019).

[79] Marić, O., Sprenger, C., and Basin, D. Cutoff Bounds for Consensus
Algorithms. In Proceedings of the 29th International Conference on
Computer Aided Verification (CAV’17) (July 2017).

[80] McMillan, K. L., and Padon, O. Ivy: AMulti-Modal Verification Tool
for Distributed Algorithms. In Proceedings of the 32nd International
Conference on Computer Aided Verification (CAV’20) (July 2020).

[81] Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M.,
and Deardeuff, M. How Amazon Web Services Uses Formal Meth-
ods. Communications of the ACM 58, 4 (Mar. 2015), 66–73.

[82] Ouyang, L., Huang, Y., Huang, B., and Ma, X. Leveraging TLA+
Specifications to Improve the Reliability of the ZooKeeper Coordi-
nation Service. In Proceedings of the 9th International Symposium on
Dependable Software Engineering: Theories, Tools, and Applications
(SETTA’23) (Nov. 2023).

[83] Ozkan, B. K., Majumdar, R., Niksic, F., Befrouei, M. T., and Weis-
senbacher, G. Randomized Testing of Distributed Systems with
Probabilistic Guarantees. In Proceedings of the 2018 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’18) (Oct. 2018).

[84] Padon, O., McMillan, K. L., Panda, A., Sagiv, M., and Shoham, S.
Ivy: Safety Verification by Interactive Generalization. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’16) (June 2016).

[85] Reed, B., and Junqeira, F. P. A simple totally ordered broadcast
protocol. In Proceedings of the 2ndWorkshop on Large-Scale Distributed
Systems and Middleware (LADIS’08) (Sept. 2008).

[86] Reed, B., Junqeira, F. P., and Han, M. Zab1.0. https://cwiki.apache.
org/confluence/display/ZOOKEEPER/Zab1.0, May 2021.

[87] Saissi, H., Bokor, P., Muftuoglu, C. A., Suri, N., and Serafini, M.
Efficient Verification of Distributed Protocols Using Stateful Model
Checking. In 2013 IEEE 32nd International Symposium on Reliable
Distributed Systems (SRDS’13) (Sept. 2013).

[88] Sergey, I., Wilcox, J. R., and Tatlock, Z. Programming and Proving
with Distributed Protocols. In Proceedings of the 45th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL’18) (Jan.
2018).

[89] Sharma, U., Jung, R., Tassarotti, J., Kaashoek, F., and Zeldovich,
N. Grove: A Separation-Logic Library for Verifying Distributed Sys-
tems. In Proceedings of the 29th Symposium on Operating Systems
Principles (SOSP’23) (Oct. 2023).

[90] Simsa, J., Bryant, R., and Gibson, G. dBug: Systematic Evaluation of
Distributed Systems. In Proceedings of the 5th International Conference
on Systems Software Verification (SSV’10) (Oct. 2010).

[91] Sun, X., Luo, W., Gu, J. T., Ganesan, A., Alagappan, R., Gasch, M.,
Suresh, L., and Xu, T. Automatic Reliability Testing for Cluster
Management Controllers. In Proceedings of the 16th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI’22)
(July 2022).

[92] Sun, X., Ma, W., Gu, J. T., Ma, Z., Chajed, T., Howell, J., Lattuada,
A., Padon, O., Suresh, L., Szekeres, A., and Xu, T. Anvil: Verifying
Liveness of Cluster Management Controllers. In Proceedings of the
18th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI’24) (July 2024).

[93] Tang, C., Kooburat, T., Venkatachalam, P., Chander, A., Wen, Z.,
Narayanan, A., Dowell, P., and Karl, R. Holistic Configuration
Management at Facebook. In Proceedings of the 25th ACM Symposium
on Operating System Principles (SOSP’15) (Oct. 2015).

[94] Tang, R., Sun, X., Huang, Y., Wei, Y., Ouyang, L., and Ma,
X. SandTable: Scalable Distributed System Model Checking with
Specification-Level State Exploration. In Proceedings of the 19th Euro-
pean Conference on Computer Systems (EuroSys’24) (Apr. 2024).

[95] Tasiran, S., Yu, Y., and Batson, B. Using a Formal Specification and
a Model Checker to Monitor and Direct Simulation. In Proceedings of
the 40th Annual Design Automation Conference (DAC’03) (June 2003).

[96] Tseitlin, A. The Antifragile Organization. Communications of the
ACM 56, 8 (Aug. 2013), 40–44.

[97] Wang, D., Dou, W., Gao, Y., Wu, C., Wei, J., and Huang, T. Model
Checking Guided Testing for Distributed Systems. In Proceedings of
the 18th European Conference on Computer Systems (EuroSys’23) (May
2023).

[98] Wilcox, J. R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X.,
Ernst, M. D., and Anderson, T. Verdi: A Framework for Implement-
ing and Formally Verifying Distributed Systems. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’15) (June 2015).

[99] Wu, H., Pan, J., and Huang, P. Efficient Exposure of Partial Failure
Bugs in Distributed Systems with Inferred Abstract States. In Pro-
ceedings of the 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI’24) (Apr. 2024).

[100] Yabandeh, M., Knezevic, N., Kostic, D., and Kuncak, V. CrystalBall:
Predicting and Preventing Inconsistencies in Deployed Distributed
Systems. In Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’09) (Apr. 2009).

[101] Yang, J., Chen, T., Wu, M., Xu, Z., Liu, X., Lin, H., Yang, M., Long,
F., Zhang, L., and Zhou, L. MODIST: Transparent Model Check-
ing of Unmodified Distributed Systems. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI’09) (Apr. 2009).

[102] Yao, J., Tao, R., Gu, R., and Nieh, J. DuoAI: Fast, Automated In-
ference of Inductive Invariants for Verifying Distributed Protocols.
In Proceedings of the 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’22) (July 2022).

[103] Yao, J., Tao, R., Gu, R., and Nieh, J. Mostly Automated Verification of
Liveness Properties for Distributed Protocols with Ranking Functions.
In Proceedings of the 51st ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL’24) (Jan. 2024).

[104] Yao, J., Tao, R., Gu, R., Nieh, J., Jana, S., and Ryan, G. DistAI: Data-
Driven Automated Invariant Learning for Distributed Protocols. In
Proceedings of the 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’21) (July 2021).

[105] Yuan, X., and Yang, J. Effective Concurrency Testing for Distributed
Systems. In Proceedings of the 25th International Conference on Archi-
tecture Support for Programming Languages and Operating Systems
(ASPLOS’20) (Mar. 2018).

[106] Zhou, S. HowWe Designed and Model-Checked MongoDB Reconfig-
uration Protocol. In TLA+ Conference (Apr. 2024). https://youtu.be/-
eAktIBUhHA.

19

https://youtu.be/dGBSeagCAxw
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Zab1.0
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Zab1.0
https://youtu.be/-eAktIBUhHA
https://youtu.be/-eAktIBUhHA

	Abstract
	1 Introduction
	2 Background
	2.1 Existing Specifications
	2.2 Model-Code Gaps
	2.3 Challenges

	3 Writing Multi-Grained Specifications
	3.1 Fine-Grained Specifications
	3.2 Coarse-Grained Specifications
	3.3 Composition
	3.4 Conformance Checking
	3.5 Remix: Tooling Support

	4 Verifying ZooKeeper
	4.1 Mixed-Grained Specifications for Log Replication
	4.2 Invariants
	4.3 Efforts
	4.4 Setup

	5 Results and Experience
	5.1 Verification Results
	5.2 Efficiency
	5.3 Verifying Bug Fixes
	5.4 Improving the Zab Protocol

	6 Discussion
	7 Related Work
	8 Concluding Remarks
	A Descriptions of Detected Bugs
	B Proof Sketch of the Interaction Preservation Theorem
	B.1 Notations
	B.2 Interaction Preservation
	B.3 Condensation
	B.4 Equivalence

	References

