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ABSTRACT
Modern mobile systems are featured by their increasing in-
teractivity with users, which however is accompanied by
a severe side effect—users constantly suffer from slow UI
responsiveness (SUR). To date, the community have limited
understandings of this issue for the challenges of compre-
hensively measuring SUR events on massive mobile devices.
As a major Android phone vendor, in this paper we close
the knowledge gap by conducting the first large-scale, long-
term measurement study on SUR with 47M devices. Our
study identifies the critical factors that lead to SUR from
the perspectives of device, system, application, and app mar-
ket. Most importantly, we note that the largest root cause
lies in the wide existence of “hogging” apps, which persis-
tently occupy an unreasonable amount of system resources
by leveraging the optimistic design of Android process man-
agement. We have built on the insights to remodel Android
process states by fully considering their time-sensitive transi-
tions and the actual behaviors of processes, with remarkable
real-world impact—the occurrences of SUR are reduced by
60%, together with 10.7% saving of battery consumption.
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and its engineering→ Process management.
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1 INTRODUCTION
Rapid advancements in mobile hardware (e.g., high-
resolution screens and high refresh rates) and network
access (e.g., 5G and WiFi 6E) enable a wide range of
highly interactive applications, such as real-time 3D games,
UltraHD videos, AR/VR, and metaverse. Inevitably, these
applications require considerable system resources to ensure
smooth user interactions. Over the years, tremendous
efforts have been made to optimize the user interface
(UI) smoothness of mobile systems. For instance, Android
11 introduces dynamic refreshing [15] and render-ahead
pipeline [12] to better support the emerging 120Hz refresh
rate, while iOS 14 delivers the similar ProMotion [4]
techniques. Despite these efforts, as a major Android phone
vendor with hundreds of millions of users, we find that
slow UI responsiveness (SUR) remains a major cause of users’
complaints regarding the quality of experience (QoE).
To date, the community have very limited understand-

ings on the prevalence, characteristics, and root causes of
SUR, thus hindering practical solutions to address them. Ex-
isting studies are either based on controlled experiments
at small scales [38], or confined to rare and extreme SUR
cases like application-not-responding (ANR) and system-
not-responding (SNR) [37]. As a matter of fact, Android does
not even expose the SUR-related tracking interfaces to user-
space applications [23], and these interfaces do not provide
sufficient information to understand SUR in detail.
UnderstandingAndroid SURat Scale. To close the knowl-
edge gap, we conduct the first large-scale, long-term study on
the SUR events occurring on massive Android devices. Tak-
ing the liberty of customizing the Android system (dubbed
Android-MOD after customization) before releasing it to our
customers, we build a continuous monitoring infrastructure
by instrumenting a variety of system components/services to
collect critical data (including the timestamp, foreground app
name, CPU usage, memory consumption, I/O activity, etc.)
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upon every SUR event. Meanwhile, we employ state-of-the-
art optimizations (e.g., in-memory ring buffer and expensive
synchronization avoidance) [42] to reduce the measurement
overhead to a negligible level. We invited all our customers
to participate in the study by installing Android-MOD on
their phones; finally, 47M users opted in and gathered data
for us during four months (Jun.–Sep. 2022), involving 48
different models of Android phones and 1M+ apps.
Our study shows that SUR occurs prevalently and fre-

quently on all the studied devices; on average, as many as
7.97% of graphic frames rendered by an Android device are
subject to SUR. While not all the SUR events are perceptible
to all users, 73.65% of them have obvious impacts on almost
all users, so in the remainder of this paper we concentrate
on only these obvious SUR events. Counter-intuitively, we
observe that better hardware cannot effectively reduce SUR
events, and newer OSes do not alleviate the problem either—
as Android upgrades from v10 to v12, the occurrences of
SUR per phone increase by an average of 1.9%.

Delving deep, our analysis reveals that the majority (59%)
of SUR events are attributed to system-wise resource con-
tention, mostly caused by the wide existence of “hogging”
apps; the remainder are owing to design/implementation
issues of specific apps (e.g., overly complex UI layout and
message processing in the main thread). Hogging apps keep
alive in the background by registering the so-called “user-
perceptible” [19] internal components (e.g., Activity, Fore-
ground Service, and Broadcast Receiver), but do not provide
really perceptible services (e.g., audible audio and active GPS
navigation) to users. In fact, most hogging apps are non-
malicious and many are rather popular; they keep alive to
stealthily escalate user retention, enable in-app advertise-
ment, facilitate data harvesting, and wake up other apps.

In comparison, we conduct small-scale measurements on
mainstream iPhones, finding that they are significantly less
prone to SUR (by ∼10×) and iOS barely suffers from hogging
apps. This is primarily ascribed to the stringent scrutiny
policy of App Store [3]. In theory, hogging apps can also ex-
ploit the APIs (e.g., registering background audio or location
services) that iOS provides for legitimate apps (e.g., music
playback and navigation apps) to keep them alive [1, 7, 53].
However, they must undergo App Store’s rigorous code in-
spection and manual verification, and thus can hardly get
passed and released—hogging behavior can easily incur an
app’s rejection or removal from App Store, sometimes even
with the developers’ accounts being terminated.
Remodeling Android Process Management. Due to the
decentralized nature of the Android ecosystem, App Store’s
early detection approach is not suited to Android for ad-
dressing hogging apps. People can acquire Android apps
from diverse sources whose scrutiny policies differ greatly

from each other. Therefore, in this paper we attempt to tackle
the problem in a different stage (i.e., during an app’s run time)
from a novel perspective (i.e., inspecting the internal mech-
anisms of Android). In addition, we do not limit ourselves
to pure system-wise solutions, but also collaborate with app
developers to address app-specific SUR issues.
By carefully examining the various keep-alive strategies

adopted by hogging apps, we note that they all leverage the
optimistic design of Android process management, i.e., the
Android system assumes all the registered “user-perceptible”
internal components by a process to be really perceptible to
its users. Concretely, a hogging process would register one or
more such components that typically possess high priorities,
so as to grant itself a high priority [20]; also, a hogging app
oftentimes has multiple processes that can awake each other
on demand. In this way, a hogging app can easily keep a
large portion of its processes alive in the background, even
when it is not really being used. With the insight, we strive
to reshape the design of Android process management to
identify hogging apps effectively and efficiently, as well as
to safely reclaim their occupied resources.

To achieve this goal, at first glance it appears that we only
need to insert a “hogging” state to the Android process model
based on the hindsight acquired above. In practice, however,
it is challenging to translate hindsight to foresight. First, we
do not know the actual behaviors of existing processes, e.g.,
all processes in the “foreground” state are simply classified as
“user-perceptible” by Android regardless of whether they are
actually user perceptible. Second, deterministic state transi-
tions in the current Android process model cannot describe
the dynamic behaviors of certain processes, e.g., a seemingly
idle process at the moment may perform periodic tasks in
the future (rather than keep hogging system resources).

To practically address the challenges, we comprehensively
profile real-world Android process states and their transition
patterns on the studied 47M devices. Based on the collective
wisdom, we build a time-inhomogeneous Hidden Markov
model [41] (TIHMM) to describe the complex state tran-
sitions (in particular the dynamic behaviors of certain pro-
cesses) in a time-sensitive manner. To maximize the accuracy,
TIHMM adaptively inserts hidden states among existing An-
droid process states and our defined “hogging” state, while
constantly updating state transition probabilities over time.

To capture processes’ actual behaviors to inform TIHMM,
we develop a uniform authentic sensing layer in Android,
which efficiently monitors their usages of user-perceptible
hardware (such as audio, GPS, Bluetooth, and network) via
eBPF-based system probes [9]. When TIHMM determines
a hogging app, we do not simply terminate it at once. In-
stead, to mitigate the side effect of improper terminations
of certain working processes (originating from the foresight
errors of TIHMM), we leverage the kernel’s process freezing
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capability [50] to only suspend the execution of suspicious
processes rather than killing them, thus preserving their
execution contexts for probable reuse in the near future.
Real-World Performance and Robustness. We have
implemented the innovative design in Android-MOD and
deployed it on 28M Android devices that opted in for our
evaluation from Jan. 1st 2023 to Feb. 28th 2023. Also, for
app-specific design/implementation issues, we have reported
them to the corresponding app developers, and 278 out of
all the 415 issues have been confirmed and addressed.
With these efforts, we have substantially reduced the oc-

currences of SUR events by an average of 60% (ranging from
36.51% to 82.12%) for each device model. Besides, through
a meticulous A/B test [35], we confirm that the vast major-
ity (66.44%) of SUR reductions come from the innovative
design (TIHMM) in Android-MOD. Moreover, due to the
effective throttling of resource usages from hogging apps,
the energy consumption has been reduced by an average of
10.69% (ranging from 25.07% to 1.18%) for each device model.

It is worth noting that our design targets non-malicious
hogging apps that leverage the inherent design of Android to
gain resource advantages, as opposed to malicious apps that
exploit system vulnerabilities for illegal purposes. We present
an in-depth analysis of TIHMM to investigate whether the
developers of a non-malicious hogging app will be able to
avoid our detection by adapting their app’s behaviors. We
show that it is rather difficult for a hogging app to circumvent
our detection without user consent or exploiting system
vulnerabilities, so its developers are left with a significantly
weaker range of adapting capabilities. For those malicious
hogging apps, mainstream Android app markets can usually
recognize them and thus fall outside our concerns.
Summary. We make the following contributions:
• We conduct the first large-scale and in-depth study on the

slow UI responsiveness (SUR) problem of Android, which
is pivotal to the QoE of interactive mobile systems but
never investigated systematically. We present its preva-
lence, frequency, and multi-faceted characteristics.

• We locate the major root cause of SUR to be the resource
abuse of hogging apps, which leverage the optimistic de-
sign of Android process management to keep alive.

• We refactor the process management model of Android to
effectively identify and suppress hogging apps. The design
is implemented and deployed at scale, showing that it can
significantly reduce both SUR and energy consumption.

• We study SUR of iOS and find it fairly mild. The reason
mostly lies in the closed ecosystem of Apple, esp., the sole
authority and stringent scrutiny of App Store, which is
thus inapplicable to decentralized mobile OSes like An-
droid, Fuchsia, KataOS, HarmonyOS, and Ubuntu Touch.

The relevant code and data have been released at https://An
droid-SUR.github.io to benefit the community.

2 BACKGROUND AND RELATEDWORK
In this section, we introduce the pipeline of frame rendering
and the process management model in Android to show how
SUR happens. Also, we review related work on diagnosing
and mitigating UI responsiveness issues of mobile systems.

2.1 Android Frame Rendering Pipeline
Rendering a frame in Android involves five steps:
• Input event dispatch. Frame rendering is usually initi-

ated when users interact with the touchscreen. The system
service, WindowManagerService, captures these interac-
tions, translates them into input events (encoded as mes-
sages), and dispatches them to the relevant app.

• UI thread processing. Upon receiving messages, the
app’s main thread (i.e., the UI thread) calculates the size
and relative position of each involved UI element.

• RenderThread execution. Then, the RenderThread
sends rendering commands to the GPU for converting the
properties of UI components to bitmap pixels.

• SurfaceFlinger composition. Subsequently, the system
service, SurfaceFlinger, takes charge of UI composition
by obtaining the bitmap, superimposing the bitmap with
other visual components, and inscribing the final compos-
ite image into a frame buffer.

• Hardware display. Finally, the Hardware Composer
reads the final composited image from the frame buffer
and displays it on the screen.
Each of the abovementioned components communicates

with the subsequent one via the message mechanism [2]
and the Binder inter-process communication (IPC) mech-
anism [5]. These components collaboratively ensure that
user interactions are translated smoothly to visual updates
on the screen. Unfortunately, due to the intricate nature of
Android’s multi-step rendering process, any inefficiencies in
each component can slow down frame rendering. As for a
60 FPS screen, if a frame takes more than 16.67 ms to render,
this is regarded as a slow UI responsiveness (SUR) event [26].

2.2 Android Process Management Model
The process management model manages the lifecycle of
each app process and decides which process(es) should be
kept alive or killed when system resources (such as CPU
scheduling quota, available memory capacity, and I/O band-
width) become constrained. As shown in Figure 1, Android
divides the lifecycle of a process into five states: Foreground,
Visible, Service, Background, and Empty. At the top of
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Figure 1: The state machine that models the process
management in Android.

Figure 1, a process enters the Foreground state when run-
ning any of the following components: a visible Activity that
users are focusing on, a “user-perceptible” Service bound to
a visible Activity, or an active Broadcast Receiver.

When the user stops interacting with the visible Activity
running in a Foreground process, the process transitions to
the Visible state. Further, when the visible Activity termi-
nates but there is still a “user-perceptible” Service (e.g., audio
playback in the background) running in a Visible process,
the process transitions to the Service state. Sometime later,
when the “user-perceptible” Service stops but there is still
an active invisible Activity or imperceptible Service running
in a Service process, the process goes to the Background
state. At last, when there is no active component running
in a process, the process goes to the Empty state. Note that
there exist other transition paths among the five states, as
illustrated in Figure 1.
In any state, an app process can be killed to reclaim sys-

tem resources. For an Empty process (of course with a very
low priority), once the available system memory falls be-
low a pre-defined threshold, it will be killed to release some
memory capacity. When all the Empty processes have been
killed but there is still insufficient memory capacity released,
Android will start to kill Background processes. Likewise,
when all the Background processes have been killed but the
released memory capacity is still deficient, Android will start
to kill Service processes. In extreme cases, even Visible
and Foreground processes can be killed by Android.

It is easy to see that once there are numerous hogging apps
living in the system, the other apps (i.e., benign apps) will be
subject to frequent resource deficiencies which would in turn
trigger frequent resource reclaim operations. Since resource
reclaim operations are usually rather time-consuming, their
frequent occurrences will remarkably aggravate SUR.

2.3 Related work
Diagnosis Approaches. Considerable work has been con-
ducted to diagnose performance issues of mobile apps. First,
static code analysis is utilized to pinpoint buggy code pat-
terns that damage the system and/or app performance, such
as malicious behaviors [51], resource leakage [61], layout
defects [11, 62], improper Activity lifecycle patterns [10],
and UI thread blockages [46]. Given the limitation of static
analysis in handling dynamically loaded code in runtime,
researchers resort to dynamic analysis-based approaches,
such as code instrumentation [52] and resource amplifica-
tion [58], to study runtime behaviors and identify blocking
or computation-intensive operations.
Moreover, several diagnostic tools help developers ana-

lyze the root causes of mobile systems’ performance issues.
Logging tools [24, 63] allow streamlined insertion of log
statements for fine-grained monitoring, but lack capabilities
for dynamic interaction tracking. Tracing tools [22, 25, 30]
offer dynamic profiling across various performance metrics
(e.g., CPU/memory utilization). Nonetheless, due to mobile
devices’ interactive nature and resource limitations, these
tools can significantly slow down apps in production [42].
To minimize overhead, bytecode tracing tools have been

introduced for Android. Nanoscope [56] embeds tracepoints
within the Android virtual machine’s source code at the start
and end of ArtMethod execution. Hubble [42] instruments
every non-inlined bytecode method’s entry and exit by lever-
aging the runtime environment to automatically embed its
tracing logic into the compiled binary or interpreted logic.
However, these tools need either adjustments to the ART
source code or modifications to the compiler and interpreter.
Mitigation Approaches. Various optimizations have been
made to enhance the responsiveness of mobile systems. First,
some researchers [38–40, 45] leverage code refactoring to
improve the performance of mobile apps. For example, Lin
et al. [40] propose two tools ASYNCHRONIZER and ASYNC-
DROID to locate and refactor long-running operations for
real concurrent code execution and higher responsiveness.
Besides, quite a few solutions [6, 8, 28, 33, 36] use computa-
tion offloading that transfers computation-intensive tasks to
external resource-rich computing units, like cloud servers.
Some people [55, 57] adapt the processor to software for

accelerating the execution of time-consuming tasks in mo-
bile devices. For instance, ACCELDROID [57] accelerates the
execution of bytecode on the hardware/software co-designed
processor of Android by only translating bytecode once. Oth-
ers [32, 37, 44] optimize I/O operations to improve respon-
siveness. To address Android’s well-known defect of Write
Amplification Mitigation (WAM) that could trigger ANR and
SNR, Jeong et al. [32] prioritize the quasi-asynchronous I/O
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Table 1: Hardware configurations of our studied 48 phone models, generally ordered from low-end to high-end.
The Version and Users columns correspond to Android version and user percentage, respectively.

Model CPU Memory Storage Version Users Model CPU Memory Storage Version Users Model CPU Memory Storage Version Users

1 2.0 GHz 3 GB 32 GB 10.0 1.73% 17 2.4 GHz 6 GB 128 GB 11.0 3.10% 33 2.84 GHz 12 GB 256 GB 10.0 1.76%
2 2.0 GHz 3 GB 64 GB 11.0 1.23% 18 2.4 GHz 8 GB 128 GB 12.0 2.87% 34 2.84 GHz 12 GB 256 GB 11.0 1.61%
3 2.0 GHz 4 GB 32 GB 11.0 1.87% 19 2.84 GHz 6 GB 64 GB 10.0 2.12% 35 2.84 GHz 12 GB 256 GB 10.0 2.50%
4 2.0 GHz 4 GB 64 GB 12.0 2.16% 20 2.84 GHz 6 GB 128 GB 12.0 3.24% 36 2.84 GHz 12 GB 512 GB 12.0 1.79%
5 2.0 GHz 4 GB 64 GB 10.0 0.84% 21 2.84 GHz 8 GB 64 GB 11.0 1.98% 37 2.96 GHz 8 GB 128 GB 11.0 0.92%
6 2.0 GHz 4 GB 128 GB 11.0 0.93% 22 2.84 GHz 8 GB 128 GB 12.0 3.17% 38 2.96 GHz 8 GB 256 GB 10.0 1.13%
7 2.0 GHz 6 GB 64 GB 12.0 1.12% 23 2.84 GHz 8 GB 128 GB 10.0 4.21% 39 2.96 GHz 12 GB 128 GB 12.0 0.99%
8 2.0 GHz 6 GB 128 GB 10.0 1.79% 24 2.84 GHz 8 GB 128 GB 11.0 5.27% 40 2.96 GHz 12 GB 256 GB 11.0 1.27%
9 2.0 GHz 8 GB 128 GB 11.0 2.10% 25 2.84 GHz 8 GB 128 GB 11.0 2.01% 41 3.0 GHz 8 GB 128 GB 12.0 2.70%
10 2.0 GHz 8 GB 256 GB 12.0 1.87% 26 2.84 GHz 8 GB 256 GB 11.0 3.76% 42 3.0 GHz 8 GB 256 GB 11.0 2.28%
11 2.3 GHz 2 GB 32 GB 11.0 1.46% 27 2.84 GHz 8 GB 256 GB 11.0 3.78% 43 3.0 GHz 12 GB 128 GB 12.0 1.16%
12 2.3 GHz 2 GB 64 GB 11.0 1.39% 28 2.84 GHz 8 GB 256 GB 11.0 3.27% 44 3.0 GHz 12 GB 256 GB 12.0 0.78%
13 2.3 GHz 3 GB 32 GB 10.0 2.01% 29 2.84 GHz 8 GB 256 GB 12.0 3.95% 45 3.2 GHz 8 GB 128 GB 12.0 1.23%
14 2.3 GHz 3 GB 64 GB 12.0 1.85% 30 2.84 GHz 8 GB 512 GB 10.0 2.27% 46 3.2 GHz 8 GB 256 GB 11.0 1.84%
15 2.3 GHz 8 GB 128 GB 12.0 2.45% 31 2.84 GHz 12 GB 128 GB 11.0 2.01% 47 3.2 GHz 12 GB 128 GB 12.0 1.17%
16 2.3 GHz 8 GB 256 GB 12.0 2.70% 32 2.84 GHz 12 GB 128 GB 12.0 1.87% 48 3.2 GHz 12 GB 256 GB 12.0 0.49%

operations while Li et al. [37] strike a balance between real-
time and lazy WAM mechanisms.
Comparison with our work. As a large-scale Android
phone vendor, we explore the unique opportunity to in-
strument various system components/services for in-depth
performance diagnosis of mobile apps. Somewhat like Hub-
ble [42], we also take measures to essentially reduce the
instrumentation overhead. To mitigate the discovered per-
formance issues, we take a more fundamental approach of
refactoring the basic model of Android process management,
and validate its efficacy through massive deployments.

3 STUDY METHODOLOGY
3.1 Continuous Monitoring Infrastructure
There have been several methods for monitoring SUR-related
events on Android, typically based on call stack tracing [37,
38]. These methods require pausing the target app to collect
the entire call stack information, and thus are confined to
rare and extreme SUR cases like application-not-responding
(ANR) and system-not-responding (SNR). For our large-scale,
online, and continuous monitoring, such call stack-based
methods are not suited since common SUR events could
be transient (e.g., lasting for only tens of milliseconds) and
frequent (e.g., affecting up to 14% of the rendered frames),
which could incur tremendous overhead.

To address the problem, we design a lightweight continu-
ous monitoring infrastructure for capturing SUR events by
taking the liberty of customizing the Android system (the cus-
tomized Android is dubbed as Android-MOD). Note that we
develop the lightweight monitoring infrastructure inside the
kernel and Android framework, which is passively triggered
to collect data only when SUR events occur. Specifically, our
method consists of the following three phases.
• SUR event identification. In order to continuously iden-

tify potential SUR events, we use the Choreographer API
of Android to retrieve the timing information from An-
droid’s display subsystem in an event-drivenmanner. Such

information contains the timestamps about when a VSync
[27] arrives and when a frame is rendered. Thus, we can
calculate the rendering delay of each frame as well as the
overall frame drop rate. We then judge whether an obvious
SUR event occurs based on an empirical threshold of the
rendering delay (50 ms, detailed below).

• System service instrumentation. Once we detect an
SUR event, we wish to distinguish whether it is caused
by system-wise factors or inefficient UI design of the app
itself. To this end, we instrument the Android services re-
lated to frame rendering like ActivityManagerService,
so that we can monitor the lock contention among the
processes that request the services. We also record the
duration of the app’s UI thread on key states (i.e., running,
runnable, and sleep) to discern the app’s own inefficiency.

• Cross-layer in-situ information tracing. When we
determine that the SUR event derives from system-wise
factors (in particular the system services), we further cap-
ture fine-grained in-situ information about the SUR event
from both Android’s framework and the kernel. Specifi-
cally, we record the dispatched message from the Looper
thread [21], and leverage the atrace [47] utility to obtain
the system’s detailed information (e.g., the current process
list, binder transactions, thermal status code, as well as
the utilization of CPU, memory, and I/O). We also add a
new logging module to the kernel to capture I/O delay,
memory swapping/reclaiming delay, and the duration of
all threads in different thread states.
In order to determine whether an SUR event is obvious to

users, we conducted a user study by recruiting 30 volunteers
of different genders and ages (ranging from 20 to 55). We in-
ject SUR events with various frame drop rates (ranging from
1/60 to 10/60) to 60-FPS phones by modifying the Android
system, and ask the volunteers to interact with our modified
Android system (without third-party apps installed to avoid
potential interference). Because in each test only one SUR
event is injected and the frames are always consecutively
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Figure 5: The screenshot of user consent form.
dropped, the volunteers only need to recognize whether
there is an occurrence of SUR events when perceiving them.
We repeat the experiment ten times (i.e., 300 tests in total).
As shown in Figure 2, when two frames are consecutively
dropped (i.e., the rendering delay is ∼50 ms, covering the
total rendering time of three consecutive frames), the vast
majority (71%) of volunteers could perceive it. Thus, we set
the threshold for determining an obvious SUR event as 50 ms.

In addition, we also leverage state-of-the-art optimization
techniques [42] to reduce the overhead of our monitoring
infrastructure. For example, we avoid the usage of expensive
synchronization primitives to reduce the communication
overhead between the tracing thread and the traced UI thread.
Also, we store all the tracing/logging data in an in-memory
ring buffer, which is flushed only when an SUR event is
detected. Moreover, we send the results to our analysis server
in a batched manner, so as to minimize the network traffic
usage. Even for a low-end Android phone, Android-MOD

only incurs <1.8% CPU utilization, <10 MB of memory usage,
<5 MB of storage space, and <20 MB network usage per day.

3.2 Large-Scale Deployment
As a major Android phone vendor, in Jun. 2022 we invited all
our customers to participate in our measurement study by
installing Android-MOD on their phones. The installation is
a lightweight update that will not impact their installed apps,
existing data, and OS version. Finally, 47,387,684 users opted
in and contributed data over a four-month period (Jun.-Sep.
2022), involving a wide variety of phone models as listed in
Table 1 (all their CPUs own eight cores).
Ethical Concerns. This study is conducted under a well-
established IRB. All the participants opted in with an in-
formed consent, and no personally identifiable information
(e.g., phone number, IMEI, and IMSI) was ever gathered. Fig-
ure 5 shows the update UI of Android-MOD, where the list
of data to be collected is explicitly displayed to participators.

4 MEASUREMENT RESULTS
4.1 General Statistics
With the four-month crowd-sourcing from 47,387,684
Android-MOD user devices with 48 different phone models
(listed in Table 1) and 1,037,261 apps, we record the system-
level traces with regard to an average of 13,029,922,803 SUR
events per day. To facilitate longitudinal analysis, we also
refer to our measurement reports in recent years when
necessary. To the best of our knowledge, this is so far the
largest dataset regarding SUR events in the wild.

First, we are concerned with the prevalence of SUR events
which represents the average proportion of devices experi-
encing at least one SUR event per day. As shown in Figure 3,
the prevalence of SUR events on different phone models
ranges from 80.42% to 97.73% with an average of 86.95%.
Then, we analyze the frequency of SUR events that denotes
the average number of SUR events experienced per phone
every day. Figure 4 depicts that on average as many as 338.28
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SUR events occur on a phone per day, and the average num-
ber of SUR events happening to a specific model per day
varies from 179.59 to 554.68. In addition, we are also con-
cerned with the frame drop rate caused by SUR events per
phone for each model. As demonstrated in Figure 6, on aver-
age, as many as 7.91% of the graphic frames rendered by an
Android device suffer from SUR, and the frame drop rate of
specific models varies from 3.09% to 14.12%.

4.2 Frustrating Android Ecosystem
We delve further into the internals of Android ecosystem
with respect to the hardware, system, and applications.
Hardware Configurations. Common sense suggests that
high-end smartphones should experience fewer SUR events.
However, our measurement results suggest that better hard-
ware configurations cannot effectively alleviate SUR events.
We conduct the Pearson correlation analysis [54] to quan-
titatively characterize the correlation between the preva-
lence/frequency of SUR events and hardware configurations.
As shown in Figure 3 and Figure 4, the Pearson correlation
coefficient (PCC) of prevalence-hardware and frequency-
hardware is 0.06 and 0.03, respectively, which indicates that
simply enhancing hardware configuration cannot effectively
reduce SUR events. Specifically, among the 48 models of
phones we study, the ten oldest models (Model 1-10, released
between Aug. 2019 and Jun. 2020) and the ten latest mod-
els (Model 39-48, released between Jul. 2020 and Dec. 2021)
suffer almost the same number of SUR events per phone.
Android Versions. The Android versions of the studied
48 phone models consist of 10.0, 11.0, and 12.0, which were
released in Sep. 2019, Sep. 2020, and Oct. 2021, respectively.
As Android evolves from version 10.0 to 12.0, tremendous
efforts have been made to optimize the responsiveness of the
Android framework and OS kernel [13, 14, 29]. Therefore,
smartphones with higher Android versions are expected to
suffer fewer SUR events. As illustrated in Figure 7, Android
11.0 devices exhibit a 2.89% reduction in SUR events com-
pared to their Android 10.0 counterparts. However, Android

Table 2: Top-10 apps ordered by the frequency (or sim-
ply likelihood) of SUR events after normalization.

ID Alias Category Users Time(s) Likelihood

1 WeChat Instant Messaging 47M 4344 10.81
2 Douyin Video Streaming 40M 7547 10.21
3 Mobile QQ Instant Messaging 24M 1566 6.93
4 Kwai Video Streaming 16M 6666 6.80
5 Pinduoduo E-commerce 41M 803 6.50
6 Taobao E-commerce 38M 852 6.38
7 Alipay Mobile Payment 34M 409 5.98
8 Toutiao News Browsing 19M 4981 5.95
9 Jindong E-commerce 19M 931 5.91
10 Bilibili Video Streaming 10M 5975 5.55

12.0 devices have a 1.98% higher probability of suffering SUR
events, and experience more 1.90% SUR events per phone.
We primarily attribute this to the better stability and ro-
bustness of Android 10.0 and 11.0, as Android 12.0 was still
undergoing constant patches and need apps to adapt to the
newly-provided APIs [13] during our measurement.
Mobile Applications. Our analysis identifies a daily count
of 13,029,922,803 SUR events, involving 1,037,261 Android
apps in China. Upon ranking these apps based on their daily
SUR event occurrences (in descending order), we observe
a nearly-Zipf skewed distribution as depicted in Figure 8.
Among all SUR events, 16.80% are attributed to the top-10
apps (<0.001%) in Table 2, while the remaining (83.20%) be-
long to the vast majority (>99.99%) of apps in the “long tail”.
A detailed examination of the top-10 apps in Table 2 re-

veals their diverse functions: two for instant messaging, three
for video streaming, three for e-commerce, and the last two
are employed for mobile payment and news browsing. Our
further analysis reveals that these apps exert substantial de-
mands on system resources to manage their hefty workloads
which encompass high-quality media content streaming, em-
beddedWebView components [16], and complex UI function-
alities. As depicted in Figure 9 and Figure 10, the memory
consumption of these apps when running in the foreground
and background shows a consistent rise. As of June 2022, the
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Figure 9: Memory occupation of the top-10 apps running
in the foreground from Jun. 2019 to Jun. 2022.
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Figure 10: Memory occupation of the top-10 apps run-
ning in the background from Jun. 2019 to Jun. 2022.

average memory usage of these apps is recorded at 956.1 MB
and 727.7 MB in the foreground and background, with an av-
erage annual growth rate of 19.78% and 15.58%, respectively.

4.3 Root Causes Analysis
App and system developers typically conduct analysis of
corresponding logs by hand to identify the root cause of
an individual SUR event. However, such manual analysis is
not scalable and can not obtain representative conclusions.
To address this, we propose a two-phase semi-automated
analysis paradigm that combines online macro-statistical
analysis and offline micro-reproduction analysis.
Online Macro-statistical Analysis. After cleaning the
fine-grained cross-layer logs collected in Section 3.1, we ag-
gregate these logs into feature vectors (𝑉 ) upon which we
conduct a clustering analysis to pinpoint the corresponding
reasons. If the feature vector (𝑉𝑖 ) of an SUR event 𝑖 is similar
to that (𝑉𝑗 ) of another SUR event 𝑗 , SUR events 𝑖 and 𝑗 will
be classified into the same cluster. Specifically, the similarity
between 𝑉𝑖 and 𝑉𝑗 (denoted as 𝑆 (𝑖, 𝑗)) is quantified through
an off-the-shelf similarity metric named Jaccard index[31]
which is particularly useful and efficient for clustering tech-
niques that work with text data. The similarity score, 𝑆 (𝑖, 𝑗),
is calculated as 𝐽 (𝑉𝑖 ,𝑉𝑗 ) =

|𝑉𝑖∩𝑉𝑗 |
|𝑉𝑖 |+ |𝑉𝑗 |− |𝑉𝑖∩𝑉𝑗 | . The SUR events

𝑖 and 𝑗 will be classified into the same cluster if 𝑆 (𝑖, 𝑗) sur-
passes a threshold, which is empirically set to 0.95 based on
our manual inspection of representative SUR samples.

Through this clustering process, we preliminarily acquire
1,310 clusters, among which three dominant clusters cover
the majority (59%) of SUR logs. Then, we manually analyze
the unbiased samples in each dominant cluster, and discover
three major reasons of SUR events: long CPU scheduling de-
lay (20.98%), slow I/O transactions (11.32%), and insufficient
memory (26.70%). After manually checking the remaining
non-dominant clusters, we find that these clusters primar-
ily consist of cases caused by app-specific design defects
(41%), which are merge into a single large cluster. Concrete
characteristics of these reasons are detailed as follows.
First, we observe that SUR events caused by long CPU

scheduling delay often arise when CPUs are occupied by

other threads of background apps that should be of lower
execution priority. Moreover, we find in 23% of these cases,
only the less powerful little cores of the ARM CPUs are
scheduled to the foreground apps’ rendering threads and
SurfaceFlinger, whereas the performant big cores are fully
occupied by other threads of background apps.
Second, SUR events caused by slow I/O transactions are

typically attributable to heightened resource contention
when multiple processes concurrently strive for I/O
operations. This occurs as all I/O requests from the upper
framework layer are queued and handled in a hardware
dispatch queue of I/O scheduler upon entering the kernel
layer, leading to the I/O resource contention across different
processes. In particularly, when background processes
initiate a substantial number of read and write disk
operations, they fully occupy the system’s I/O resources,
leading to the head-of-line (HoL) blocking of the foreground
process’s I/O requests.
Third, regarding insufficient memory, we observe that

most of the related SUR events result from a usually time-
consuming mechanism triggered by low available memory —
Low Memory Killer Daemon (lmkd) [18] of Android, which
aims to kill low-priority processes for freeing up memory
in the userspace. Our analysis of the relevant logs reveals
that low-priority processes in the Empty state, intended to
be terminated by lmkd, are frequently reactivated by either
their parent processes or other high-priority processes that
“depend on” them, leading to a counterproductive cycle.

In terms of app-specific defects, our analysis identifies
two primary causes: 1) Prolonged doFrame execution time
on the UI thread due to overly complex UI components.
When the UI design of apps is overly intricate (e.g., deep
view hierarchies, heavy use of sophisticated animations, and
resource-intensive rendering of elements), it keeps the UI
thread running for extended periods. 2) Frequent garbage
collection causing the suspension and blockage of the UI
thread. In instances where an application creates a multitude
of short-lived objects or suffers from memory leaks, it trig-
gers the time-consuming garbage collection more frequently,
subsequently causing the UI thread to be blocked and await.
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Figure 11: Frame drop rate of Top-10
apps in iOS and Android devices.
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Figure 12: Memory consumption of
Top-10 apps in iOS and Android.
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Figure 13: CPU occupation of Top-10
apps in iOS and Android devices.

Offline Micro-reproduction Analysis. To uncover the
root cause of resource under-provisioning and contention,
we conduct benchmark experiments to reproduce SUR events
and record more detailed traces through the Android Debug
Bridge (ADB) [17]. First, we enhance the ActivityManager
(the system service for managing app activities in Android)
for adding more information (e.g., states and lifespans of
processes) to the output of dumpsys (a tool that provides
system information), along with the existing details like the
resource consumption. Our analysis involves a meticulous
manual examination of the enhanced diagnostic outputs
of dumpsys, coupled with an in-depth Timing Alignment
Analysis which includes the strategic selection of SUR event
window and a correlation analysis.

Specifically, once an SUR event is identified, we define a
time window around it including a pre-event period (-1s), the
event duration, and a post-event period (+1s). The choice of
one-second time windows before and after each SUR event
is inspired by Android-MOD’s ANR trigger time which is set
at two seconds. This event windowing strategy is helpful in
isolating the temporal contexts pertinent to each SUR event,
thereby facilitating a targeted analysis of process states in re-
lation to SUR occurrences. After that, we employ the Pearson
Correlation Coefficient (PCC) [60] to quantitatively assess
the correlation between the occurrence time of SUR events
and the lifespan of low-priority processes. The value of PCC
turns out to be 0.91 which indicates a conspicuous correlation
between SUR events and the persistent survival of numer-
ous low-priority processes of hogging apps that should have
been terminated to release system resources.
Delving deep, we find that such a strong correlation is

rooted in these hogging apps’ greedy strategy for keeping
themselves alive. Unlike benign apps that pause/terminate
operations and release resources when not needed according
to the Android lifecycle policy, hogging apps exploit the
optimistic design of Android process management (§2.2) and
utilize various tricks to keep their processes alive. This easily

trigger system resource contention and under-provisioning,
leading to fast battery drain and frequent SUR events.
In our further investigation, for hogging apps in China,

we identify two main exploited patterns for keeping their
processes alive in the background. The first one is the abuse
of foreground services which enable apps to perform contin-
uous operations even when they are not perceivable by the
user. While essential for functionalities requiring persistent
running (e.g., audio services for music playback and GPS
services for navigation), we observe that they are suscep-
tible to be abused by hogging app developers. One typical
example is the abuse of audio services where apps exploit the
audio service for tasks unrelated to sound processing, such
as sustaining app activities through silent audio playback.
The second exploited pattern is dual-process co-

awakening behaviors through process binding. Since
Android independently manages the lifecycle of each
process of apps (see §2.2), one app can lock a file in one
of its process (𝑃1), and meanwhile monitor the status of
𝑃1 by attempting to lock the same file in the other in-app
process (𝑃2). If 𝑃1 is killed, 𝑃2 will immediately lock the file
and revive 𝑃1, and vice versa.
Generalizability of Findings. To find whether our mea-
surement results generalize to other countries where Google
Play Store is not blocked, we conduct a benchmark experi-
ment in the global context. Specifically, we select the top-100
hogging apps identified in our measurement study in China.
We find that 56 of these top-100 hogging apps are also avail-
able on Google Play Store. More importantly, after applying
our analysis methods in §4.3 to them, we observe that their
hogging behaviors are consistent with those observed in
China (i.e., keeping alive by abusing foreground services
and dual-process co-awakening). This indicates that hogging
apps cannot be fully eliminated despite Google’s sophisti-
cated vetting. Thus, we believe that the existence of hogging
apps is a global problem, although the prevalence may vary
with the policies in different regions.
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Figure 14: Architectural overview of our solution
where S and O denote the hogging state and the corre-
sponding observation, respectively.

4.4 Comparative Study with iOS
To discover the discrepancy of SUR events on iOS and An-
droid, we conduct a comparative study. Specifically, we first
install the iOS-version and Android-version of top-10 apps
(listed in Table 2) that were released around the same time-
frame and have similar functionalities on five mainstream
iPhones (equipped with 4 GB RAM, 128 GB ROM, and iOS 15)
and five Android devices (equipped with 4 GB RAM, 128 GB
ROM, and Android 11). By leveraging the off-the-shell anal-
ysis tool, PerfDog [59], we measure the frame drop rate of
these devices when running the above apps under the same
workload. As depicted in Figure 11, we notice a discrepancy
between Android devices and iPhones that the former tend
to exhibit a substantially higher frame drop rate than the
latter (by ∼ 10×). Particularly, the frame drop rate of Kwai
in Android devices is 33.78 times higher than in iOS devices.
Delving deeper into the resource consumption of apps

on iOS and Android in Figure 12 and Figure 13, we observe
that these apps running on Android consistently exhibit
much higher resource occupation compared to their counter-
parts on iOS. This discrepancy is primarily attributed to the
stringent scrutiny policy of App Store [3]. In fact, hogging
apps can also potentially exploit the APIs (e.g., registering
background audio or location services) that iOS provides for
legitimate apps (e.g., music playback and navigation apps) to
keep them alive [1, 7, 53]. However, before being admitted
to the Apple Store, they must undergo App Store’s rigorous
code inspection and manual verification. Thus, the exhibi-
tion of repeated resource-hogging behaviors are grounds
for rejection or removal from the Apple Store, even with
developer accounts being terminated.

5 REMODELING PROCESS MANAGEMENT
In §4.3, we reveal that given the deceptive behaviors of hog-
ging apps for keeping alive, the existing optimistic process

management model (§2.2) fails to effectively manage the real-
world Android processes due to its deterministic state transi-
tions and the incapability of sensing the actual behaviors of
processes. To address this, our key insight is that the state
changes during the lifecycle of the process can be deemed
as a time series. Thus, we leverage the time-inhomogeneous
Hidden Markov model [41] (TIHMM) to describe the real-
world process states and their dynamic state transitions in a
time-sensitive manner based on our dataset of the studied
47M devices in §4. Second, to efficiently sense the actual be-
haviors of processes to informTIHMM,we develop a uniform
authentic sensing layer in Android which continuously mon-
itors the actual hardwareusage through eBPF-based probes.
The architectural overview is demonstrated in Figure 14.

5.1 TIHMM-based Process State Modeling
At first glance, the state transitions of the process could be
modeled as a HiddenMarkov process [49]. Unfortunately, the
traditional Hidden Markov process can only model a station-
ary process where the state transition probability is determin-
istic. To address this, we notice that changes in the process
state can be regarded as a time series. Thus, we formalize
the entire process state model as a time-inhomogeneous
Hidden Markov process [41] (TIHMM), which is robust to
the dynamic probability of the state transition over time.

We then attempt to incorporate the TIHMM into Android.
To this end, we need to insert a new “hogging” state (S in
Figure 14) to the original state machine of Android’s pro-
cess management, so as to describe the hogging processes.
However, simply adding a “hogging” state is insufficient to ac-
curately depict the varying degrees of the process’s hogging
behaviors (influenced by different levels of resource usage
and the deceptive actions of the process itself). Therefore,
based on the in-situ system observations (O in Figure 14), we
adaptively insert one or multiple sub-hogging hidden states
into existing process states on demand.
At this point, we can formalize all of these hidden state

spaces as 𝑆𝑁 . Meanwhile, the observation set 𝑂𝑀 includes
the system resource (CPU, I/O, and memory) usage and the
perceptual service behaviors with audio, GPS, Bluetooth, and
network. For continuous observations (like CPU utilization),
we discretize them by segmenting [min, max] values into
equal-length intervals. Apart from 𝑆𝑁 and𝑂𝑀 , the TIHMM is
defined by a time-inhomogeneous state transition probability
matrix 𝑄 (𝑡) where element 𝑞𝑖, 𝑗 (𝑡) indicates the probability
of transitioning from state 𝑠𝑖 to 𝑠 𝑗 at time 𝑡 , the emission
model 𝑃 (𝑜 |𝑠) denoting the probability of observing 𝑜 given
state 𝑠 , and an initial state probability distribution 𝜋 .
When apps run in the background, we can get a fully ob-

served TIHMM via the eBPF-based Uniform Authentic Sens-
ing as described in §5.2, which contains several sequences
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of information over time: the underlying state transition
time points 𝑇 = (𝑡0, 𝑡1, 𝑡2, ..., 𝑡𝑉 ), the corresponding states
𝑆 = (𝑠 (𝑡0), ..., 𝑠 (𝑡𝑉 )) of the hidden Markov chain, and the
observed data 𝑂 = (𝑜0, 𝑜1, ..., 𝑜𝑉 ).
Then, we take Expectation Maximization algo-

rithm [41, 43] to estimate 𝑄 from our measurement
data. The parameters 𝑞𝑖 𝑗 of 𝑄 is updated by: E[𝑛𝑖 𝑗 |𝑂,𝑇 ,�̂�0]

E[𝜏𝑖 |𝑂,𝑇 ,�̂�0] ,
where E

[
𝑛𝑖 𝑗 |𝑂,𝑇 , �̂�0

]
and E

[
𝜏𝑖 |𝑂,𝑇 , �̂�0

]
are the expected

state transition count and the total duration given the
current transition probability matrix �̂�0, respectively. 𝑛𝑖 𝑗
is the number of transition from state 𝑠𝑖 to 𝑠 𝑗 , and 𝜏𝑖 is the
total amount of time when the Android process remains in
state 𝑠𝑖 . The expectation for 𝑛𝑖 𝑗 and 𝜏𝑖 𝑗 is calculated by the
successive pairs of observations:

E
[
𝑋 |𝑂,𝑇 , �̂�0

]
=

𝑠 (𝑡𝑉 )∑︁
𝑠 (𝑡1)

𝑝

(
𝑠 (𝑡1), ..., 𝑠 (𝑡𝑉 ) |𝑂,𝑇 , �̂�0

)
×

𝑉−1∑︁
𝑣=1
E
[
𝑋 |𝑠 (𝑡𝑣), 𝑠 (𝑡𝑣+1), �̂�0

]
,

where 𝑋 can be 𝑛𝑖 𝑗 and 𝜏𝑖 𝑗 , respectively.
Based on the 𝑞𝑖, 𝑗 derived from the above model, we can

obtain the probability of a process transiting from state 𝑠𝑖
to any other states 𝑠 𝑗 . Among all potential transition paths,
we assign the process with the new state following the path
that maximizes the transition probability.

After identifying “hogging” processes, we need to prevent
them from co-awakening each other while minimizing the
impact on user QoE. To this end, we register a system ser-
vice called AppStateManager for managing the global app
state based on their internal processes’ states. Specifically,
in Android, all of the apps have their own unique ID (UID),
which is assigned when an app is installed in the system and
is different from Linux’s process ID (PID). Thus, we first find
a list of the Linux processes connected to a specific app by
maintaining a UID-indexed table that is updated whenever a
new process is created or terminated in the Linux kernel via
the sysfs interface. Then, using UID as a key, we can quickly
retrieve all of the app’s processes. After that, we assign the
app’s state by inspecting the identified real state of its inter-
nal processes. For instance, if there is one process within an
app that is identified as the hogging state, the global state of
the app is consequently set to the hogging state.

For potential hogging apps, we utilize the kernel’s freezing
capability to temporarily suspend the execution of their all
processes for mitigating the side effects of improper termina-
tion of processes on user QoE. If the user does not actively
re-interact with the app after a certain period (empirically set
to 30s), we then terminate all the processes associated with
the app. In this way, the co-awakening behaviors among
the processes of hogging apps can be effectively avoided.

Note that for apps that run some legitimate interaction-free
background tasks (e.g., file download and data processing),
our method will not categorize them as hogging apps, but
allow them to run normally with visual cues such as an icon
in the status bar to indicate such ongoing tasks to users.

5.2 eBPF-based Uniform Authentic Sensing
Recalling in §4, we reveal that hogging apps abuse the per-
ceptible foreground services to increase their priorities for
keeping alive in the background and occupying substantial
system resources. Thus, it is crucial to sense the actual hard-
ware utilization. However, it is quite challenging due to the
complex implementation of corresponding Android subsys-
tems (i.e., audio, GPS, Bluetooth, and network), which covers
from user-space components to kernel modules.
Fortunately, an emerging revolutionary technique called

Extended Berkeley Packet Filter [9] (or eBPF for short), which
has attracted increasing attention in the field of operating
system, gives us opportunities to address this challenge. We
leverage the eBPF-based kernel probes (kprobe) and user
probes (uprobe) to sense the real user-perceptible hardware
usage (i.e., audio, GPS, Bluetooth, and network) across dif-
ferent layers for identifying hogging apps and informing the
TIHMM-based process model, as shown in Figure 14.

First, we develop specific eBPF programs for tracing the
usage pattern of each target user-perceptible hardware in
C/C++ language and then compile them into eBPF bytecodes
through the LLVM compiler [48]. After that, we load the
eBPF bytecode into the kernel using the bpf system call
along with the metadata including the program types (i.e.,
uprobe and kprobe) and the target hooks. Upon receiving
the bytecode, the kernel verifies it to ensure that the eBPF
program adheres to the kernel’s safety constraints. The eBPF
bytecode is then translated into native machine code through
just-in-time (JIT) compilation.
Once JIT-compiled, the eBPF kprobe and uprobe are at-

tached to the relevant kernel and user-space functions re-
garding the audio, Bluetooth, GPS, and network subsystems
of Android, respectively:
• For audio, we attach uprobes to AudioTrack’s write
method and AudioRecord’s read method to detect active
audio playbacks and recordings. We also use kprobes
in the advanced Linux sound architecture’s functions
to analyze raw audio data, like snd_pcm_writei and
snd_pcm_readi.

• In network monitoring, uprobes are used to instrument
system calls in user-space network stack libraries, while
eBPF’s skfilter targets kernel functions related to network
protocol operations for traffic pattern analysis.

• For Bluetooth, we instrument its user-space modules like
BluetoothDroid and kernel functions like hci_send_pkt
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and hci_recv_frame in the host controller interface (HCI)
to analyze Bluetooth activities.

• In GPS tracking, we use uprobes on the location APIs (e.g.,
requestLocationUpdates and getLastKnownLocation)
and kprobes on the driver functions (such as gps_start,
gps_request_location, and gps_stop) to analyze the
GPS usage pattern.
The collected sensing data are then stored in the eBPF

maps (a generic storage of different data types for sharing
data between kernel and userspace) [34], from which our
user-space TIHMMmodule retrieves them. Between the user-
space TIHMMmodule and the kernel, we design an interface
for high-throughput and low-latency data transfer. Specifi-
cally, we utilize the perf_event_output system API to effi-
ciently push data from kernel to user space in a ring buffer
format, which allows asynchronous data transfer. After that,
the data interface converts the raw data into feature vectors,
encapsulating key pattern characteristics like frequency, du-
ration, and intensity of hardware usage. Through such data
normalization and feature extraction, we can incorporate the
sensing data into the TIHMM module as its observations.

6 DEPLOYMENT AND EVALUATION
To validate the real-world effect of our design, we integrate
the optimizations to Android-MOD and invite the original
47M opt-in users in late Dec. 2022 to participate in our eval-
uation of the optimization mechanism (§5). On this occasion,
60% of the 47M users opted in and upgraded to our patched
system, covering all the studied phone models. The evalua-
tion spanned two months (Jan.–Feb. 2023). Note that even
though the measurement study and evaluation are conducted
during two disjoint time periods, the users targeted in the
evaluation are from the user pool of the measurement study.
Thus, we believe that their usage patterns of mobile phones
remained consistent before and after the optimization.
In addition, we do not limit ourselves to pure system so-

lutions, but also coordinate app developers in the mobile
industry. In detail, to address the app-specific SUR events,
we have reported 415 detailed problem statements to cor-
responding app developers, among which 278 defects have
been confirmed and officially fixed (as in Dec. 2022). The
rest are either under beta tests or under code review. We
present the evaluation results of the four metrics: prevalence,
frequency, frame drop rate, and energy consumption.

Figure 15a and Figure 15b present the prevalence and fre-
quency of SUR events for each phone model before and after
the integration of the optimization mechanism in §5, respec-
tively. As demonstrated in Figure 15a, overall, the proportion
of phones experiencing SUR events per day has decreased by
half (dropped from 87.37% to 43.72% across the phone mod-
els). As indicated in Figure 15b, the frequency of SUR events

occurring daily on each phone has decreased by 59.90% (from
an average of 339.40 times to 136.10 times). Particularly, for
each individual phone model, the daily frequency of SUR
events has decreased by 36.51%—82.12%.
In addition, we utilize the lightweight frame drop mon-

itoring system described in §3.1 to record the frame drop
rate of the devices after our patch was deployed. As shown
in Figure 15c, on average, we have avoided 70.11% of frame
drops per device per day (the frame drop rate decreased from
7.97% to 2.25%). Among them, the most significant improve-
ment is observed in a high-end phone model, with a 97.79%
decrease in frame drop events, reducing the frame drop rate
from 9.52% to 0.21%. On the contrary, the least effective im-
provement is seen in a low-end model, where only 12.71% of
frame drop events were reduced, with the frame drop rate
dropping from 6.37% to 5.56%. In general, we observe a corre-
lation between models and frame drop rates that more recent
(and thus powerful) models exhibit lower frame drop rates.
This indicates that the low-end devices benefit less from our
optimizations than the high-end ones. This is understandable
since low-end models have lower hardware configurations
(e.g., memory capacity and CPU cycles). Thus, although our
solution can prevent system resource under-provisioning to
a certain extent, compared to high-end models, the low-end
devices are more likely in a state of resource deficiency.
In the meantime, to evaluate the energy consumption

of devices before and after integrating our optimizations,
we leverage the existing BatteryManager APIs of Android
which allows querying battery and charging properties. As
shown in Figure 15d, the energy consumption of the entire
device is reduced by an average of 10.69% (from 37420.76
mWh to 33420.47 mWh). The most significant improvement
is a 25.07% reduction (from 37582.38 mWh to 28160.26 mWh)
of phone model 3. The reason why the energy consumption
of certain models (e.g., model 47) is twice that of some others
can be attributed to model-specific features, such as a more
coarse-grained screen-off power management strategy. In
conclusion, these results suggest that our mechanism saves
device energy by imposing restrictions on the unscrupulous
system resource consumption of hogging apps.
To understand the probable false positives, we randomly

sample 1200 user devices for manual examination and calcu-
late the false positive (FP) rate and false negative (FN) rate
of identified hogging apps. Our experiment results reveal
that the FP and FN rates are 0.08% and 0.13%, respectively,
both of which are very low. FPs occur when a benign app
inadvertently acts like a hogging app. For example, when a
video streaming app experiences frequent network discon-
nections and reconnections under poor network conditions,
it exhibits behaviors similar to a hogging app that periodi-
cally sends garbage data for keeping alive. FNs are primarily
from “utility” hogging apps. They reside in the background
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Figure 15: (a) SUR prevalence, (b) SUR frequency, (c) frame drop rate, and (d) energy consumption of each phone
model per day before and after optimizations, with the total bar height indicating pre-optimization performance.

and stealthily push advertisements while keeping their re-
source usage low. We allow users to report these apps for
our manual examination.
Meanwhile, to evaluate the overhead of our solution, we

perform benchmark experiments by randomly sampling 480
user devices and recording the corresponding overheadwhen
our solution is running on them. The results demonstrate
that even in the worst case when the daily SUR occurrence
reaches 600+, our solution induces little (and thus accept-
able) overhead to user devices: <8% CPU utilization, <5 MB
memory usage, <3 MB storage, and <100 KB traffic per day.
Robustness to Evasion Attempts. Recall from §1 that our
design of vetting hogging apps is based on the observation
from large-scale, state-of-the-art hogging behaviors. It tar-
gets non-malicious hogging apps intending to gain resource
advantages. Thus, a dedicated/malicious developer who well
knows our design may still succeed in evading our detection
by adapting the app’s behaviors using sophisticated tech-
niques. For example, (1) a hogging app may intermittently
produce sounds at a low volume or beyond human-audible
frequency to evade detection; (2) a hogging app may actu-
ally turn on GPS, Bluetooth, or other sensors to sidestep our
vetting; (3) an even more dedicated hogging app may per-
form additional work such as transferring garbage data and
performing actual localization before discarding the result.
Some of the above behaviors such as (1) and (2) can be

picked up by our authentic sensing layer. To alert the user,
we also add visual cues such as an icon in the status bar to in-
dicate an ongoing audio playback. Also note that in Android,
using many I/O devices such as audio and GPS requires ex-
plicit user consent. For more stealthy behaviors such as (3),
they could be regarded as malicious and are thus beyond the
scope of this work. In all cases, our design significantly raises
the bar for hogging app developers. For example, almost all
the mainstream phone vendors offer a centralized system
push service to deal with background network traffic, instead
of letting background apps handle network connections by

themselves. To bypass this and achieve (3) thus requires con-
siderable hacking efforts with high risks of being flagged by
the app market and/or anti-malware services.
Besides the above-mentioned attempts, malicious apps

may employ crafty tactics such as constraining their resource
consumption to stay below TIHMM’s prediction thresholds
and regulating their hogging behaviors to minimize the prob-
ability of being detected. These evasion tactics require deep
knowledge of TIHMM and significant engineering efforts.
Moreover, TIHMM is updated daily based on users’ data,
making evasions even more difficult.
Lessons Learned. Beyond tackling hogging apps to im-
prove responsiveness, our study offers insights into behavior
profiling and performance modeling of interactive mobile
systems. First, to understand apps’ real behaviors, one needs
to capture actual user perceptions rather than relying on
system APIs. Second, static performance modeling based on
a predefined state machine is insufficient for today’s mobile
apps; instead, it’s beneficial to model process management by
considering dynamic time-sensitive factors, hidden process
states, and complex interaction scenarios, etc.

7 CONCLUSION
This paper presents our experiences of understanding and
mitigating slow UI responsiveness (SUR) in Android, a repre-
sentative interactivemobile system. Despite its disruptions to
mobile user experiences, SUR has never been well addressed
due to the challenges of comprehensive measurements on
massive devices. Our study fills the critical gap by conducting
a large-scale crowd-sourced study with 47M Android phones.
We deploy a continuous monitoring infrastructure to collect
detailed data of every SUR event on users’ devices. We then
analyze the data and uncover multi-fold root causes of SUR.
To address the major root cause, we develop an effective
solution by remodeling the process management of Android,
which has actually benefited tens of millions of users in terms
of both SUR occurrence and battery consumption.
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