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Abstract
The shared and distributed memory capabilities of the emerg-
ing Compute Express Link (CXL) interconnect urge us to
rethink the traditional interfaces of system software. In this
paper, we explore one such interface: remote fork using CXL-
attached shared memory for cluster-wide process cloning.
We present CXLfork, a remote fork interface that realizes
close to zero-serialization, zero-copy process cloning across
nodes over CXL fabrics. CXLfork utilizes globally-shared
CXLmemory for cluster-wide deduplication of process states.
It also enables fine-grained control of state tiering between
local and CXL memory. We use CXLfork to develop CXL-
porter, an efficient horizontal autoscaler for serverless func-
tions deployed on CXL fabrics. CXLfork minimizes cold-start
overhead without sacrificing local memory. CXLfork attains
restore latency close to that of a local fork, outperforming
state-of-practice by 2.26x on average, and reducing local
memory consumption by 87% on average.

CCS Concepts: • Computer systems organization →
Cloud computing; • Software and its engineering →
Checkpoint / restart; Distributed memory.

Keywords: CXL, Process forking, Remote memory, Check-
point restore, Serverless computing, Cold start
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1 Introduction
The emerging Compute Express Link (CXL) interconnect [7,
21, 68] provides a byte-addressable interface for low-latency
access to remote memory. The latest versions of the stan-
dard, i.e., CXL 3.0 and beyond, also enable rack-scale, cache-
coherent memory sharing across compute nodes [26]. These
new capabilities urge us to rethink the traditional system
software interfaces of distributed systems (e.g., [1, 44, 62]).
In particular, byte-addressable shared memory can poten-
tially speed-up cluster-wide process cloning with a remote
fork interface—a key building block for high-performance,
cloud-native serverless computing.

Unfortunately, existing remote fork mechanisms, namely
CRIU (Checkpoint and Restore in Userspace) [25, 54] and
Mitosis [75], are fundamentally limited to effectively harness
the benefits of shared CXL memory, as they are designed for
disconnected memory. CRIU serializes process state to files,
including the entire process memory footprint, as well as the
operating system (OS)-maintained process state. It then trans-
fers and deserializes this checkpointed state on the remote
node that clones the process. Mitosis implements a remote
fork primitive that targets RDMA-capable interconnects (e.g.,
Infiniband [18]). It avoids the cost of (de)serializing process
memory by using RDMA to lazily copy from the parent node
the pages that the cloned process accesses. However, its data
copies incur significant overhead (§2.3). In addition, Mitosis
still needs to serialize and copy the OS-managed state, which
induces non-negligible overhead.
To utilize the capabilities of CXL memory, we introduce

CXLfork, a new remote fork interface. Our insight is that
checkpointing and restoring process state from CXL shared
memory mostly obviates the need for state serialization and
state transfer. Hence, we can realize a close to zero-copy,
zero-serialization remote fork primitive that speeds-up pro-
cess cloning across nodes and enables cluster-wide memory
deduplication via state sharing. This can significantly ben-
efit the performance of modern applications, especially in
cloud-native, serverless paradigms [5, 8–11, 59]. Specifically,
CXLfork’s fast cluster-wide process cloning alleviates the
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overhead of cold starts of serverless functions [61, 72] and
relaxes the need to keep idle containers warm in memory for
a long time [2, 22, 50, 78] across the cluster. Combined with
the rack-scale deduplication of function footprints, CXLfork
eases the memory pressure in serverless systems, increasing
system throughput and improving their responsiveness to
load spikes.

The design of CXLfork faces two key challenges: (1) how
to checkpoint the process state to CXL memory without
resorting to serialization, and (2) how to efficiently share
the checkpointed state between concurrent cloned processes
across the cluster without impacting performance.
To address the first challenge, CXLfork checkpoints pro-

cess data and most of the OS-maintained process state (e.g.,
page tables) to CXL memory as-is, using memory copies.
Note that the checkpointed OS structures need to be decou-
pled from the OS instance that created the checkpoint, in
order to allow other nodes to concurrently use them. To that
end, CXLfork traverses the checkpointed OS structures, after
copying them to CXL memory, and rebases them on the CXL
physical memory address space. Pointers in these structures
are modified to index CXL memory, so that different OS
instances can remap and dereference them.
For the second challenge, CXLfork, by default, directly

maps the CXL-checkpointed process state to the cloned pro-
cesses on the remote nodes, without copying it to local mem-
ory. It then employs Copy-on-Write at runtime to handle
modifications, while the read-only state remains in CXL
memory, shared among all cloned processes in the cluster.
While this enables almost constant-time process cloning, and
effectively deduplicates memory over the CXL fabric, access-
ing state stored in CXL memory incurs a latency overhead
of hundreds of nanoseconds [40, 43, 68]. Hence, retaining
frequently-accessed data on the CXL memory might affect
performance, especially for applications with large working
sets. To reduce the overhead, CXLfork allows fine-grained
tiering control of the checkpointed state with tailored place-
ment policies.
We integrate CXLfork with Docker and an OpenWhisk-

based serverless platform, and design CXLporter, a horizon-
tal autoscaler designed for serverless functions deployed on
CXL-interconnected clusters. We maintain a pool of empty
(ghost) containers that consume neither CPU nor memory
resources. CXLporter uses CXLfork to clone serverless func-
tions into these empty containers on demand [75].

We evaluate CXLfork and CXLporter on an Intel Sapphire
Rapids platform with an Intel Agilex FPGA-based CXL mem-
ory device. Our results show that CXLfork improves remote
fork performance over state-of-practice and state-of-the-art
by 2.26x and 1.40x, respectively, on average, closely matching
local fork performance, while reducing memory consump-
tion by 87% and 61%, respectively, on average. CXLporter
leverages CXLfork’s capabilities to reduce tail latency and
increase resource utilization.

This paper makes the following contributions:
• We design CXLfork, the first remote fork interface for
shared CXL memory to realize close to zero-serialization,
zero-copy, cluster-wide process cloning.

• We leverage CXLfork’s fine-grained control over the check-
pointed state to devise tailored tiering policies that can
balance state deduplication and memory savings with run-
time performance.

• We develop CXLporter, a horizontal autoscaler for server-
less workloads that uses CXLfork to unlock increased con-
currency and memory efficiency for serverless systems.

• We evaluate CXLfork and CXLporter with various server-
less workloads on an experimental CXL platform.

2 Background and Motivation
2.1 Compute Express Link (CXL)
The Compute Express Link (CXL) [7, 21, 68] is an emerging
cache-coherent interconnect based on PCI Express (PCIe) [63].
Its latest revisions, i.e., CXL 3.0 and beyond, incorporate sup-
port for coherent access to shared remote memory at the
cache-line granularity by multiple nodes [21, 26]. This ability
of CXL to support cluster-wide, direct, shared memory ac-
cess opens-up the possibility to rethink system interfaces for
distributed computing. For example, recent works [45, 46, 73]
leverage it to realize pass-by-reference Remote Procedure
Calls (RPCs) to minimize data movement. In this work, we
examine its applicability for fast inter-node process cloning.

2.2 Process Cloning for Serverless Workloads
Fast cluster-wide process cloning is especially important in
Function-as-a-Service (FaaS) (i.e., serverless) environments [5,
10, 11, 59], where function instances are frequently spawned
and discarded. Spawning a new function instance has a costly
cold-start overhead due to the initialization of the function’s
state. The standard mitigation technique is to keep inactive
function instances alive (cached in memory) for a fixed keep-
alive time window [2, 22, 50, 78], to avoid future cold starts—
at the expense of idling resources and pressing memory ca-
pacity. Within the limits of a single node, fork semantics have
been proposed as a mitigation technique. They provide fast
instantiation and seamless resource sharing [2, 67] across
sibling instances. Unfortunately, load spikes commonly ne-
cessitate the creation of multiple function instances across
cluster nodes, which is a costly process.
With the capabilities provided by CXL, however, inter-

node (i.e., remote) fork semantics can potentially offer the
same fast instantiation and memory sharing benefits as a
local fork, but across nodes. To understand the potential
of this approach, we have analyzed the access pattern of
common FaaS workloads (§6). We spawn a function, invoke it
128 times with a different input in each request, and examine
the footprint of each invocation. The results are shown in
Figure 1. The figure breaks down each function’s footprint
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into: a) data that are used for function initialization and are
rarely accessed during function execution (Init) [78], b) data
that are only read during function execution (Read-only), and
c) data that are written and possibly read during function
execution (Read/Write). On average, these categories account
for 72.2%, 23%, and 4.8% of the footprint, respectively.
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Figure 1. Breakdown of the memory footprint of different
FaaS functions. Init and Read-only data dominate.

These results imply that inter-node (remote) forks can
substantially benefit from storing most of the Init and Read-
only state in the CXL shared memory. Sibling function in-
stances running in different nodes can share such state. This
facilitates cluster-wide memory deduplication, potentially
increasing the number of function instances that can run on
a fixed local memory budget. Since the working set of server-
less functions is typically small [66, 68], the local hardware
caches of the compute nodes may be able to intercept most of
the requests to such data, amortizing the increased latency
of CXL accesses. The high-level design of the envisioned
approach is shown in Figure 2.
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Node N
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Task A
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Figure 2. Envisioned system that enables fast remote process
cloning and data sharing over CXL memory.

2.3 Existing Remote Fork Designs
There are two existing mechanisms that can fork a process
to a remote node in a cluster: CRIU (Checkpoint and Restore
In Userspace) [25, 54] and Mitosis [75]. In this section, we
describe how they could be adapted to use CXL shared mem-
ory, and evaluate their performance using an experimental

setup of two virtual machines that access an FPGA-based
CXL memory prototype (described in §6).

2.3.1 Checkpoint and Restore in Userspace (CRIU).
CRIU is the state-of-practice framework for transferring pro-
cess state across nodes. CRIU does not directly leverage the
network fabric in a cluster. Instead, its remote fork copies a
process’ state from one node to another indirectly via stor-
age. It uses Protocol Buffers [56] to serialize the OS state of a
running process (e.g., its virtual memory areas, page tables,
open files, namespaces, and CPU registers) and the process’
memory pages to files. With CXL, we can cache these files
in shared CXL memory (Figure 3a). This is the checkpoint
phase ( 1 in Figure 3a). In the restore phase 2 , these files are
deserialized to the target node and used by CRIU to create
a cloned child, restoring the entire checkpointed state and
resuming execution.
Our evaluation reinforces recent studies [75] and shows

that CRIU is inefficient for the FaaS use case even if we port
it to CXL. Figure 3c shows the CRIU latency and memory
overhead when it forks a BERT [58, 78] function instance
to a new node and runs an inference task. The latency plot
assumes that the checkpoint files are already in the CXL
memory.We observe that just the restore phase of CRIU takes
2.7x longer than forking a BERT instance using local fork
and its execution. Moreover CRIU consumes 42x more local
memory than local fork, since parent and child processes in
different nodes share no state.

2.3.2 Mitosis. Mitosis [75] is the state-of-the-art frame-
work to fork processes to remote nodes. It utilizes the RDMA
capabilities of network fabrics (e.g., Infiniband) to accelerate
remote fork. Mitosis creates a shadow immutable copy of
the parent process in the memory of the same node, while
serializing the OS state. This is the checkpoint phase. Then,
it transfers the serialized OS state to the remote node using
one-sided RDMA operations, and deserializes it to create a
new process. This is the restore phase. By default, the forked
process is resumed without copying the parent’s memory
pages. As the forked process executes, it triggers special page
faults that copy such pages from the parent node lazily, with
remote paging [44].
To implement Mitosis with CXL support, we replace the

RDMA operations with page copies over the shared CXL
memory. The checkpoint phase ( 1 in Figure 3b) creates the
checkpoint locally. The restore phase 2 transfers the OS
state over CXL memory, and the remote page faults of the
child process are served with copies over CXL 3 (instead of
one-sided RDMA). Since there is no way currently to serve
inter-node faults with CXL, we test Mitosis-CXL within the
same node. Note that CXL 3.0 will introduce such support
with Global Integrated Memory (GIM) [7], so Mitosis could
then be properly evaluated.

Despite the CXL-provided speedup, our evaluation shows
that Mitosis also has substantial inefficiencies. As shown in
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Figure 3. State-of-practice (CRIU) (a) and state-of-the-art (Mitosis) (b) remote fork mechanisms, and their latency and memory
overhead (c). The latency figure assumes that the state is already checkpointed.

Figure 3c, Mitosis’ latency to fork and execute the BERT func-
tion is high. Although Mitosis performs better than CRIU,
the total execution time is still 2.6x longer than forking an
instance with local fork and executing it. The dominant over-
head stems from copying process memory during page faults.
For the BERT function, the restore overhead of transferring
and de-serializing the OS state is not high. However, for other
functions, such overhead can be substantial (§7). Finally, the
local memory consumption increases by 24x over a local fork.
While copying all accessed data locally is reasonable for a
remote fork based on RDMAwith expensive remote memory
accesses, it misses the benefits of low-latency shared direct
access to CXL memory.

Existing remote fork mechanisms introduce substantial
overheads because they are inherently designed for discon-
nected memory and thus need to (de)serialize and transfer
OS state and process data across nodes.

3 Designing Remote Fork for CXL Fabrics
We design CXLfork, a remote fork interface that enables
fast cluster-wide process cloning and effective memory state
deduplication over shared CXL memory. CXLfork leverages
the global shared memory capabilities of CXL to:
1. Minimize the software overheads of process state serial-

ization and transfer between nodes, providing close to
zero-serialization, zero-copy remote fork.

2. Enable the seamless, efficient, and controlled cluster-wide
sharing of read-only state between remote sibling pro-
cesses via an enriched remote fork interface.

3.1 Challenges and Opportunities
CXLfork adheres to the standard checkpoint-and-restore
interface of remote fork as in prior art [54, 75]. To achieve
the above goals, CXLfork addresses three main challenges.
How to Store the Checkpointed State? As discussed in §2,
existing remote fork mechanisms either checkpoint process
state to files [54] or keep it in the memory of the OS instance
that initiates the checkpoint [75]. The first approach (CRIU)
decouples the checkpointed state from the OS instance that
created it—i.e., all references (pointers or dependencies) to

the checkpoint-initiating OS have been stripped and the
checkpoint files can be stored on, transferred to, and used by
any node in the cluster. However, process restoration suffers
from significant deserialization overhead.

The second approach (Mitosis) skips serialization for pro-
cess data, but couples the checkpointed state with the node
and process that created it. One implication of this design
approach is that the parent process cannot exit until all its
descendants (i.e., remote children) have terminated, which
complicates process lifecycle management [75]. Thus, the
node where the parent process and the checkpoint reside,
acts as a point of failure [51, 80, 83]. Such a design also limits
the potential to exploit shared-memory fabrics, as the state
needs to be copied from the parent node to different children
nodes. The parent node acts as a point of congestion and its
network uplink is a potential bottleneck. Overall, retaining
non-serialized process data in the checkpoint initiator trades-
off lower checkpoint latency for increased overhead and
more constraints in the restoration path. However, remote
fork performance is typically biased toward restores, as we
see a checkpoint-once-restore-multiple pattern—especially
in a serverless environment.

In contrast, CXLfork leverages direct, low-latency access
to shared memory enabled by CXL to achieve the best of
both worlds. Process state is decoupled from the OS instance
that initiated the remote fork and is placed as-is (i.e., mostly
avoiding serialization) on the shared CXL medium. Other
nodes can concurrently access the checkpointed state from
there, without the need to fetch it locally (i.e., avoiding the
bulk of deserialization and copying).

To efficiently decouple process state and make it available
for concurrent use by other OS instances, CXLfork distin-
guishes between private and global process state. Private
state is self-contained—it does not link to OS structures out-
side the process. For private state, CXLfork needs to manage
its internal pointers, so that they point to and index the
physical address space in CXL memory where the check-
pointed state now resides. On the other hand, global state
requires explicit unplugging (detach) and plugging (attach)
for checkpoint and restore respectively, to keep the OS meta-
data consistent.



CXLfork: Fast Remote Fork over CXL Fabrics ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Task

Global State Private State

MM

Registers

Namespaces

Sockets

Open Files
VMA B-tree PUD

PMD

PTE

PGD Lo
cal M

e
m

o
ry

C
X

L M
e

m
o

ryPID, mount points

Fds, net protocols

Paths, permissions

Task

Registers

MM

VMA B-tree

Path, perm.
PUD

PMD

PGD

PTE

Read-only

A/D

F

X

Node 0 – Process A

In-memory serialization Native Memory Copies

Rebase

1

2

3
4

5

7 6

8

8

A/D

VMA VMA VMA VMA

Page Tables

Data

Page Tables

Data

(a) CXLfork checkpoint

Load B

Node 0

PUD

PMD

PGD

EF

PTE

PUD

PMD

PGD

PTE

A
CoW

PUD

PMD

PGD

D E FBA

PTE

CVMAs

VMAs
VMAs

Node 1

Process A1

Cores/
Caches

Cores/
Caches

Process A2
Store A

1

2

3a

3b

5a
4

Checkpoint of 
Process A

5b

(b) CXLfork restore

Figure 4.Workflow of CXLfork operations: (a) checkpoint and (b) restore.

How to Efficiently Share the Checkpointed State? To
realize close to zero-copy restore, CXLfork retains both meta-
data and data for the cloned process on CXL memory. CXL-
fork thus skips the overheads of reconstructing OS state,
such as process page tables and virtual memory layout, dur-
ing restore. The checkpointed process memory also resides
in CXL and can be readily attached to the cloned process.
CXLfork employs a Copy-On-Write (CoW) approach to han-
dle writes via faults that fetch pages from CXL memory to
local memory (migrate-on-write) and ensure checkpointed
(meta)data immutability. Using CoW instead of fetching
pages to local memory on loads via faults [75] a) minimizes
restore latency by avoiding copies, and b) enables the seam-
less sharing of the read-only state, which remains stored
in CXL and is automatically and dynamically cached in the
hardware caches of the different nodes in the cluster.
How to Tier Checkpointed State? In some cases, relying
only on the migrate-on-write strategy to bring pages to the
node running the cloned process may not be optimal. There
is a trade-off between data tiering, data deduplication, and
remote fork performance. The challenge derives from the
fact that the shared CXL memory tier is slower than local
memory. If the working set of the cloned process is not
captured by the hardware caches in the node where the
process is running, load accesses may miss in the caches and
access data from the CXL tier, slowing down execution.

To handle this case, we design mechanisms in CXLfork to
track the working set of cloned processes. Further, we en-
rich the CXLfork interface to allow fine-grained control of
checkpointed state tiering between local memory and CXL
shared memory. Such an interface enables dynamically trad-
ing off performance for local memory savings under different
conditions of access locality and memory pressure.

4 CXLfork Design and Implementation
We now present the design and implementation of CXLfork.
CXLfork targets clusters of nodes interconnected via CXL

fabrics where, like in related work [54, 75], the nodes run
standalone instances of the same OS image and use a shared
(distributed) file system.

4.1 CXLfork Checkpoint
Figure 4a shows the checkpoint workflow. For optimal op-
eration, CXLfork distinguishes between private and global
process state, and checkpoints each differently.
Private State is all the data andmetadata uniquely owned by
a process, which can therefore be decoupled from the rest of
the OS and checkpointed. It includes: the process Task struc-
ture ( 1 in Figure 4a); the memory descriptor (MM) 2 , which
comprises the Virtual Memory Area (VMA) tree and the page
tables that hold the process address space; the CPU register
contents 3 ; and the physical pages that comprise the process
private memory and the private file mappings (e.g., libraries)
4 . All these OS data structures and the process data pages
are checkpointed to CXL memory 5 using native memory
copies. Unlike prior art [54], CXLfork also checkpoints pri-
vate clean file-backed memory pages, i.e., for files that are
privately mapped by the process such as libraries, trading
off checkpoint size for restore performance—since faulting
in file pages on a remote node on restore is expensive.
The checkpointed page table tree in the CXL memory is

not a simple copy of the original; it has to be modified, since
CXLfork uses it to index checkpointed data without the need
for the metadata serialization used in prior art [54, 75]. CXL-
fork updates the checkpointed page table entries (PTEs) to
map the new CXL physical locations where the checkpointed
pages reside, and marks them as read-only. For example, the
virtual page that was mapped to physical page 𝐹 on node
0 in Figure 4a is now mapped via the checkpointed page
tables to CXL page 𝑋 , which stores 𝐹 ’s replica. CXLfork also
preserves the Access (A) and Dirty (D) bits of the original
tables, which encode the access pattern of the checkpointed
process. The design choice to checkpoint the page table tree
in CXL also accelerates CXLfork restore as discussed in § 4.2.



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Chloe Alverti et al.

Once the checkpoint has been copied to CXL memory,
CXLfork rebases 7 the internal pointers of the checkpointed
OS structures into the corresponding (machine-independent)
offsets on the CXL device [80, 83]. This is done to allow other
OS instances to remap and dereference them.
Global State is the OS state shared by multiple processes
running on the same node, e.g., open files, sockets, and
namespaces. It typically contains pointers to global OS data
structures like the filesystem layer (e.g., inodes), which can-
not be checkpointed; they are neither standalone nor portable.

CXLfork serializes into CXL memory the information nec-
essary to re-instantiate global state on a remote node. During
restore, it de-serializes it and redoes operations to restore
global system state (§ 4.2). CXLfork could fall back to serial-
izing the global state to storage like CRIU [54]. However, this
would induce non negligible de-serialization overheads on re-
store. Figure 4a 8 showcases how open or memory-mapped
files (e.g., libraries) are handled. CXLfork serializes their
paths and permissions in the checkpointed data structures.
Note that, similarly to existing remote fork interfaces [54, 75],
CXLfork assumes that the root file system is identical across
nodes (e.g., as in the case of a container image). Hence the
file paths are the same across nodes. Sockets and other file
descriptors are handled similar to files. CXLfork does not
currently support shared anonymous memory mappings, i.e.,
memory shared between processes.

Some of the private and global state is reconfigured during
the restore operation. Such state comprises metadata that,
while shared between parent and child in a local fork, can
change in the cloned process in a remote fork. For exam-
ple, scheduling policies such as CPU or NUMA affinity, and
namespace and cgroup configuration can be reset on the
new node after the remote fork. From the reconfigurable
state, CXLfork only serializes and checkpoints mount points
and the process identifier (PID) namespaces. For the rest
of the metadata, it supports restoring execution into new
namespaces [53].

4.2 CXLfork Restore
CXLfork uses the checkpointed data and metadata on CXL
memory to clone processes across cluster nodes. Figure 4b
shows the restore workflow. On the right, it shows how CXL-
fork restores process 𝐴2 from the checkpoint of process 𝐴
on CXL memory. On the left, it shows an already restored
process 𝐴1 from the same checkpoint. To perform the re-
store, CXLfork first creates a new process on the new node
that calls CXLfork-restore 1 . CXLfork-restore re-constructs
the process virtual memory using the checkpointed meta-
data 2 and maps the checkpointed physical memory to the
new process’ address space 3a , 3b . Finally, it restores the
global state and resumes execution using the checkpointed
hardware context.

Zero-Copy, Seamless State Sharing. CXLfork avoids copy-
ing any process data on restore. Instead, it maps the check-
pointed data, as read-only, into the new process address
space. The simplest way to achieve this is by naively copy-
ing the checkpointed page table entries to local memory 3a ,
as they already store the CXL addresses of the checkpointed
data and map them as read-only 3b (§ 4.1). However, we
describe later in §4.2.1 how CXLfork can initialize the page
table tree of the child more efficiently, avoiding most of these
copies. The process then resumes execution instantly.

All the load instructions of the restored process that miss
in the hardware caches of the CPU fetch directly the check-
pointed data from CXLmemory, bypassing the local memory
of the node (e.g., load 𝐵 in 𝐴1 4 ). Store instructions 5a trig-
ger CoW faults 5b that copy the target page to local memory
and perform the update locally. This approach ensures that
the checkpoint in CXL remains pristine and readily reusable.
This design also enables the seamless sharing of read-only
data across nodes. Figure 4b shows how processes 𝐴1 and
𝐴2 directly map the same CXL-checkpointed pages 𝐵,𝐶 , and
𝐷 while running on different nodes.
Restoring Global and Reconfigurable State. During re-
store, CXLfork redoes all the necessary operations to re-
construct global OS state, using the lightly serialized check-
pointed state (§ 4.1) For example, it reopens all the file de-
scriptors that the parent process held open (e.g., files and
sockets) using checkpointed paths and permissions. Simi-
larly, CXLfork restores private memory mappings (e.g., li-
braries) for files that are no longer open. CXLfork deserializes
the checkpointed metadata (e.g., the file paths) stored on the
CXL-checkpointed VMA tree (Figure 4a) and sets up the
necessary data structures (e.g., file struct) while registering
their callbacks to the local file system layer. Finally, CXL-
fork restores the mount points and PID namespaces of the
child process using the CXL checkpoint. For the rest of the
metadata, such as network and cgroup configurations, CXL-
fork uses a hybrid approach. It inherits them from the process
that calls the CXLfork API on the new node, rather than from
the checkpointed process [53]. This way, CXLfork can clone
processes directly into new containers.

4.2.1 Restore Efficiency. A naïve implementation of re-
store in CXLfork may copy all the checkpointed private OS
state (i.e., the memory descriptor, the virtual address space
layout, and the page table tree) from CXL to local memory
and re-construct all global OS state synchronously. However,
we measured that copying and re-instantiating the OS state
on the remote node on restore can take several milliseconds.
This incurs a non-negligible start-up delay, especially for
latency-sensitive serverless applications.
Attaching OS State in Constant Time. To reduce this
overhead, CXLfork directly maps the checkpointed OS state
instead of copying it to local memory. CXLfork allocates and
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Figure 5. CXLfork restores OS state in constant time by
allocating and initializing only the upper levels of the page
table and VMA trees, and directly attaching the checkpointed
leaves of the trees.

initializes only the upper levels of the page table tree of the
new process in local memory. It then directly attaches the
checkpointed leaves (i.e., the last-level PTEs) to the cloned
process’ upper page table levels (Figure 5). These PTEs al-
ready map the CXL physical addresses of the checkpointed
data as read-only. This approach enables the re-instantiation
of the cloned process page tables in almost constant time [3].
CXLfork prevents the OS from modifying the attached

(checkpointed) CXL PTEs. This is done by using an unused
bit in the PTE structure to track any OS attempt to update
them. On such an event, it lazily copies the entire leaf to
local memory—similar to CoW faults but for page table en-
tries [81]. In this way, CXLfork shares fractions of page table
trees across processes and nodes. For example, processes 𝐴1
and 𝐴2 in Figure 5 share the same page table leaves via CXL.
The same optimized procedure that CXLfork uses to re-

store page tables is also used to restore the virtual memory
area (VMA) tree. CXLfork allocates and initializes only the
upper levels of the VMA tree and attaches the checkpointed
leaves (Figure 5). We observe that address spaces are fre-
quently populated by numerous VMAs that privately map
libraries and runtime modules. In the case of serverless func-
tions, their number grows to the order of hundreds, due to
the many dependencies of popular FaaS languages such as
Python, which makes the reconstruction of the VMA tree
a costly operation. At the same time, most of these VMAs
rarely change, in either size or access permissions. Thus,
attaching their checkpointed version is sufficient to restore
execution; in the rare case of an update, CXLfork copies the
corresponding leaf to local memory lazily. This strategy also
re-constructs the global state for these VMAs on demand,
i.e., copying the VMA to local memory and registering call
backs to the file system only during a fault. Note that CXL-
fork checkpoints/restores the clean pages for private file
mappings to/from CXL memory. Therefore, faults for the
VMAs of these mappings are not frequent (§ 4.1, § 4.2).
Optimizing CXL Page Faults. By directly attaching check-
pointed PTEs, CXLfork eliminates all read faults, similarly to

local fork. However, it still pays the penalty of CoW, which
copies data from the CXL tier to local memory. In our system,
described in §6, we measure that such faults cost 2.5 𝜇s on av-
erage, while a regular fault that allocates an anonymous page
from local memory costs less than 1 𝜇s. We also measure that,
on a CXL CoW fault,≈1.3 𝜇s are spent on data movement and
≈500 𝑛𝑠 on maintaining TLB coherence. To reduce the TLB
shootdown overhead, CXLfork opportunistically prefetches
into local memory those pages that are marked as dirty in the
checkpointed page tables. The intuition is that, when fork
is used to clone processes, and when checkpoints are taken
judiciously [34], the Access (𝐴) and Dirty (𝐷) bits reflect the
memory access patterns of the process. For the serverless
use case, we profile forked functions and, indeed, over 95%
of the pages that were written by the parent are also written
by its children.

4.3 CXLfork Tiering
CXLfork extends the fork semantics to expose the trade-off
between data sharing, restore performance, and potential
runtime penalty due to slow CXLmemory. CXLfork supports
three different policies to copy checkpointed read-only pages
from the CXL tier to local memory: (1) migrate-on-write
tiering (default), (2) migrate-on-access (no tiering), and (3)
hybrid tiering. CXLfork relies on information saved in the
checkpointed page tables to do this efficiently, and exposes
these policies to user-space controllers.
Migrate-on-Write is the default policy that lazily copies
pages from CXL to local memory on stores and opportunis-
tically prefetches dirty pages (§4.2.1).
Migrate-on-Access (no tiering) copies pages to local mem-
ory on access, like in [75, 78]. The first access to a check-
pointed page triggers a special CXL page fault that copies
the page from CXL to local memory. When using this policy,
CXLfork does not attach the CXL page table leaves to the
cloned process page table tree during restore (§4.2). It does
not populate the entries at all, letting accesses to trigger CXL
faults that set the PTEs of the cloned process.
Hybrid Tiering relies on the 𝐴 bits in the checkpointed
page tables to decide which pages to fetch into local memory
on access. As discussed in §4.1, CXLfork checkpoints the
𝐴/𝐷 status of the page table of the parent process. From
that point on, no OS instance in the cluster changes the
checkpointed bits, as we exclude CXL memory from OS
memory reclamation (i.e., from LRU lists). As CXL memory
is shared between nodes, individual OS instances should not
reclaim pages without coordinating with other sharers.
In hybrid tiering, CXLfork uses the 𝐴 bit to select how

pages will be placed in different tiers. Specifically, a CXL
page with a clear𝐴 bit is assumed not to be heavily-accessed
and, therefore, on access, is not fetched to local memory.
Conversely, an access to a page with the 𝐴 bit set fetches the
page to local memory. An alternative approach would be to
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prefetch the pages with the 𝐴 bit set synchronously during
restore. However, we find that such a design, which trades-
off remote fork tail latency for fewer CXL faults, generally
delivers lower performance.
Continuous Update of Access Patterns. Hybrid tiering
is effective only if the 𝐴 bits of checkpointed page tables ef-
fectively capture the “hot” pages of the workload’s footprint.
Ideally, hot pages are the read-only pages that cause most of
the cache misses and, hence, most of the accesses to the CXL
tier; in practice, we have to settle for the read-only pages
that are accessed the most. Once hot pages are identified,
they should be fetched into local memory on access.

We can identify hot pages by relying on: (1) the hardware-
driven update of the 𝐴 bits in the checkpointed PTEs in CXL
memory, and (2) their reset from user-space. Indeed, when
a restored process that has attached the checkpointed page
tables does access the checkpointed pages, its page-table
walks will update the 𝐴 bits on the CXL PTEs. Note that 𝐷
bits are never updated, as these pages are attached as read-
only. Furthermore, CXLfork allows user-space to reset the
checkpointed 𝐴 bits via a dedicated interface. In the next
section, we show how a runtime system can use this ability
to periodically clear the 𝐴 bits in the checkpointed PTEs to
continuously monitor working sets similarly to [31].
User-Identified Hot Pages. CXLfork also allows users to
explicitly declare hot pages. Specifically, user-space profil-
ers [39, 48, 76] identify hot pages and, through a dedicated
interface, save this information in an unused PTE bit in the
checkpointed CXL page tables. Such information can then
be used to optimize future remote forks.

5 CXLporter: Exploiting CXLfork for FaaS
To exploit CXLfork in a FaaS environment, we have built
CXLporter, a horizontal autoscaler for FaaS. CXLporter effi-
ciently scales up and down the number of function instances
running in a CXL-interconnected cluster using CXLfork.
We integrate CXLporter with an OpenWhisk-based server-
less runtime using Docker, similar to [78]. CXLporter per-
forms the following operations: (1) takes appropriately-timed
checkpoints of functions, (2) maintains an object store of
checkpoints, (3) maintains a pool of ghost containers, (4)
controls the CXLfork tiering policies, and (5) dynamically
adjusts keep-alive windows. Next, we discuss each operation.
Function Checkpointing. Prior work [34, 64] shows that
checkpoints must be taken only after functions have been in-
voked for at least a few times. This is because the languages
commonly used for FaaS workloads use JIT compilers, which
need a few invocations to optimize the code and reach a
steady state. For this reason, CXLporter checkpoints func-
tions after their 16th invocation. Further, as discussed in
§4.3, checkpointing a function includes capturing its mem-
ory access patterns with the 𝐴 and 𝐷 bits of its page table
entries, and saving them in the checkpointed page tables
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Figure 6. Latency of cold-starting a serverless function.

stored in CXL memory. We want these bits to capture the
pattern in the steady state, not in the initialization phase.
Hence, CXLporter also clears the A/D bits in the function’s
local page tables after the function’s first invocation.
Object Store of Checkpoints. CXLporter maintains a dis-
tributed object store in the CXL fabric [80], that associates
unique tuples of <user,function> with checkpoint iden-
tifiers (CIDs) of CXL-stored checkpoints, similarly to [34].
CXLporter uses this storage to (1) store newCIDs after check-
pointing a function and (2) query CIDs before performing a
CXLfork restore. CXLporter is also responsible for reclaim-
ing checkpoints under CXL memory pressure.
Ghost Container Pool.Wemeasure the overheads involved
in cold-starting a function on a local node using Docker.
Figure 6 shows the average overhead for several functions,
broken down into State Initialization and Container Cre-
ation. The former includes initializing the runtime and the
function’s private data (e.g., weights of an ML model). This
latency depends on the function and, in our experiments, is
250–500𝑚𝑠 . CXLporter minimizes this overhead plus any
inter-node network latency with CXLfork-restore.

The second latency, container creation, is the overhead of
setting up a new container to deploy a function instance [2,
47, 50]. It includes setting up the container network [50],
namespaces, and cgroups. Similar to prior studies [47], we
find that this overhead is ≈130ms. From the figure, we see
that this overhead changes little across functions, irrespec-
tive of their image or footprint size. We also measure that
a bare container with no deployed function consumes only
512KB of memory.

To eliminate the container creation overhead, CXLporter
builds on the idea of Zygote template containers [50] and
CXLfork’s ability to restore function state, and introduces the
notion of Ghost Containers. CXLporter provisions and caches
a few configured but empty containers per function, which
wait for “function restoration requests”. Each of them occu-
pies only 512KB of memory. When a new function instance
is to be restored, CXLporter triggers the control socket of
one of these containers to issue the restore request and clone
the target function within the empty container by attaching
its CXL checkpointed state.
CXLfork Tiering Policies.When the serverless runtime
decides to deploy a function (e.g., during a spike in incoming
load), CXLporter queries the checkpoint object store for an
available checkpoint of the function. If a checkpoint is found,
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CXLporter uses CXLfork-restore to clone the function. If no
checkpoint is found for the requested function, CXLporter
defaults to the regular cold-start mechanisms.

When restoring a function from a checkpoint, CXLporter
controls how the checkpointed state is tiered between local
and CXL memory. The decision is based on collected perfor-
mance metrics from previous runs of the function, and on
the available memory on the node. By default, CXLporter
uses the migrate-on-write tiering policy (§4.3). This maxi-
mizes local memory savings and deduplication across nodes
but can penalize function performance. Hence, CXLporter
monitors the tail and average latency of function instances.
If they are close to or over the user-defined Service-Level-
Objectives (SLOs), it switches the function policy to hybrid-
tiering. Hybrid tiering copies to local memory the pages that
are estimated to be hot because their𝐴 bit is set in the check-
pointed page tables. CXLporter also continuously monitors
the local memory usage. If memory usage reaches a High-
Mem threshold, no more functions are promoted to hybrid
tiering. Moreover, CXLporter periodically resets the𝐴 bit on
the checkpointed page tables to re-estimate hot pages (§ 4.3).
Keep-Alive Windows. Serverless runtimes keep idle func-
tions cached in memory for a keep-alive window of several
minutes [30] to minimize near-future cold-starts. CXLporter
leverages the low cold-start latency of CXLfork and, when
the memory pressure in the nodes increases, it dynamically
shortens keep-alive windows to 10 seconds to reclaim mem-
ory faster. We consider studying different window sizes for
different functions as future work.

Overall, CXLporter takes advantage of the low overhead of
function cold-starts with CXLfork and the memory savings
enabled by state deduplication in CXL memory to increase
function density and attain higher throughput with the same
memory budget.

6 Methodology
6.1 Experimental Setup
CXL Hardware Setup.We use a dual-socket 64-core Intel
Sapphire Rapids server [13, 14, 20] as the host. Each socket
has a 64MB L3 cache and a 128GB local DDR5 memory, and
supports CXL v1.1-attached memory. We use an Intel Agilex
7 FPGA [15, 16] equipped with a 16GB DDR4 DIMM as the
CXL memory device. We attach the CXL memory to the
host as a CPU-less NUMA node [40]. Because we only have
a single host, we set up a virtual machine in each of the
two sockets to model a two-node distributed machine with
shared CXL memory. We measure the round-trip latency
from a core to the CXL memory to be 391ns on average [12].
System Software. We implement CXLfork on Linux v6.6.
We use QEMU/KVM to spawn the two VMs on the host, and
attach the CXL memory as a regular QEMU memory region.

Function Description Footprint (MB)

Float Sin, Cos, and Sqrt on floats 24
Linpack Linear algebra solver for matrices 33
Json JSON serialization & deserialization 24
Pyaes Python AES encryption of a string 24
Chameleon HTML table rendering 27
HTML HTML web service 256
Cnn JPEG classification CNN 265
Rnn Generating natural language sentences 190
BFS Breadth-first search 125
Bert BERT-based ML inference 630

Table 1. Serverless functions used in the evaluation.

Simulation. To assess how CXLfork would perform with
CXL devices with a latency different from our system [17, 19],
we integrate QEMUwith the SST simulator [57, 74]. After we
calibrate the simulator with our CXL hardware, we perform
simulations with different access latencies to CXL memory.
Workloads.We use the serverless functions shown in Ta-
ble 1. They are the CPU and memory functions from Func-
tionBench [32] and three real-world functions from [78]
(HTML, BFS, and Bert). We invoke these functions accord-
ing to real-world Azure serverless traces [61], to generate a
realistic load for our system [28, 60].

6.2 Evaluation Scenarios
We evaluate two different scenarios.
Performance of CXLfork.We evaluate the cold-start ex-
ecution of functions that are remote-forked to serve an in-
coming request on another node. To focus on the remote
fork (rfork) overhead itself, we run the functions unsand-
boxed—i.e., without containers. We compare the checkpoint
latency and the restore latency with CXLfork, CRIU-CXL,
and Mitosis-CXL.
For CRIU-CXL, we create an in-CXL-memory filesystem

which we share between the two VMs. The first VM serializes
checkpoint files on the shared filesystem, which the second
VM deserializes to clone a new function instance. This CRIU
setup leverages CXL shared memory to avoid file copies,
unlike prior studies [75].
For Mitosis-CXL, we face the challenge that there is no

existing support for remote faults over CXL memory as in
RDMA (§2.3.2). So, we port Mitosis [55] to our system and
use only one of our two VMs. We mimic remote forking
within the same VM, by replacing RDMA operations with
memory copies over the CXL fabric. Each “remote” fault
thus includes the latency to store and fetch data from CXL
memory.
Performance of CXLfork Bursts with CXLporter. We
implement variations of CXLporter that use CXLfork, CRIU-
CXL, or Mitosis-CXL as rfork mechanisms. To generate a
realistic load for our system, we invoke our serverless func-
tions of Table 1 following Azure serverless traces [61]. For
this set of experiments, we use rfork to spawn new function
instances both across and within nodes. We use rfork-restore



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Chloe Alverti et al.

120
250

500

19
73

13
23

12
87

27
61Restore Page Faults Execution

Float Linpack Json Pyaes Chameleon HTML Cnn Rnn BFS Bert

0

50

100

E
xe

cu
tio

n 
Ti

m
e 

(m
s)

C
ol

d

C
ol

d

C
ol

d

C
ol

d

C
ol

d

C
ol

d

C
ol

d

C
ol

d

C
ol

d

C
ol

d

C
R

IU
-C

X
L

C
R

IU
-C

X
L

C
R

IU
-C

X
L

C
R

IU
-C

X
L

C
R

IU
-C

X
L

C
R

IU
-C

X
L

C
R

IU
-C

X
L

C
R

IU
-C

X
L

C
R

IU
-C

X
L

C
R

IU
-C

X
L

M
ito

si
s-

C
X

L

M
ito

si
s-

C
X

L

M
ito

si
s-

C
X

L

M
ito

si
s-

C
X

L

M
ito

si
s-

C
X

L

M
ito

si
s-

C
X

L

M
ito

si
s-

C
X

L

M
ito

si
s-

C
X

L

M
ito

si
s-

C
X

L

M
ito

si
s-

C
X

L

C
X

Lf
or

k

C
X

Lf
or

k

C
X

Lf
or

k

C
X

Lf
or

k

C
X

Lf
or

k

C
X

Lf
or

k

C
X

Lf
or

k

C
X

Lf
or

k

C
X

Lf
or

k

C
X

Lf
or

k

Lo
ca

lF
or

k

Lo
ca

lF
or

k

Lo
ca

lF
or

k

Lo
ca

lF
or

k

Lo
ca

lF
or

k

Lo
ca

lF
or

k

Lo
ca

lF
or

k

Lo
ca

lF
or

k

Lo
ca

lF
or

k

Lo
ca

lF
or

k

(a) Execution time

Fl
oa

t
Li

np
ac

k
Js

on
P

ya
es

C
ha

m
el

eo
n

H
TM

L
C

nn
R

nn
B

FS B
er

t
Av

er
ag

e0.0

0.2

0.4

0.6

0.8

1.0

Lo
ca

l M
em

or
y 

U
se

d

Cold
CXLfork

CRIU-CXL
Local Fork

Mitosis-CXL

(b) Normalized local memory consumption

Figure 7. Remote fork performance under cold-start execution and normalized local memory consumption.

within a node, similar to [24, 34], to approximate an envi-
ronment with invocation bursts in our limited two-node
platform. This correctly estimates the overheads of remote
forking except for the network overheads that would ap-
pear in a large distributed system. We use ghost containers
to sandbox new function instances in both CXLfork and
Mitosis-CXL. CRIU-CXL is not compatible with ghost con-
tainers, as it stores/deserializes checkpoints to/from a file
system. We set the HighMem tiering threshold to 90% (§5).
Metrics. We use two metrics to evaluate CXLfork: (1) the
average and tail latency of function execution and (2) the
amount of local memory consumed. We report these metrics
with both standalone CXLfork and CXLfork integrated in
CXLporter.

7 Evaluation
7.1 Performance of CXLfork
Figure 7a shows the end-to-end cold-start execution time
of our functions under different rfork scenarios: CRIU-CXL,
Mitosis-CXL, and CXLfork. The execution time is broken
down into: the restore phase (Restore), page fault overhead
(Page Faults), and the rest of function execution (Execution).
For the page fault overhead, we include all types of faults (i.e.,
minor, major, and CoW); we profile them by instrumenting
the kernel to capture their latencies. We do not include the
checkpointing phase because it is typically performed only
once, while restore is executed many times. For reference,
we also show bars for vanilla cold execution (Cold) without a
breakdown, and for forking a new instance within the same
node (LocalFork).
Restore Latency. CRIU-CXL suffers from long restore la-
tency, ranging between 16–423𝑚𝑠 , because it has to deserial-
ize the checkpointed state and copy all data to local memory.
Mitosis-CXL effectively reduces this latency, by avoiding
most deserialization and performing no copies during the
restore. However, it can still take up to 15𝑚𝑠 (Bert) and can
account for up to 19% of the end-to-end latency (Rnn). The

main overhead comes from transferring and de-serializing
OS state, e.g., the page tables of the parent process. CXL-
fork restores a new function in 1.2-6.1𝑚𝑠 . CXLfork performs
minimal deserialization (global state) and zero data copies.
It also attaches, instead of re-constructing, checkpointed OS
state—i.e., the checkpointed page table and VMA tree leaves.

During the restore, CXLfork eliminates the deserialization
and data copy overheads of other rfork designs.

End-to-end Latency. Cold takes much longer to complete
than any of the rfork scenarios, e.g., it is on average 11x
slower than CXLfork. Among the rfork scenarios, CRIU-
CXL is the slowest. On average, functions take 2.6x longer
to complete than with LocalFork. This is primarily due to
its long restore overhead. Mitosis-CXL performs better, as
functions take on average 1.5x longer to complete than with
LocalFork. It is particularly beneficial for functions with long
initialization phases and small active working sets (e.g., Rnn),
as it only copies accessed data. However, its benefits are
limited for smaller functions (e.g., Float and Chameleon) due
to page faults that copymainly runtime pages and can impact
cold-start performance.Mitosis-CXL benefits are also limited
for large functions due to the costly page faults that copy
process pages over CXL. For example, page faults cost 42%
and 54% of BFS and Bert total execution, respectively.
CXLfork minimizes page fault overheads by (1) attach-

ing checkpointed page tables for read-only data (eliminat-
ing faults) and (2) optimizing CoW faults (§4.2). The latter
combined with the fact that CXLfork checkpoints and re-
stores private file mappings (e.g., libraries), while LocalFork
re-populates them lazily for the child, makes CXLfork’s page
fault overheads (and potentially the whole execution time)
occasionally lower than LocalFork’s. Overall, CXLfork is the
fastest rfork scenario and is on average only 14% slower
than LocalFork. It is 2.26x faster than CRIU-CXL and 1.40x
faster than Mitosis-CXL on average. In fact it can be shown
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Figure 8. CXLfork tiering policies and their trade-offs between cold and warm execution time, and memory consumption.

that cold execution with CXLfork takes on average only 30%
longer than a warmed-up (cached) instance execution.

Cold function execution with CXLfork takes on average
only 14% longer than with local fork.

Local Memory Consumption. Figure 7b shows the local
memory consumed by a child function spawned with differ-
ent rfork scenarios. The results are normalized to Cold. CRIU-
CXL has a footprint similar to Cold, as it deserializes and
copies all checkpointed state to local memory. It occasionally
has a smaller footprint due to not checkpointing/restoring
the clean pages of file mappings, but lazily faults on a subset
of their pages during child execution. Mitosis-CXL uses 60%
less memory than CRIU-CXL, on average, as it does not copy
unnecessary data to local memory. However, memory con-
sumption is high for functions with large working sets (e.g.,
Bert and BFS). CXLfork further reduces memory consump-
tion by 87% over CRIU-CXL and by 61% overMitosis-CXL on
average, as it avoids copying read-only state to local memory,
but shares it through CXL memory across function instances
and across nodes.

Execution with CXLfork requires only 13% of the local mem-
ory of a cold-started function on average, while speeding-up
the cold-started execution by 11x on average.

Tiering. Figure 8 compares our three CXLfork tiering poli-
cies: Migrate-on-Write (MoW), Migrate-on-Access (MoA),
and Hybrid Tiering (HT). We measure the cold function ex-
ecution time (Fig 8a), warm function execution time (Fig-
ure 8b), and local memory consumption (Figure 8c). Note
that the Y axes are in log scale.

MoW copies data to local memory only on a write. It keeps
cold-start overheads and local memory consumption modest,
as it does not move read-only data; it shares it. However, it
may penalize the latency of loads issued by the child process.
This is because read-only data is fetched from the slower
CXL tier. This effect is best seen in the warm execution
time. While the majority of functions are not affected by this
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Figure 9. Sensitivity of (a) warm and (b) cold function exe-
cution with CXLfork to CXL latency via simulation.

because their working sets fit in the CPU core caches [68],
the performance of BFS and Bert is substantially hurt.

MoA copies pages on access. On average, it reduces warm
execution time by 11% but penalizes cold execution time by
14% and, importantly, increases the child’s memory footprint
by 250%. Finally, HT, which copies pages based on their𝐴 bit,
achieves a middle ground. It has comparable or better cold
execution time thanMoW, and intermediate warm execution
time and memory footprint in BFS and Bert.

CXLfork’s tiering policies enable trade-offs between mem-
ory consumption, cold-start and warmed-up execution of
functions with different footprints and access patterns.

Sensitivity to CXL Latency. We use simulations (§6) to
study the sensitivity of CXLfork performance to the CXL
device latency. We first calibrate the simulator to match our
real system. Then, we vary the round trip latency to the CXL
memory from 400 ns (close to the 391 ns of our system) to 100
ns (close to the round trip to our local memory). For space
reasons, we show only the most representative functions;
we exclude functions with identical behavior.

Figure 9a shows the warm execution time of functions
with CXLfork relative to the warm execution time with local
fork in an environment without CXL memory. We observe
that lower CXL access latency improves performance for BFS
and Bert and does not affect the rest—whose working sets fit
in the caches. However, even when CXL latency is 200 ns (2x
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Figure 10. P99 and P50 latency of function execution under CXLporter with abundant and limited memory.

the latency of local memory), performance is still penalized.
This underlines the need to manage tiering in combination
to remote forking.

Figure 9b shows the cold execution time of functions with
CXLfork relative to the cold execution time with local fork
in an environment without CXL memory. As CXL latency
drops, CXLfork performance improves. In many cases, CXL-
fork performs equally or better than the baseline, which uses
a local fork. CXLfork performs better because it avoids the
overheads of duplicating OS state (e.g., process page table
and VMA tree leaves) and, instead, attaches these structures
from the checkpoints. It also attaches checkpointed private
file mappings, which the local fork faults in lazily.
Checkpoint Performance. It can be shown that Mitosis
and CXLfork perform checkpointing one order of magnitude
faster than CRIU because they avoid data serialization. In
turn, Mitosis checkpoints 1.5x faster than CXLfork because
CXLfork checkpoints the data in CXLmemory, while Mitosis
checkpoints it in local memory. However, sinceMitosis keeps
the data in the parent node, it cannot share it and has to copy
it across nodes on every restore operation (§2). Note that the
checkpoint phase, especially for FaaS, is off the critical path
of the remote fork, as a function is checkpointed once but
restored multiple times [75].

7.2 Performance of CXLporter
We evaluate CXLporter with different rfork designs to clone
functions upon load spikes. We compare CRIU-CXL, Mitosis-
CXL, CXLfork using the migrate-on-write tiering policy stat-
ically (CXLfork-MoW ), and CXLfork where CXLporter dy-
namically adjusts the tiering policy based on past perfor-
mance and memory pressure as described in §5 (CXLfork).
We run experiments using the Azure traces of bursty func-
tions under a total load of 150 Requests Per Second (RPS) on
average [67].

Results with abundance of memory. Figures 10a and 10b
show the P99 and P50 end-to-end function latency when
nodes have ample memory to serve incoming requests. The
bars are normalized to the latency with CRIU-CXL, whose
absolute latency is shown on top of the bars. In these experi-
ments, the benefit of rfork comes from mitigating cold starts
when the runtime needs to create new function instances.

For P99, Mitosis-CXL and CXLfork reduce the latency over
CRIU-CXL by an average of 51% and 70%, respectively. One
reason why Mitosis-CXL and CXLfork have lower latency
is the effect of ghost containers, which alleviate cold-start
containerization overhead in these two designs. Another pa-
rameter that affects rfork performance is the effect of the
bursts of requests, which feeds on itself. Specifically, the rfork
designs that are intrinsically slower in cold starts (as shown
in Figure 7a), take longer time to spawn a new function in-
stance and, during that time, more function requests arrive.
Such new requests end up being processed as cold-start func-
tions, while they could have been processed as warm-start
functions with faster rforks. This effect amplifies P99 latency
difference between CRIU-CXL, Mitosis-CXL, and CXLfork.
For P50, CRIU-CXL, Mitosis-CXL, and CXLfork perform sim-
ilarly, as P50 latency generally reflects warm execution time,
where rfork overhead has less of an effect.

CXLfork-MoW has significantly longer latencies than CXL-
fork and sometimes even Mitosis-CXL for both P99 and P50.
The reason is the higher access latency to read-only data
residing in CXL. This fact has a stronger effect for P50. These
results underline the importance of dynamic tier manage-
ment when forking over CXL.
Results on memory-constrained nodes.We re-run the
same experiments but reduce the memory of the VMs to
50% and 25% of the size in the previous experiment. Now,
the runtime scheduler has to recycle containers to serve re-
quests, so the performance of the different rforks is affected
by their local memory consumption. Figure 10c shows the
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normalized P99 (bottom) and P50 (top) end-to-end function
latency across all functions with 100%, 50%, and 25% local
memory. We see that, as the available memory decreases, the
relative latency of CXLfork decreases and, therefore, CXL-
fork becomes more attractive. This is because, as shown in
Figure 7b, CXLfork needs less local memory than Mitosis-
CXL and much less than CRIU-CXL. As a result, more func-
tion instances can be executing with CXLfork.

In the 25%memory environment, CXLfork reduces the P99
latency by ≈16x over Mitosis-CXL and CRIU-CXL. It can be
shown that CXLfork also achieves a ≈2x throughput increase
over these two other environments. The impact is a bit lower
for P50. Finally, we see that, for 25% memory, CXLfork and
CXLfork-MoW have the same latency. The reason is that
when memory is limited, CXLfork dynamically adjusts its
tiering algorithm to be the same as CXLfork-MoW.

CXLporter leverages CXLfork’s fast remote fork to signif-
icantly reduce FaaS tail latency arising from cold start
effects. It also leverages the memory deduplication enabled
by CXLfork to increase the number of functions that can
be concurrently alive in the cluster.

8 Discussion
In this section, we provide a discussion regarding some im-
plementation and performance implications of the design
choices we made for CXLfork and CXLporter.
Hardware Requirements of CXLfork. CXLfork uses non-
temporal stores to copy (meta)data to CXL memory during
checkpointing, bypassing the CPU caches of the checkpoint-
initiating node. This approach delivers high performance [68]
and does not introduce any data coherence issues because the
restored processes only read the checkpointed (meta)data—
recall that when a restored process performs awrite, CXLfork
uses CoW. In the presence of hardware support for cache
coherence in CXL, e.g., with devices implementing CXL 3.0
and beyond, the checkpoint-initiating node could use nor-
mal stores for the checkpoint, as the hardware would ensure
cache coherence.
CXLfork for write-heavy workloads. CXLfork mainly
targets serverless functions, which tend to be dominated
by read-heavy access patterns (§ 2). CXLfork enables the
sharing and deduplication of read-only state across sibling
instances at the cluster-level. Nonetheless, even write-heavy
workloads benefit from CXLfork’s instant process cloning
across nodes, ensuring high availability. However, in this
case, CXLfork’s memory savings are blunted, as eventually
much of the workload’s memory will be lazily copied to the
local memory of the remote node via Copy-on-Write faults
triggered as the workload modifies its footprint at runtime.
CXLporter for FaaS Workflows. CXLporter uses CXL-
fork to speed-up the cold-start performance of individual

FaaS functions (§7). We expect similar benefits for complex
FaaS applications with workflows that comprise multiple
functions. Since the functions of each workflow are deployed
independently, they benefit from on-demand rapid remote
forking [2, 50, 67]. CXLporter can further leverage the CXL
fabric to accelerate inter-function communication by mini-
mizing data movement [35, 41]—e.g., by using CXL-tailored
RPC schemes [46, 73, 80] or by extending CXLfork to provide
shared-memory semantics over CXL for communication.
Scalability to a high number of nodes. Due to the state
of CXL hardware prototypes, we cannot study CXLfork on
a distributed system with many nodes (§7). In a large clus-
ter, we anticipate that limited CXL bandwidth may be a
bottleneck. In this case, our current CXLporter and CXL-
fork tiering policies may not be the most appropriate ones,
as they are mainly driven by access latencies. We plan to
extend our tiering policies to take CXL memory bandwidth
into consideration [78].

9 Related Work
Checkpoint-restore. Checkpoint-restore techniques for
both process migration and process cloning have been ex-
tensively studied [49]. Earlier studies either focus on dis-
tributed OSes employing distributed memory management
and inter-process communication mechanisms [79], or resort
to a file-based checkpoint-restore interface [42, 65] similar
to CRIU [54]. Other works focus on single-node checkpoint-
restore [6, 36, 42, 52] or VM cloning [37]. VAS-CRIU [71]
adds multiple virtual address spaces (MVAS) [23] to Linux
to replace file-based memory checkpointing. While this mit-
igates serialization costs, it is confined to a single node.
Serverless Scaling. Scaling serverless functions has been
extensively studied both for container and VM sandbox-
ing. Some works [2, 50, 67] employ local fork to accelerate
intra-node containerized function scaling, while other works
use CRIU [34] or focus on improving function scaling from
VM-based snapshots [4, 22, 38, 64, 70]. For example, Cat-
alyzer [22] checkpoints and restores virtualization-based
sandboxes via storage, and (s)forks these v-sandboxes within
a node. In contrast, CXLfork checkpoints native functions
running inside OS-containers and exploits the shared CXL
fabric to fork them to remote nodes, unlocking their fast
inter-node scaling, while efficiently deduplicating their read-
only state at the cluster-level.
TrEnv [24] is a recent proposal developed concurrently

with CXLfork , that relies, partially, on checkpointing, restor-
ing, and sharing function data over CXL to optimize FaaS
scaling. It is a CRIU-based solution optimized for intra-node
scaling that does not provide remote fork semantics. Instead,
it requires an expensive pre-processing step before remote
nodes can spawn functions that can access checkpointed data
on CXLmemory. Specifically, for each function on each remote
node, it requires de-serializing CRIU metadata in order to
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generate dedicated local OS data structures (i.e., memory tem-
plates) that functions will then attach and use to access the
checkpointed data on CXL memory. In contrast, CXLfork en-
ables the rapid cloning of functions on any remote node
without requiring any pre-processing or idling local data
structures. Our preliminary results show that, in the absence
of pre-created memory templates, CXLfork remote-forks
functions are 1.8x faster than TrEnv on average. Moreover,
unlike TrEnv, CXLfork provides tiering policies to control
CXL overhead, and further enables the sharing of OS state,
such as page tables and VMA trees, across nodes over the
CXL fabric.
Memory Tiering. Several works study the potential of CXL-
attached memory for memory tiering [27, 31, 33, 39, 43, 48,
69, 76, 77, 82]. A recent work [78] shows that FaaS can benefit
frommemory tiering to significantly reduce local memory us-
age. It uses Linux’s multi-generational LRU (MGLRU) [29] to
identify idle pages of serverless functions and migrate them
to far memory via RDMA. CXLfork’s design automatically
and transparently stores the idle memory of functions on
the CXL tier, without any specialized detection mechanism.
CXLfork also shares these data across nodes, deduplicating
footprints at the cluster level, significantly reducing local
memory consumption across all nodes. In contrast to [78],
which needs to fetch pages locally via RDMA before being
able to access them, the idle memory of the CXL tier can be
directly and concurrently accessed from any node.

10 Conclusion
We design CXLfork, a CXL-tailored remote fork interface,
that realizes close to zero-serialization, zero-copy cluster-
wide process cloning and enables the controlled dedupli-
cation and tiering of checkpointed state over shared CXL
memory. CXLfork outperforms both state-of-practice and
state-of-the-art approaches, while reducing memory con-
sumption. We use CXLfork to build CXLporter, a horizon-
tal FaaS autoscaler that unlocks increased system through-
put and memory efficiency by exploiting CXLfork’s fast,
memory-frugal remote forking.
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