
Elastic Cuckoo Page Tables: Rethinking
Virtual Memory Translation for Parallelism

Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep Torrellas
University of Illinois at Urbana-Champaign
{skarlat2,kokolis2,tyxu,torrella}@illinois.edu

Abstract

The unprecedented growth in the memory needs of emerg-
ing memory-intensive workloads has made virtual memory
translation a major performance bottleneck. To address this
problem, this paper introduces Elastic Cuckoo Page Tables,
a novel page table design that transforms the sequential
pointer-chasing operation used by conventional multi-level
radix page tables into fully-parallel look-ups. The resulting
design harvests, for the first time, the benefits of memory-
level parallelism for address translation. Elastic cuckoo page
tables use Elastic Cuckoo Hashing, a novel extension of
cuckoo hashing that supports efficient page table resizing.
Elastic cuckoo page tables efficiently resolve hash collisions,
provide process-private page tables, support multiple page
sizes and page sharing among processes, and dynamically
adapt page table sizes to meet application requirements.
We evaluate elastic cuckoo page tables with full-system

simulations of an 8-core processor using a set of graph ana-
lytics, bioinformatics, HPC, and system workloads. Elastic
cuckoo page tables reduce the address translation overhead
by an average of 41% over conventional radix page tables.
The result is a 3–18% speed-up in application execution.

CCS Concepts. • Software and its engineering→ Oper-

ating systems; Virtual memory; • Computer systems

organization→ Architectures.
Keywords. Virtual Memory, Page Tables, Cuckoo Hashing

ACM Reference Format:

Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep
Torrellas. 2020. Elastic Cuckoo Page Tables: Rethinking Virtual
Memory Translation for Parallelism. In Proceedings of the Twenty-

Fifth International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS ’20), March 16–20,

2020, Lausanne, Switzerland. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3373376.3378493

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00

https://doi.org/10.1145/3373376.3378493

1 Introduction

Virtual memory is a cornerstone abstraction of modern com-
puting systems, as it provides memory virtualization and
process isolation. A central component of virtual memory is
the page table, which stores the virtual-to-physical memory
translations. The design of the page table has a significant
impact on the performance of memory-intensive workloads,
where working sets far exceed the TLB reach. In these work-
loads, frequent TLBmisses require the fetching of the virtual-
to-physical memory translations from the page table, placing
page table look-ups on the critical path of execution.
The de facto current design of the page table, known as

radix page table, organizes the translations into a multi-level
tree [4, 19, 38]. The x86-64 architecture uses a four-level
tree, while a fifth level will appear in next-generation archi-
tectures such as Intel’s Sunny Cove [36, 37], and is already
supported by Linux [20]. A radix page table can incur a high
performance overhead because looking-up a translation in-
volves a page table walk that sequentially accesses potentially
all the levels of the tree from the memory system.
Despite substantial efforts to increase address transla-

tion efficiency with large and multi-level TLBs, huge page
support, and Memory Management Unit (MMU) caches for
page table walks, address translation has become a major
performance bottleneck. It can account for 20–50% of the
overall execution time of emerging applications [8–10, 12–
15, 21, 42, 56]. Further, page table walks may account for
20–40% of the main memory accesses [13]. Such overhead is
likely to be exacerbated in the future, given that: (1) TLB scal-
ing is limited by access time, space, and power budgets, (2)
modern computing platforms can now be supplied with ter-
abytes and even petabytes of main memory [30, 58], and (3)
various memory-intensive workloads are rapidly emerging.

We argue that the radix page table was devised at a time
of scarce memory resources that is now over. Further, its
sequential pointer-chasing operation misses an opportunity:
it does not exploit the ample memory-level parallelism that
current computing systems can support.
For these reasons, in this paper, we explore a fundamen-

tally different solution to minimize the address translation
overhead. Specifically, we explore a new page table struc-
ture that eliminates the pointer-chasing operation and uses
parallelism for translation look-ups.

A natural approach would be to replace the radix page ta-
ble with a hashed page table, which stores virtual-to-physical

Session: Session 12B: Memory management — I forgot. ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1093

translations in a hash table [22, 33, 39, 40, 68]. Unfortunately,
hashed page tables have been plagued by a number of prob-
lems. One major problem is the need to handle hash col-
lisions. Existing solutions to deal with hash collisions in
page tables, namely collision chaining [35] and open ad-
dressing [73], require sequential memory references to walk
over the colliding entries with special OS support. Alterna-
tively, to avoid collisions, the hash page table needs to be
dynamically resized. However, such operation is very costly
and, hence, proposed hashed page table solutions avoid it by
using a large global page table shared by all processes. Un-
fortunately, a global hashed page table cannot support page
sharing between processes or multiple page sizes without
adding an extra translation level.
To solve the problems of hashed page tables, this paper

presents a novel design called Elastic Cuckoo Page Tables.
These page tables organize the address translations using
Elastic Cuckoo Hashing, a novel extension of cuckoo hash-
ing [50] designed to support gradual, dynamic resizing. Elas-
tic cuckoo page tables efficiently resolve hash collisions, pro-
vide process-private page tables, support multiple page sizes
and page sharing among processes, and efficiently adapt
page table sizes dynamically to meet process demands. As a
result, elastic cuckoo page tables transform the sequential
pointer-chasing operation of traditional radix page tables
into fully parallel look-ups, allowing address translation to
exploit memory-level parallelism for the first time.
We evaluate elastic cuckoo page tables with full-system

simulations of an 8-core processor running a set of graph an-
alytics, bioinformatics, HPC, and system workloads. Elastic
cuckoo page tables reduce the address translation overhead
by an average of 41% over radix page tables. The result is a
3–18% speed-up in application execution.

2 Background

2.1 Radix Page Tables

All current architectures implement radix page tables, where
the page table is organized in a multi-level radix tree. For
example, Figure 1 shows the structure of the x86-64 page
table. Given a 48-bit Virtual Address (VA), since the standard
page size is 4KB, the lowest 12 bits are the page offset. The
remaining 36 bits are divided into four 9-bit fields. Each field
is used as an index into one of the four levels of the page table.
Such levels are known as PGD (Page Global Directory), PUD
(Page Upper Directory), PMD (Page Middle Directory), and
PTE (Page Table Entry), respectively [19]. The translation
starts with the CR3 register, which contains the base of the
PGD table. By adding the CR3 and bits 47–39, one obtains a
PGD entry whose content is the base of the correct PUD table.
Then, by adding such content and bits 38–30, one obtains
a PUD entry whose content is the base of the correct PMD
table. The process continues until a PTE entry is read. It
contains the physical page number and additional flags that

the hardware inserts in the TLB. The physical page number
concatenated with bits 11–0 is the Physical Address (PA).

Figure 1. Virtual to physical address translation in x86-64.

The process described is called a page table walk. It is
performed in hardware on a TLB miss. A page table walk
requires four sequential cache hierarchy accesses.

To increase the reach of the TLB, the x86-64 architecture
supports two large page sizes, 2MB and 1GB. When a large
page is used, the page table walk is shortened. Specifically, a
2MB page translation is obtained from the PMD table, while
a 1GB page translation is obtained from the PUD table.
To alleviate the overhead of page table walks, the MMU

of an x86-64 processor has small caches called Page Walk
Caches (PWCs). The PWCs store recently-accessed PGD,
PUD, and PMD table entries (but not PTE entries) [1, 8, 11, 12,
38]. On a TLB miss, before the hardware issues any request
to the cache hierarchy, it checks the PWCs. It records the
lowest level table at which it hits. Then, it generates an access
to the cache hierarchy for the next lower level table.

2.1.1 Struggles with Emerging Workloads. Emerging
workloads, e.g., in graph processing and bioinformatics, of-
ten have multi-gigabyte memory footprints and exhibit low-
locality memory access patterns. Such behavior puts pres-
sure on the address translation mechanism. Recent studies
have reported that address translation has become a ma-
jor performance bottleneck [8–10, 12–15, 21, 42, 56]. It can
consume 20–50% of the overall application execution time.
Further, page table walks may account for 20–40% of the
main memory accesses [13].
To address this problem, one could increase the size of

the PWCs to capture more translations, or increase the num-
ber of levels in the translation tree to increase the memory
addressing capabilities. Sadly, neither approach is scalable.
Like for other structures close to the core such as the TLB,
the PWCs’ access time needs to be short. Hence, the PWCs
have to be small. They can hardly catch up with the rapid
growth of memory capacity.
Increasing the number of levels in the translation tree

makes the translation slower, as it may involve more cache
hierarchy accesses. Historically, Intel has gradually increased
the depth of the tree, going from two in the Intel 80386 to
four in current processors [4, 38]. A five-level tree is planned
for the upcoming Intel Sunny Cove [36, 37], and has been
implemented in Linux [20]. This approach is not scalable.

2.2 Hashed Page Tables

The alternative to radix page tables is hashed page tables.
Here, address translation involves hashing the virtual page

Session: Session 12B: Memory management — I forgot. ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1094

number and using the hash key to index the page table.
Assuming that there is no hash collision, only one memory
system access is needed for address translation.
Hashed page tables [22, 33, 39, 40, 68] have been imple-

mented in the IBM PowerPC, HP PA-RISC, and Intel Itanium
architectures. The support for a hashed page table in the Ita-
nium architecture was referred to as the long-format Virtual
Hash Page Table (VHPT) [23, 28, 35]. In that design, the OS
handles hash collisions. Upon a hash collision, the VHPT
walker raises an exception that invokes the OS. The OS han-
dler resolves the collision by searching collision chains and
other auxiliary OS-defined data structures [8].

2.2.1 Challenges in Hashed Page Tables. Barr et al. [8]
summarize three limitations of hashed page tables. The first
one is the loss of spatial locality in the accesses to the page
table. This is caused by hashing, which scatters the page table
entries of contiguous virtual pages. The second limitation
is the need to associate a hash tag (e.g., the virtual page
number) with each page table entry, which causes page table
entries to consume more memory space. The third one is the
need to handle hash collisions, which leads to more memory
accesses, as the system walks collision chains [8].

Yaniv and Tsafrir [73] recently show that the first two limi-
tations are addressable by careful design of page table entries.
Specifically, they use Page Table Entry Clustering, where
multiple contiguous page table entries are placed together in
a single hash table entry that has a size equal to a cache line.
Further, they propose Page Table Entry Compaction, where
unused upper bits of multiple contiguous page table entries
are re-purposed to store the hash tag.
Unfortunately, hash collisions are a significant concern

and remain unsolved. Existing strategies such as collision
chaining [35] and open addressing [73] require expensive
memory references needed to walk over the colliding entries.
To assess the importance of collisions, we take the ap-

plications of Section 7 and model a global hash table. We
evaluate the following scenario: (1) the table has as many
entries as the sum of all the translations required by all the
applications, and (2) the hash function is the computationally-
expensive BLAKE cryptographic function [5] which mini-
mizes the probability of collisions.
Figure 2 shows the probability of random numbers map-

ping to the same hash table entry. The data is shown as a cu-
mulative distribution function (CDF). The figure also shows
the CDF for a global hash table that is over-provisioned by
50%. For the baseline table, we see that only 35% of the entries
in the hash table have no collision (i.e, the number of collid-
ing entries is 1). On the other hand, there are entries with a
high number of collisions, which require time-consuming col-
lision resolution operations. Even for the over-provisioned
table, only half of the entries in the table have no collision.

2.2.2 Drawbacks of a Single Global Hash Table. One
straightforward design for a hashed page table system is

Figure 2. Cumulative distribution function of the number
of keys mapping to the same hash table entry.

to have a single global hash table that includes page table
entries from all the active processes in the machine. This
design is attractive because 1) the hash table is allocated only
once, and 2) the table can be sized to minimize the need for
dynamic table resizing, which is very time consuming.
Sadly, such design has a number of practical drawbacks

that make it undesirable [22, 73]. First, neither multiple page
sizes (e.g., huge pages) nor page sharing between processes
can be supportedwithout additional complexity. For example,
to support these two features, the IBM PowerPC architec-
ture uses a two-level translation procedure for each memory
reference [34]. Second, when a process is killed, the system
needs to perform a linear scan of the entire hash table to
find and delete the associated page table entries. Note that
deleting an entry may also be costly: it may require a long
hash table look-up (for open addressing) or a collision chain
walk. Further, deleting a page table entry in open addressing
may affect the collision probes in future look-ups.

2.2.3 ResizingHashedPageTables. To reduce collisions,
hash table implementations set an occupancy threshold that,
when reached, triggers the resizing of the table. However,
resizing is an expensive procedure if done all at once. It re-
quires allocating a new larger hash table and then, for each
entry in the old hash table, rehash the tag with the new hash
function and move the (tag, value) pair to the new hash ta-
ble. In the context of page tables, the workload executing in
the machine needs to pause and wait for the resizing proce-
dure to complete. Further, since the page table entries are
moved to new memory locations, their old copies cached in
the cache hierarchy of the processor become useless. The
correct copies are now in new addresses.

An alternative approach is to gradually move the entries,
andmaintain both the old and the new hash tables inmemory
for a period of time. Insertions place entries in the new hash
table only, so the old hash table will eventually become empty
and will then be deallocated. Further, after each insertion,
the system also moves one or more entries from the old table
to the new one. Unfortunately, a look-up needs to access
both the old and the new hash tables, since the desired entry
could be present in either of them.
In the context of page tables, gradual rehashing has two

limitations. First, keeping both tables approximately doubles

Session: Session 12B: Memory management — I forgot. ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1095

the memory overhead. Second, a look-up has to fetch entries
from both tables, doubling the accesses to the cache hier-
archy. Unfortunately, half of the fetched entries are useless
and, therefore, the caches may get polluted.

2.3 Cuckoo Hashing

Cuckoo hashing is a collision resolution algorithm that al-
lows an element to have multiple possible hashing loca-
tions [50]. The element is stored in at most one of these
locations at a time, but it can move between its hashing lo-
cations. Assume a cuckoo hash table with two hash tables
or ways T1 and T2, indexed with hash functions H1 and H2,
respectively. Because there are two tables and hash functions,
the structure is called a 2-ary cuckoo hash table. Insertion in
cuckoo hashing places an element x in one of its two possible
entries, namely T1[H1(x)] or T2[H2(x)]. If the selected entry
is occupied, the algorithm kicks out the current occupant y,
and re-inserts y in y’s other hashing location. If that entry is
occupied, the same procedure is followed for its occupant.
The insertion and eviction operations continue until no occu-
pant is evicted or until a maximum number of displacements
is reached (e.g., 32). The latter case is an insertion failure.

A look-up in cuckoo hashing checks all the possible hash-
ing locations of an element, and succeeds if it is found in
either of them. In the example above,T1[H1(x)] andT2[H2(x)]
are checked. The locations are checked in parallel. Hence, a
look-up takes a constant time. A deletion operation proceeds
like a look-up; then, if the element is found, it is removed.
Figure 3 shows an example of inserting element x into a

2-ary cuckoo hash table. Initially, in Step 1 , the table has
three elements: a, b, and c . The insertion of x at T1[H1(x)]
kicks out the previous occupant b. In Step 2 , the algorithm
inserts b in T2[H2(b)], and kicks out c . Finally, in Step 3 , a
vacant entry is found for c . This example can be generalized
tod-ary cuckoo hashing [24], which usesd independent hash
functions to index d hash tables.

Figure 3. An example of insertion in cuckoo hashing.

Like any hash table, the performance of cuckoo hash ta-
bles deteriorates with high occupancy. To gain insight, Fig-
ure 4 characterizes a d-ary cuckoo hash table (where d ∈

{2, 3, 4, 8}) as a function of the occupancy. We take random
numbers and, like before, hash them with the BLAKE crypto-
graphic hash function [5]. The actual size of the cuckoo hash
table does not matter, but only the hash table occupancy.
Figure 4(a) shows the average number of insertion at-

tempts required to successfully insert an element as a func-
tion of the table occupancy. We see that, for low occupancy,

Figure 4. Characterizing d-ary cuckoo hashing.

we either insert the key on the first attempt or require a
single displacement. As occupancy increases, insertion per-
formance deteriorates — e.g., after 50% occupancy in the
2-ary cuckoo, and after ∼70% in the 3, 4, and 8-ary cuckoo
hash tables. Figure 4(b) shows the probability of insertion
failures after 32 attempts. We see that the 2-ary cuckoo hash
table has a non-zero probability of insertion failures after
50% occupancy, while the 3, 4, and 8-ary hash tables exhibit
insertion failures only after 80% occupancy.

3 Rethinking Page Tables

As indicated in Section 2.1.1, radix page tables are not scal-
able. Further, as shown in Section 2.2.2, having a single global
hashed page table is not a good solution either. We want to
provide process-private hashed page tables, so that we can
easily support page sharing among processes and multiple
page sizes. However, a default-sized hashed page table can-
not be very large, lest we waste too much memory in some
processes. Hence, we are forced to have modest-sized hashed
page tables, which will suffer collisions.
One promising approach to deal with collisions is to use

cuckoo hashing (Section 2.3). Unfortunately, any default-
sized cuckoo hash table will eventually suffer insertion fail-
ures due to insufficient capacity. Hence, it will be inevitable
to resize the cuckoo hash table.

Sadly, resizing cuckoo hash tables is especially expensive.
Indeed, recall from Section 2.2.3 that, during gradual resizing,
a look-up requires twice the number of accesses — since
both the old and new hash tables need to be accessed. This
requirement especially hurts cuckoo hashing because, during
normal operation, a look-up into a d-ary cuckoo hash table
already needs d accesses; hence, during resizing, a look-up
needs to perform 2 × d accesses.

To address this problem, in this paper, we extend cuckoo
hashing with a new algorithm for gradual resizing. Using this
algorithm, during the resizing of a d-ary cuckoo hash table,
a look-up only requires d accesses. In addition, the algorithm
never fetches into the cache page table entries from the
old hash table whose contents have already moved to the
new hash table. Hence, it minimizes cache pollution from
such entries. We name the algorithm Elastic Cuckoo Hashing.
With this idea, we later build per-process Elastic Cuckoo Page
Tables as our proposed replacement for radix page tables.

Session: Session 12B: Memory management — I forgot. ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1096

4 Elastic Cuckoo Hashing

4.1 Intuitive Operation

Elastic cuckoo hashing is a novel algorithm for cost-effective
gradual resizing of d-ary cuckoo hash tables. It addresses the
major limitations of existing gradual resizing schemes. To
understand how it works, consider first how gradual resizing
works with a baseline d-ary cuckoo hash table.
Cuckoo Hashing. Recall that the d-ary cuckoo hash table
has d ways, each with its own hash function. We represent
each way and hash function asTi andHi , respectively, where
i ∈ 1..d . We represent the combined ways and functions as
TD and HD , respectively. When the occupancy ofTD reaches
a Rehashing Threshold, a larger d-ary cuckoo hash table is
allocated. In this new d-ary table, we represent each way and
hash function as T ′

i and H
′
i , respectively, where i ∈ 1..d , and

the combined ways and functions asT ′
D andH ′

D , respectively.
As execution continues, a collision-free insert operation

only accesses a randomly-selected single way of the new
d-ary hash table — if there are collisions, multiple ways of
the new d-ary hash table are accessed. In addition, after
every insert, the system performs one rehash operation. A
rehash consists of removing one element from the old d-ary
hash table and inserting it into the new d-ary hash table.
Unfortunately, a look-up operation requires probing all d
ways of both the old and the new d-ary hash tables, since
an element may reside in any of the d ways of the two hash
tables. When all the elements have been removed from the
old d-ary table, the latter is deallocated.
Elastic CuckooHashing.Ad-ary elastic cuckoo hash table
works differently. Each Ti way in the old d-ary hash table
has a Rehashing Pointer Pi , where i ∈ 1..d . The set of Pi
pointers is referred to PD . At every Ti , Pi is initially zero.
When the system wants to rehash an element from Ti , it
removes the element pointed to by Pi , inserts the element
into the new d-ary table, and increments Pi . At any time, Pi
divides its Ti into two regions: the entries at lower indices
than Pi (Migrated Region) and those at equal or higher indices
than Pi (Live Region). Figure 5 shows the two regions for a 2-
ary elastic cuckoo hash table. As gradual rehashing proceeds,
the migrated regions in TD keep growing. Eventually, when
the migrated regions cover all the entries inTD , the old d-ary
table is deallocated.

Figure 5. 2-ary elastic cuckoo hash table during resizing.

The insertion of an element in a d-ary elastic cuckoo hash
table proceeds as follows. The system randomly picks one
way from the old d-ary table, say Ti . The element is hashed

with Hi . If the hash value falls in the live region of Ti , the
element is inserted in Ti ; otherwise, the element is hashed
with the hash function H ′

i of the same way T ′
i of the new

d-ary table, and the element is inserted in T ′
i .

Thanks to this algorithm, a look-up operation for an ele-
ment only requires d probes. Indeed, the element is hashed
using all HD hash functions in the old d-ary table. For each
way i , if the hash value falls in the live region of Ti , Ti is
probed; otherwise, the element is hashed with H ′

i , and T
′
i in

the new d-ary table is probed.
Elastic cuckoo hashing improves gradual resizing over

cuckoo hashing in twoways. First, it performs a look-up with
only d probes rather than 2 × d probes. Second, it minimizes
cache pollution by never fetching entries from the migrated
regions of the old d-ary table; such entries are useless, as
they have already been moved to the new d-ary table.

4.2 Detailed Algorithms

We now describe the elastic cuckoo algorithms in detail.

Rehash. A rehash takes the element pointed to by the
rehashing pointer Pi of way Ti of the old d-ary hash table,
and uses the hash function H ′

i to insert it in the same way
T ′
i of the new d-ary table. Pi is then incremented.
Figure 6 shows an example for a 2-ary elastic cuckoo hash

table. On the left, we see a hash table before rehashing, with
P1 and P2 pointing to the topmost entries. On the right, we
see the old and new hash tables after the first entry ofT1 has
been rehashed. The system has moved element d from T1 to
T ′
1 at position T

′
1 [H

′
1(d)].

Figure 6. Example of the rehash operation.

Look-up. The look-up of an element x involves comput-
ing Hi (x) for all the ways of the old d-ary hash table and,
for each way, comparing the result to Pi . For each way i , if
Hi (x) belongs to the live region (i.e., Hi (x) ≥ Pi), way Ti in
the old hash table is probed with Hi (x); otherwise, wayT

′
i in

the new hash table is probed with H ′
i (x). The algorithm is:

function look-up(x):

for each way i in the old d-ary hash table do:

if Hi (x) < Pi then:

if T ′
i
[H ′

i
(x)] == x then return true;

else:

if Ti [Hi (x)] == x then return true;

return false

As an example, consider 2-ary elastic cuckoo hash tables.
A look-up of element x involves two probes. Which structure

Session: Session 12B: Memory management — I forgot. ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1097

is probed depends on the values of P1, P2, H1(x), and H2(x).
Figure 7 shows the four possible cases. The figure assumes
that P1 and P2 currently point to the third and second entry
of T1 and T2. If H1(x) ≥ P1 ∧ H2(x) ≥ P2 (Case 1), entries
T1[H1(x)] andT2[H2(x)] are probed. If H1(x) < P1 ∧H2(x) <
P2 (Case 2), entries T ′

1 [H
′
1(x)] and T

′
2 [H

′
2(x)] are probed. If

H1(x) < P1 ∧ H2(x) ≥ P2 (Case 3), entries T ′
1 [H

′
1(x)] and

T2[H2(x)] are probed. Finally, if H1(x) ≥ P1 ∧ H2(x) < P2
(Case 4), T1[H1(x)] and T

′
2 [H

′
2(x)] are probed.

Figure 7. Different cases of the look-up operation.

Observation 1. Given the parallelism in a look-up oper-
ation, a look-up during resizing takes the time needed to
perform a hash of an element, a comparison to the value in
the rehashing pointer, and either a probe in one way of the
old hash table or a second hash and a probe in one way of
the new hash table.

Delete. A delete follows the look-up procedure and, on
finding the element, clears the entry. Therefore, it takes the
same time as a look-up plus a write to the target way.

Insert. The insert of an element x involves randomly pick-
ing one way i in the old d-ary hash table and checking if
Hi (x) < Pi is true. If it is not, the element is inserted at
Ti [Hi (x)]; otherwise, the element is inserted in the same way
of the new d-ary hash table at T ′

i [H
′
i (x)]. In either case, if

the insertion causes the eviction of another element y, the
system randomly picks a different way than the one just
updated, and repeats the same procedure for y. This process
may repeat multiple times, every time picking a different
way than the immediately previous one. It terminates when
either an insertion does not cause any eviction or amaximum
number of iterations is reached.

The following algorithm describes the insert operation. In
the algorithm, Rand_Pick returns a random way from a set
of ways. We use x ↔ y to denote the swapping of the values
x and y, and use ⊥ to denote an empty value.
function insert(x):

i ← Rand_Pick({1, · · · , d });

for loop = 1 toMAX_ATTEMPTS do:

if Hi (x) < Pi then:

x ↔ T ′
i
[H ′

i
(x)];

if x == ⊥ then return true;

else:

x ↔ Ti [Hi (x)];

if x == ⊥ then return true;

i ← Rand_Pick({1, · · · , d } − {i });

return false

Hash Table Resize. Two parameters related to elastic
cuckoo hash table resizing are the Rehashing Threshold (rt)
and theMultiplicative Factor (k). When the fraction of a hash
table that is occupied reaches rt , the system triggers a hash
table resize, and a new hash table that is k times bigger than
the old one is allocated.

We select a rt that results in few insertion collisions and a
negligible number of insertion failures. As shown in Figure 4,
for 3-ary tables, a good rt is 0.6 or less. We select a k that
is neither so large that it wastes substantial memory nor so
small that it causes continuous resizes. Indeed, if k is too
small, as entries are moved into the new hash table during
resizing, the occupancy of the new hash table may reach the
point where it triggers a new resize operation.
Appendix A shows how to set k . It shows that k > (rt +

1)/rt . For example, for rt = 0.4, k > 3.5; hence k = 4 is good.
For rt = 0.6, k > 2.6; hence k = 3 is good. However, a k
equal to a power of two is best for hardware simplicity.

Tominimize collisions in the old hash table during resizing,
it is important to limit the occupancy of the live region during
resizing. Our algorithm tracks the fraction of used entries in
the live region. As long as such fraction does not exceed the
one for the whole table that triggered the resizing, each insert
is followed by only a single rehash. Otherwise, each insert
is followed by the rehashing of multiple elements until the
live region falls back to the desired fraction of used entries.

We select the Rehashing Threshold to be low enough that
the frequency of insertion failures is negligible. However,
insertion failures can still occur. If an insertion failure occurs
outside a resize, we initiate resizing. If an insertion failure
occurs during a resize, multiple elements are rehashed into
other ways and then the insertion is tried again. In practice,
as we show in Section 8.1, by selecting a reasonable Rehash-
ing Threshold, we completely avoid insertion failures.
Elastic cuckoo hash tables naturally support downsizing

when the occupancy of the tables falls below a given thresh-
old. We use a Downsizing Threshold (dt) and reduce the table
by a Downsizing Factor (д). For gradual downsizing, we use
an algorithm similar to gradual resizing.

5 Elastic Cuckoo Page Table Design

Elastic cuckoo page tables are process-private hashed page
tables that scale on demand according to the memory re-
quirements of the process. They resolve hash collisions and
support multiple page sizes and page sharing among pro-
cesses. In this section, we describe their organization, the
cuckoo walk tables, and the cuckoo walk caches.

5.1 Elastic Cuckoo Page Table Organization

An elastic cuckoo page table is organized as a d-ary elastic
cuckoo hash table that is indexed by hashing a Virtual Page
Number (VPN) tag. A process in a core has as many elastic
cuckoo page tables as page sizes. Figure 8 shows the elastic
cuckoo page tables of a process for the page sizes supported

Session: Session 12B: Memory management — I forgot. ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1098

by x86: 1GB, 2MB, and 4KB. In the figure, each page table
uses a 2-ary elastic cuckoo hash table. The tables are named
using x86 terminology: PUD, PMD, and PTE. Each table entry
contains multiple, consecutive page translation entries. In
the example, we assume 8 of them per table entry. Hence,
using an x86-inspired implementation, the tables are indexed
by the following VA bits: 47-33 for PUD, 47-24 for PMD, and
47-15 for PTE. All the hash functions are different.

Figure 8. Elastic cuckoo page tables for a process.

By using multiple independent page tables, this design
can support any page sizes. This is contrast to radix page
tables which, due to the way they perform the translation,
can only support a few rigid page sizes.
In addition, this design can attain high performance by

exploiting two levels of parallelism. The first one is between
tables of different page sizes. Each elastic cuckoo page table
is independent from the others and can be looked-up in
parallel. This is in contrast to radix page tables, where each
tree level has to be walked sequentially. The second level
of parallelism is between the different d ways of a d-ary
table. A translation may reside in any of the d ways. Hence,
all ways can be accessed in parallel. Overall, virtual page
translation using elastic cuckoo page tables can exploit the
memory-level parallelism provided by modern processors.

5.1.1 Page Table Entry. The entries in an elastic cuckoo
page table use the ideas of page table entry clustering and
compaction [68, 73]. The goal is to improve spatial locality
and to reduce the VPN tag overhead. Specifically, a single
hash table entry contains a VPN tag and multiple consecu-
tive physical page translation entries packed together. The
number of such entries packed together is called the cluster-
ing factor, and is selected to make the tag and entries fit in
one cache line.

In machines with 64-byte cache lines, we can cluster eight
physical page translation entries and a tag in a cache line.
This is feasible with the compaction scheme proposed in [73],
which re-purposes some unused bits from the multiple con-
tiguous translations to encode the tag [38, 73].

As an example, consider placing in a cache line eight PTE
entries of 4KB pages, which require the longest VPN tag —
i.e, the 33 bits corresponding to bits 47–15 of the VA. In an
x86 system, a PTE typically uses 64 bits. To obtain these 33
bits for the tag, we need to take 5 bits from each PTE and

re-purpose them as tag. From each PTE, our implementation
takes 4 bits that the Linux kernel currently sets aside for the
software to support experimental uses [44], and 1 bit that is
currently used to record the page size — i.e., whether the page
size is 4KB or more. The latter information is unnecessary
in elastic cuckoo page tables. With these choices, we place
eight PTE entries and a tag in a cache line. We can easily do
the same for the PMD and PUD tables, since we only need
to take 3 and 2 bits, respectively, from each physical page
translation entry in these hash tables.

5.1.2 Cuckoo Walk. We use the term Cuckoo Walk to re-
fer to the procedure of finding the correct translation in
elastic cuckoo page tables. A cuckoo walk fundamentally
differs from the sequential radix page table walk: it is a par-
allel walk that may look-up multiple hash tables in parallel.
To perform a cuckoo walk, the hardware page table walker
takes a VPN tag, hashes it using the hash functions of the
different hash tables, and then uses the resulting keys to
index multiple hash tables in parallel.
As an example, assume that we have a 2-ary PTE elastic

cuckoo page table. Figure 9 illustrates the translation pro-
cess starting from a VPN tag. Since the clustering factor is 8,
the VPN tag is bits 47–15 of the VA. These bits are hashed
using the two hash functions H1 and H2. The resulting val-
ues are then added to the physical addresses of the bases
of the two hash tables. Such bases are stored in control reg-
isters. To follow x86 terminology, we call these registers
CR3-PageSizej-wayi . The resulting physical addresses are
accessed and a hit is declared if any of the two tags match
the VPN tag. On a hit, the PTE Offset (bits 14-12) is used to
index the hash table entry and obtain the desired PTE entry.

Figure 9. Accessing a 2-ary PTE elastic cuckoo page table.

Assume that the system supports S different page sizes. In
a translation, if the size of the page requested is unknown,
the hardware has to potentially look-up the d ways of each
of the S elastic cuckoo page tables. Hence, a cuckoo walk
may need to perform up to S×d parallel look-ups. In the next
section, we show how to substantially reduce this number.

Similarly to radix page table entries, the entries of elastic
cuckoo page tables are cached on demand in the cache hier-
archy. Such support accelerates the translation process, as it
reduces the number of requests sent to main memory.

Session: Session 12B: Memory management — I forgot. ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1099

5.2 Cuckoo Walk Tables

We do not want cuckoo page walks to have to perform S ×d
parallel look-ups to obtain a page translation entry. To re-
duce the number of look-ups required, we introduce the
Cuckoo Walk Tables (CWTs). These software tables contain
information about which way of which elastic cuckoo page
table should be accessed to obtain the desired page transla-
tion entry. The CWTs are updated by the OS when the OS
performs certain types of updates to the elastic cuckoo page
tables (Section 5.2.1). The CWTs are automatically read by
the hardware, and effectively prune the number of parallel
look-ups required to obtain a translation.

Using the CWTs results in the four types of cuckoo walks
shown in Figure 10. The figure assumes three page sizes
(1GB, 2MB, and 4KB) and 2-ary elastic cuckoo page tables.

Figure 10. Different types of cuckoo walks.

Complete Walk: In this case, the CWTs provide no informa-
tion and, hence, the hardware accesses all the ways of the
elastic cuckoo page tables of all the page sizes.
Partial Walk: The CWTs indicate that the page is not of a
given size. Hence, the hardware accesses potentially all the
ways of the rest of the elastic cuckoo page tables. In some
cases, the search of some of the ways may be avoided. This
is represented in the figure with dashed lines.
Size Walk: The CWTs indicate that the page is of a given size.
As a result, the hardware accesses all the ways of a single
elastic cuckoo page table.
Direct Walk: The CWTs indicate the size of the page and
which way stores the translation. In this case, only one way
of a single elastic cuckoo page table is accessed.
Ideally, we have one CWT associated with each of the

elastic cuckoo page tables. In our case, this means having a
PUD-CWT, a PMD-CWT, and a PTE-CWT, which keep pro-
gressively finer-grain information. These tables are accessed
in sequence, and each may provide more precise information
than the previous one.

However, these software tables reside in memory. To make
them accessible with low latency, they are cached in special
caches in the MMU called the Cuckoo Walk Caches. These
caches replace the page walk caches of radix page tables.
They are described in Section 5.3. In our design, we find that
caching the PTE-CWT would provide too little locality to be
profitable — an observation consistent with the fact that the
current page walk caches of radix page tables do not cache
PTE entries. Hence, we only have PUD-CWT and PMD-CWT
tables, and cache them in the cuckoo walk caches.

The PUD-CWT and PMD-CWT are updated by OS threads
using locks. They are designed as d-ary elastic cuckoo hash

tables like the page tables. We discuss the format of their
entries next.

5.2.1 Cuckoo Walk Table Entries. An entry in a CWT
contains a VPN tag and several consecutive Section Headers,
so that the whole CWT entry consumes a whole cache line.
A section header provides information about a given Virtual
Memory Section. A section is the range of virtual memory
address space translated by one entry in the corresponding
elastic cuckoo page table. A section header specifies the sizes
of the pages in that section and which way in the elastic
cuckoo page table holds the translations for that section.

To make this concept concrete, we show the exact format
of the entries in the PMD-CWT. Figure 11 shows that an
entry is composed of a VPN tag and 64 section headers.
Each section header provides information about the virtual
memory section mapped by one entry in the PMD elastic
cuckoo page table. For example, Figure 11 shows a shaded
section header which provides information about the virtual
memory section mapped by the shaded entry in the PMD
elastic cuckoo page table (shown in the bottom of the figure).
Such entry, as outlined in Section 5.1.1, includes a VPN tag
and 8 PMD translations to fill a whole cache line.

Figure 11. PMD-CWT entry layout.

Since a PMD page is 2MB, and a virtual memory section
(i.e., a row or entry in the PMD elastic cuckoo page table of
Figure 11) may map up to 8 PMD pages, a virtual memory
section comprises 16MB. Note that part or all of this virtual
memory section may be populated by 4KB pages (whose
translations are in the PTE elastic cuckoo page table) rather
than by 2MB pages.
Then, a PMD-CWT row or entry provides information

for 64 of these sections, which corresponds to a total of 1
GB. Hence, the VPN tag of a PMD-CWT entry contains bits
47-30 of the virtual address. Given a 64-byte line, this design
allows at least 4 bits for each section header of a PMD-CWT
entry — but we cannot have more section headers in a line.

Session: Session 12B: Memory management — I forgot. ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1100

These 4 bits encode the information shown in Figure 11.
The first bit (2MB Bit) indicates whether this memory section
maps one or more 2MB pages. The second bit (4KB Bit) says
whether the section maps one or more 4KB pages. The last
two bits (Way Bits) are only meaningful if the 2MB Bit is set.
They indicate the way of the PMD elastic cuckoo page table
that holds the mapped translations of the 2MB pages in this
virtual memory section. Note this encoding assumes that the
elastic cuckoo page tables have at most four ways.
Table 1 shows the actions taken by the hardware page

walker when it reads the target section header from the
PMD-CWT. If the 2MB and 4KB Bits are clear, no 2MB or
4KB page is mapped in this section. Therefore, the walker
does not access the PMD or PTE elastic cuckoo page tables.
If the 2MB Bit is set and the 4KB Bit is clear, the walker
performs a Direct Walk in the PMD elastic cuckoo page table
using the way indicated by the Way Bits. Only one access

is needed because all the translation information for this
section is present in a single entry of the PMD table.

Page Size

Present?
Way in the

PMD ECPT
Action

2MB 4KB

0 0 X No access to PMD ECPT or PTE ECPT

1 0 i Direct Walk in PMD ECPT Way i

0 1 X Size Walk in PTE ECPT

1 1 i
Partial Walk: Direct Walk in PMD ECPT

Way i and Size Walk in PTE ECPT

Table 1. Actions taken by the page walker for the different
values of a PMD-CWT section header. In the table, ECPT
means elastic cuckoo page table.

If the 2MB Bit is clear and the 4KB Bit is set, all the transla-
tions for this section are in the PTE elastic cuckoo page table.
Sadly, there is no information available in the PMD-CWT
section header about which way(s) of the PTE elastic cuckoo
page table should be accessed. Hence, the walker performs
a Size Walk in the PTE elastic cuckoo page table. Finally, if
both the 2MB and 4KB Bits are set, the target page could
have either size. Hence, the walker performs a Partial Walk.
The walk is composed of a Direct Walk in the PMD elastic
cuckoo page table (using the way indicated by the Way Bits),
and a Size Walk in the PTE elastic cuckoo page table.
The PUD-CWT is organized in a similar manner. Each

section header now covers a virtual memory section of 8GB.
A section header has 5 bits: a 1GB Bit, a 2MB Bit, and a 4KB
Bit to indicate whether the section maps one or more 1GB
pages, one or more 2MB pages, and/or one or more 4KB
pages, respectively; and two Way Bits to indicate the way
of the PUD elastic cuckoo page table that holds the mapped
translations of the 1GB pages in this virtual memory section.
The Way Bits are only meaningful if the 1GB Bit is set. The
actions taken based on the value of these bits are similar to
those for the PMD-CWT. To simplify, we do not detail them.
Overall, our design encodes substantial information about
virtual memory sections with only a few bits in the CWTs.

With this encoding of the PUD-CWT and PMD-CWT, the
OS updates these tables infrequently. Most updates to the
elastic cuckoo page tables do not require an update to the
CWTs. For example, take a section header of the PMD-CWT.
Its 2MB Bit and 4KB Bit are only updated the first time that
a 2MB page or a 4KB page, respectively, is allocated in the
section. Recall that a section’s size is equal to 4096 4KB pages.
Also, the Way Bits of the section header in the PMD-CWT
are not updated when a 4KB page is allocated or rehashed.

Finally, the conceptual design is that, on a page walk, the
hardware accesses the PUD-CWT first, then the PMD-CWT
and, based on the information obtained, issues a reduced
number of page table accesses. The actual design, however,
is that the CWT information is cached in and read from small
caches in the MMU that are filled off the critical path. We
describe these caches next.

5.3 Cuckoo Walk Caches

The PUD-CWT and PMD-CWT reside in memory and their
entries are cacheable in the cache hierarchy, like elastic
cuckoo page table entries. However, to enable very fast ac-
cess on a page walk, our design caches some of their entries
on demand in Cuckoo Walk Caches (CWCs) in the MMU. We
call these caches PUD-CWC and PMD-CWC, and replace the
page walk caches of radix page tables. The hardware page
walker checks the CWCs before accessing the elastic cuckoo
page tables and, based on the information in the CWCs, it is
able to issue fewer parallel accesses to the page tables.
The PUD-CWC and PMD-CWC differ in a crucial way

from the page walk caches of radix page tables: their contents
(like those of the CWTs) are decoupled from the contents of
the page tables. The CWCs store page size and way infor-
mation. This is unlike in the conventional page walk caches,
which store page table entries. As a result, the CWCs and
CWTs can be accessed independently of the elastic cuckoo
page tables. This fact has two implications.

The first one is that, on a CWC miss, the page walker can
proceed to access the target page table entry right away —
albeit by issuing more memory accesses in parallel than oth-
erwise. After the page walk has completed, the TLB has been
filled, and execution has restarted, the appropriate CWT en-
tries are fetched and cached in the CWCs, off the critical path.
Instead, in the conventional page walk caches, the entries
in the page walk caches have to be sequentially generated
on the critical path before the target page table entry can be
accessed and the TLB can be filled.

The second implication is that a CWC entry is very small.
It only includes a few page size and way bits. This is unlike
an entry in conventional page walk caches, which needs
to include the physical address of the next level of page
translation, in addition to the page size and other information.
For example, a PMD-CWC section header covers a 16MB
region (4096 4KB pages) with only 4 bits, while an entry
in the traditional PMD page walk cache only covers a 2MB

Session: Session 12B: Memory management — I forgot. ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1101

Figure 12. Steps of a page translation. ECPT stands for Elastic Cuckoo Page Tables.

region (512 4KB pages) using 64 bits. The result is that CWCs
have a small size and a very high hit rate.

6 Implementation

6.1 Steps of a Page Translation

Figure 12 presents the steps of a page translation with Elastic
Cuckoo Page Tables (ECPTs). For simplicity, we assume that
there is no 1GB page. On a TLB miss, the page table walker
hardware first checks the PUD-CWC 1 . If the PUD-CWC
hits, the corresponding section header is examined. It can
indicate that the section contains only 4KB pages, only 2MB
pages, or both 2MB and 4KB pages. In the case of only 4KB
pages, the page walker performs a Size Walk in the PTE
ECPT 5 , which will either bring the translation to the TLB
or trigger a page fault. In the case of a section with only 2MB
pages or with both 2MB and 4KB pages, the PMD-CWC is
accessed to obtain additional information 8 .
If the PMD-CWC hits, the smaller section accessed may

again contain only 4KB pages, only 2MB pages, or both 2MB
and 4KB pages. In the first case, the page walker performs a
SizeWalk in the PTE ECPT 5 ; in the second case, it performs
a Direct Walk in the PMD ECPT 6 ; and in the third case, it
performs a Partial Walk 7 , which includes a Direct Walk in
the PMD ECPT and a Size Walk in the PTE ECPT.
If, instead, the PMD-CWC misses, the walker uses the

partial information provided by the PUD-CWC. Specifically,
if the PUD section contained only 2MB pages, the walker
performs a Size Walk in the PMD ECPT 9 (since there is no
information on the PMD ECPT ways); if it contained both

2MB and 4KB pages, it performs a Partial Walk 11 , which
includes Size Walks in both the PMD ECPT and the PTE
ECPT . In both cases, after the TLB is filled and execution
resumes, the hardware fetches the missing PMD-CWT entry

into the PMD-CWC 10 .
A final case is when the access to the PUD-CWC misses.

The walker still accesses the PMD-CWC to see if it can ob-
tain some information 2 . If the PMD-CWC hits, the section
accessed may contain only 4KB pages, only 2MB pages, or
both 2MB and 4KB pages. The walker proceeds with actions
5 , 6 , and 7 , respectively. If the PMD-CWC misses, the
walker has no information, and it performs a Complete Walk
to bring the translation into the TLB 3 . After that, the hard-
ware fetches the missing PUD-CWT and PMD-CWT entries
into the PUD-CWC and PMD-CWC, respectively 4 .

Since we are not considering 1GB pages in this discussion,
on a PUD-CWC miss and PMD-CWC hit, there is no need to
fetch the PUD-CWT entry. If 1GB pages are considered, the
hardware needs to fetch the PUD-CWT entry in this case.

6.2 Concurrency Issues

Elastic cuckoo page tables naturally support multi-process
and multi-threaded applications and, like radix page tables,
abide by the Linux concurrency model regarding page table
management. Specifically, multiple MMU page walkers can
perform page table look-ups while one OS thread performs
page table updates.
When a page table entry is found to have the Present

bit clear, a page fault occurs. During the page fault han-
dling, other threads can still perform look-up operations.
Our scheme handles these cases like in current radix page
tables in Linux: when the OS updates the elastic cuckoo page
tables or the CWTs, it locks them. Readers may temporar-
ily get stale information from their CWCs, but they will
eventually obtain the correct state.
The OS uses synchronization and atomic instructions to

insert entries in the elastic cuckoo page tables, to move el-
ements across ways in a page table, to move entries across
page tables in a resizing operation, to update the Rehashing
Pointers in a resizing operation, and to update the CWTs.

If the CWCswere coherent, updates to CWT entries would
invalidate entries in the CWCs. In our evaluation, we do not
make such assumption. In this case, when the page walker
uses information found in CWCs to access a translation and
the accesses fail, the walker performs the walk again. This
time, however, it accesses the remaining ways of the target
elastic cuckoo page table or, if a resize is in progress, the
remaining ways of both tables. This action will find entries
that have been moved to another way. After the translation
is obtained, the stale entries in the CWCs are refreshed. A
similar process is followed for the Rehashing Pointers.

7 Evaluation Methodology

Modeled Architectures. We use full-system cycle-level
simulations to model a server architecture with 8 cores and
64 GB of main memory. We model a baseline system with
4-level radix page tables like the x86-64 architecture, and our
proposed system with elastic cuckoo page tables. We model
these systems (i) with only 4KB pages, and (ii) with multiple
page sizes by enabling Transparent Huge Pages (THP) in

Session: Session 12B: Memory management — I forgot. ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1102

the Linux kernel [70]. We call these systems Baseline 4KB,
Cuckoo 4KB, Baseline THP, and Cuckoo THP.

The architecture parameters of the systems are shown in
Table 2. Each core is out-of-order and has private L1 and L2
caches, and a portion of a shared L3 cache. A core has private
L1 and L2 TLBs and page walk caches for translations. The
Cuckoo architectures use 3-ary elastic cuckoo hashing for
the Elastic Cuckoo Page Tables (ECPTs) and 2-ary elastic
cuckoo hashing for the CWTs. The Baseline architectures use
the 4-level radix page tables of x86-64. We size the CWCs in
the Cuckoo architecture to consume less area than the Page
Walk Caches (PWC) in the Baseline architectures, which are
modeled after x86-64. Specifically, the combined 2 CWCs
have 18 entries of 32B each, for a total of 576B; the combined
3 PWCs have 96 entries of 8B each, for a total of 768B.

Processor Parameters

Multicore chip 8 OoO cores, 256-entry ROB, 2GHz
L1 cache 32KB, 8-way, 2 cycles round trip (RT), 64B line
L2 cache 512KB, 8-way, 16 cycles RT
L3 cache 2MB per core, 16-way, 56 cycles RT

Per-Core MMU Parameters

L1 DTLB (4KB pages) 64 entries, 4-way, 2 cycles RT
L1 DTLB (2MB pages) 32 entries, 4-way, 2 cycles RT
L1 DTLB (1GB pages) 4 entries, 2 cycles RT
L2 DTLB (4KB pages) 1024 entries, 12-way, 12 cycles RT
L2 DTLB (2MB pages) 1024 entries, 12-way, 12 cycles RT
L2 DTLB (1GB pages) 16 entries, 4-way, 12 cycles RT
PWC 3 levels, 32 entries/level, 4 cycles RT

Elastic Cuckoo Page Table (ECPT) Parameters

Initial PTE ECPT size 16384 entries × 3 ways
Initial PMD ECPT size 16384 entries × 3 ways
Initial PUD ECPT size 8192 entries × 3 ways
Initial PMD-CWT size 4096 entries × 2 ways
Initial PUD-CWT size 2048 entries × 2 ways
Rehashing Threshold rt = 0.6
Multiplicative Factor k = 4
PMD-CWC; PUD-CWC 16 entries, 4 cycles RT; 2 entries, 4 cycles RT
Hash functions: CRC Latency: 2 cycles; Area: 1.9 ∗ 10−3mm

Dyn. energy: 0.98p J ; Leak. power: 0.1mW

Main-Memory Parameters

Capacity; #Channels; #Banks 64GB; 4; 8
tRP -tCAS -tRCD -tRAS 11-11-11-28
Frequency; Data rate 1GHz; DDR

Table 2. Architectural parameters used in the evaluation.

Modeling Infrastructure.We integrate the Simics [46] full-
system simulator with the SST framework [6, 59] and the
DRAMSim2 [61] memory simulator. We use Intel SAE [17]
on Simics for OS instrumentation. We use CACTI [7] for
energy and access time evaluation of memory structures,
and the Synopsys Design Compiler [65] for evaluating the
RTL implementation of the hash functions. Simics provides
the actual memory and page table contents for each memory
address. We model and evaluate the hardware components
of elastic cuckoo page tables in detail using SST.

Workloads. We evaluate a variety of workloads that ex-
perience different levels of TLB pressure. They belong to
the graph analytics, bioinformatics, HPC, and system do-
mains. Specifically, we use eight graph applications from
the GraphBIG benchmark suite [48]. Two of them are social
graph analysis algorithms, namely Betweenness Centrality

Figure 13. Elastic cuckoo hashing characterization.

(BC) and Degree Centrality (DC); two are graph traversal
algorithms, namely Breadth-Fist Search (BFS) and Depth-
First Search (DFS); and four are graph analytics benchmarks
for topological analysis, graph search/flow and website rele-
vance, namely Single Source Shortest Path (SSSP), Connected
Components (CC), Triangle Count (TC), and PageRank (PR).
From the bioinformatics domain, we use MUMmer from
the BioBench suite [3], which performs genome-level align-
ment. From the HPC domain, we use GUPS from HPC Chal-
lenge [45], which is a random access benchmark that mea-
sures the rate of integer random memory updates. Finally,
from the system domain, we select the Memory benchmark
from the SysBench suite [66], which stresses the memory
subsystem. We call it SysBench.
The memory footprints of these workloads are: 17.3GB

for BC, 9.3GB for DC, 9.3GB for BFS, 9GB for DFS, 9.3GB for
SSSP, 9.3GB for CC, 11.9GB for TC, 9.3GB for PR, 6.9GB for
MUMmer, 32GB for GUPS, and 32GB for SysBench.
For each individual workload, we perform full-system

simulations for all the different configurations evaluated.
When the region of interest of the workload is reached, the
detailed simulations start. We warm-up the architectural
state for 50 million instructions per core, and then measure
500 million instructions per core.

8 Evaluation

8.1 Elastic Cuckoo Hashing Characterization

Figure 13 characterizes the behavior of elastic cuckoo hash-
ing. It shows the average number of insertion attempts to
successfully insert an element (left), and the probability of
insertion failure after 32 attempts (right), both as a function
of the table occupancy. We use 3-ary elastic cuckoo hashing
and the BLAKE hash function [5]. Unlike in Figure 4, in this
figure, the occupancy goes beyond one. The reason is that,
when occupancy reaches the rehashing threshold rt = 0.6,
we allocate a new hash table with a multiplicative factor
k = 4 and perform gradual resizing. Recall that, in gradual
resizing, every insert is followed by a rehash that moves one
element from the current to the new hash table.
The average number of insertion attempts with elastic

cuckoo hashing is the Elastic Total curve. This curve is the
addition of the Elastic Insert and the Elastic Rehash curves.

Session: Session 12B: Memory management — I forgot. ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1103

(a) Speedup (b)MMU overhead reduction

Figure 14. Performance impact of elastic cuckoo page tables: (a) application speedup and (b) MMU overhead reduction.

The latter are the rehashes of elements from the old to the
new table during resizing. In more detail, assume that one
element is inserted during resizing. This insertion plus any
additional re-insertions due to collisions are counted in Elas-

tic Insert. The associated rehash of one element from the old
to the new hash table plus any additional re-insertions due
to collisions are counted in Elastic Rehash.
We see that, at an occupancy equal to rt , Elastic Rehash

jumps off. As resizing proceeds and elements start spreading
over the larger new table, the insertion attempts due to re-
hashes decrease. When the resize terminates at an occupancy
of ≈1.6, the Elastic Rehash curve falls to zero. The Elastic In-
sert curve gradually decreases as resizing proceeds. As a
result, Elastic Total has a peak at the beginning of the resize
but then goes down to 1 after the resize completes. Another
peak would occur later, when the new table is resized.
The figure also shows the attempts with Regular cuckoo

hashing without resizing. This curve is taken from Figure 4.
Overall, elastic cuckoo hashing with resizing never reaches
a large number of insertion attempts. Further, as shown in
the rightmost figure, no insertion failure occurs.

8.2 Elastic Cuckoo Page Table Performance

Figure 14 evaluates the performance impact of elastic cuckoo
page tables. Figure 14a shows the speedup of the applications
running on Baseline THP, Cuckoo 4KB, and Cuckoo THP over
running on Baseline 4KB.

The figure shows that, with 4KB pages only, using elastic
cuckoo page tables (Cuckoo 4KB) results in an application
speedup of 3–28% over using conventional radix page tables
(Baseline 4KB). The mean speedup is 11%. When Transparent
Huge Pages (THP) are enabled, the speedups with either
radix page tables or elastic cuckoo page tables improve sub-
stantially, due to reduced TLBmisses. The speedup of Cuckoo
THP over Baseline THP is 3–18%. The mean is 10%. These are
substantial application speedups.

In fact, Cuckoo 4KB outperforms not only Baseline 4KB but
also Baseline THP in several applications. Some applications
such as SSSP and TC do not benefit much from THP. How-
ever, Cuckoo 4KB also outperforms Baseline THP in applica-
tions such as MUMmer that leverage 2MB pages extensively.

The performance gains attained by elastic cuckoo page
tables come from several reasons. First and foremost, a page
walk in elastic cuckoo page tables directly fetches the final
translation, rather than having to also fetch intermediate
levels of translation sequentially as in radix page tables. This
ability speeds-up the translation. Second, performance is
improved by the high hit rates of CWCs, which are due
to the facts that CWCs do not have to store entries with
intermediate levels of translation and that each CWC entry
is small — again unlike radix page tables. Finally, we observe
that when the page walker performs Size and Partial Walks,
it brings translations into the L2 and L3 caches that, while
not loaded into the TLB, will be used in the future. In effect,
the walker is prefetching translations into the caches.

Figure 14b shows the time spent by all the memory system
requests in the MMU, accessing the TLBs and performing
the page walk. The time is shown normalized to the time
under Baseline 4KB. This figure largely follows the trends in
Figure 14a. On average, Cuckoo 4KB reduces the MMU over-
head of Baseline 4KB by 34%, while Cuckoo THP’s overhead
is 41% lower than that of Baseline THP. The figure also shows
that applications like GUPS and SysBench, which perform
fully randomized memory accesses, benefit a lot from THPs.

We have also evaluated applications that have a lower page
walk overhead, especially with THP, such as MCF and Cactus
from SPEC2006 [32], Streamcluster from PARSEC [16], and
XSBench [71]. Their memory footprints are 1.7GB, 4.2GB,
9.1GB, and 64GB, respectively. In these applications, while
elastic cuckoo page tables reduce the MMU overhead com-
pared to radix page tables, address translation is not a bot-
tleneck. Hence, application performance remains the same.

8.3 Elastic Cuckoo Page Table Characterization

8.3.1 MMU and Cache Subsystem. Figure 15 character-
izes the MMU and cache subsystem for our four configura-
tions. From top to bottom, it shows the number of MMU
requests Per Kilo Instruction (PKI), the L2 cache Misses Per
Kilo Instruction (MPKI), and the L3 MPKI. In each chart, the
bars are normalized to Baseline 4KB.
MMU requests are the requests that the MMU issues to

the cache hierarchy on a TLB miss. For the baseline systems,
they are memory requests to obtain page translations for

Session: Session 12B: Memory management — I forgot. ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1104

Figure 15. Characterizing the MMU and cache subsystem.

the four radix tree levels; for the cuckoo systems, they are
requests for page translations and for CWT entries. From
the figure, we see that Cuckoo 4KB and Cuckoo THP issue
many more requests than Baseline 4KB and Baseline THP,
respectively. There are two reasons for this. The first and
most important one is that many of the walks of the cuckoo
page walker are not Direct Walks. Therefore, they request
more page table entries than required — in fact no access
to the PTE elastic cuckoo page table can use a Direct Walk
because we have no PTE-CWT table. The second reason is
the accesses to the CWTs themselves.
Fortunately, most of these additional MMU accesses are

intercepted by the L2 and L3 caches and do not reach main
memory. Indeed, as we show in the central and bottom chart
of Figure 15, the L2 MPKI of the Cuckoo systems is similar to
that of the Baseline systems, and the L3 MPKI of the Cuckoo
systems is lower than that of the Baseline systems. The rea-
son is two fold. First, the CWT entries are designed to cover
large sections of memory. Hence, the needed entries fit in a
few cache lines, leading to high cache hit rates. The second
reason is that the additional elastic cuckoo page table entries
that are brought in by accessing multiple ways of a table are
typically later re-used by another access. Accessing them
now prefetches them for a future access. In summary, despite
elastic cuckoo page tables issuing more MMU requests, most
of the requests hit in the caches and the overall traffic to
main memory is lower than with radix page tables.
To illustrate this point, Figure 16 considers all the MMU

accesses in the MUMmer application and groups them in
bins based on the time they take to complete. The figure
shows data for Baseline THP and Cuckoo THP. On top of the
bars, we indicate the likely layer of the memory hierarchy
accessed for certain ranges of latencies: cache hit, 1st DRAM
access, 2nd DRAM access, and 3rd DRAM access. Cuckoo
THP never performs more than one DRAM access. From the

figure, we see that Cuckoo THP MMU accesses have much
lower latencies; most are intercepted by the caches or at
worst take around 200 cycles. Baseline THPMMU accesses
often perform two or three DRAM accesses, and have a long
latency tail that reaches over 500 cycles.

Figure 16. Histogram of MMU accesses in MUMmer.

8.3.2 Types ofWalks. Wenow consider the elastic cuckoo
page translation process of Figure 12, and measure the rel-
ative frequency of each type of cuckoo walk shown in Fig-
ure 10. We use Cuckoo THP with 2MB huge pages. As a ref-
erence, the average hit rates of PUD-CWC and PMD-CWC
across all our applications are 99.9% and 87.7%, respectively.

Figure 17 shows the distribution of the four types of cuckoo
walks for each application. Starting from the bottom of the
bars, we see that the fraction of Complete Walks is negligi-
ble. A complete walk only happens when both PUD-CWC
and PMD-CWC miss, which is very rare. Partial Walks occur
when the memory section accessed has both huge and regu-
lar pages. Situations where both page sizes are interleaved
in virtual memory within one section are infrequent. They
occur to some extent in BC, and rarely in other applications.

Figure 17. Distribution of the types of cuckoo walks.

Fortunately, most walks are of the cheap kinds, namely
Size Walks andDirect Walks. Size Walks occur when the mem-
ory segment only contains regular pages. Hence, we observe
this behavior in applications that do not take advantage of
huge pages, such as BFS, CC, DC, DFS, PR, SSSP, TC and, to
a lesser extent, BC. These walks are the most common ones.
They also occur when the region only has huge pages but
the PMD-CWC misses — an infrequent case.
Finally, Direct Walks occur when the memory segment

only contains huge pages. We observe them in applications
that use huge pages extensively, like GUPS, SysBench, and
MUMmer. Overall, cheap walks are the most common.

8.3.3 Memory Consumption. Figure 18 shows the mem-
ory consumption of the page tables in the different appli-
cations for various configurations. For the Cuckoo systems,
the bars also include the memory consumption of CWTs.
The first bar (Required) is the number of PTEs used by the

Session: Session 12B: Memory management — I forgot. ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1105

application times 8 bytes. The figure then shows Baseline
4KB, Cuckoo 4KB, and Cuckoo 4KB with table downsizing.
Note that we have not used downsizing anywhere else in
this paper. On average, Required uses 26MB. Baseline 4KB
consumes on average 27MB, as it also needs to keep the three
upper levels of translation. Cuckoo 4KB consumes on aver-
age 36MB, due to allocating hash tables with a power-of-two
number of entries. The CWTs add very little space. Overall,
the absolute increase in memory consumption needed to
support Cuckoo 4KB is tiny, compared to the total memory
capacity of modern systems. Finally, Cuckoo 4KB with table
downsizing consumes on average 29MB.

Figure 18. Memory consumption of page tables.

8.3.4 Comparison to 2-ary Cuckoo Page Tables. We
repeat our evaluation of elastic cuckoo page tables using
2-ary elastic cuckoo hashing for the page tables rather than
our default 3-ary design. Our results show that using 3-ary
structures speeds-up applications over using 2-ary struc-
tures: the applications run on average 6.7% faster in Cuckoo

4KB and 3.3% faster in Cuckoo THP. The reason is that 2-ary
structures are liable to hash collisions at lower occupancies
and, therefore, need to be resized sooner. We find that, over
the course of an application, 2-ary tables require more re-
hashing operations than 3-ary tables: on average across our
applications, they require 63.3% more rehashes in Cuckoo

4KB and 84% in Cuckoo THP. The additional accesses issued
by the MMUs with 3-ary structures have relatively little
performance impact because they typically hit in the caches.

9 Other Related Work

To reduce TLB misses, recent studies have proposed to op-
timize TLB organizations by clustering, coalescing, conti-
guity [14, 18, 21, 42, 54–56, 64, 72], prefetching [15, 41, 63],
speculative TLBs [9], and large part-of-memory TLBs [47, 62].
To increase TLB reach, support for huge pages has been ex-
tensively studied [21, 26, 27, 29, 43, 49, 51–53, 57, 60, 67, 69],
with OS-level improvements [26, 43, 51, 52]. Other works pro-
pose direct segments [10, 25] and devirtualized memory [31],
and suggest that applications manage virtual memory [2].

Many of these advances focus on creating translation con-
tiguity: large contiguous virtual space that maps to large
contiguous physical space. In this way, fewer translations
are required, TLB misses are reduced, and costly multi-step
page walks are minimized. Unfortunately, enforcing conti-
guity hurts the mapping flexibility that the kernel and other
software enjoy. Further, enforcing contiguity is often impos-
sible — or counterproductive performance-wise. Instead, in

our work, we focus on dramatically reducing the cost of page
walks by creating a single-step translation process, while
maintaining the existing abstraction for the kernel and other
software. As a result, we do not require contiguity and retain
all the mapping flexibility of current systems.

10 Conclusion

This paper presented Elastic Cuckoo Page Tables, a novel
page table design that transforms the sequential address
translation walk of radix page tables into fully parallel look-
ups, harvesting for the first time the benefits of memory-level
parallelism for address translation. Our evaluation showed
that elastic cuckoo page tables reduce the address translation
overhead by an average of 41% over conventional radix page
tables, and speed-up application execution by 3–18%. Our
current work involves exploring elastic cuckoo page tables
for virtualized environments.

Acknowledgments

This work was supported by NSF under grants CCF 16-49432
and CNS 17-63658.

Appendix A: Multiplicative Factor

To find a good value for the Multiplicative Factor k in a
resize operation, we compute the number of entries that the
new table receives during the resize operation. To simplify
the analysis, we neglect insertion collisions, which move
elements from one way to another way of the same table.
Hence, we only need to consider 1 way of the old table (which
has T entries) and 1 way of the new table (which has k ×T
entries). A similar analysis can be performed considering
collisions, following the procedure outlined in [24, 50].

Recall that, during resizing, an insert operation can insert
the entry in the old hash table (Case Old) or in the new hash
table (Case New). In either case, after the insert, one entry
is moved from the old to the new table, and the Rehashing
Pointer is advanced. Therefore, in Case Old, the new table
receives one entry; in Case New, it receives two.

If all the inserts during resizing were of Case Old, the new
table would receive at mostT elements during resizing, since
the Rehashing Pointer would by then reach the end of the
old table. If all the inserts during resizing were of Case New,
there could only be rt ×T insertions, since the old table had
rt ×T elements and, by that point, all elements would have
moved to the new table. Hence, the new table would receive
2rt ×T elements during resizing.

The worst case occurs in a resize that contains some Case
Old and some Case New inserts. The scenario is as follows.
Assume that all the rt × T elements in the old table are at
the top of the table. During resizing, there are first rt × T
Case New inserts, and then (1 − rt) × T Case Old inserts.
Hence, the new table receives (rt + 1) ×T elements. This is
the worst case. Hence, to avoid reaching the point where a
new resize operation is triggered inside a resize operation, it
should hold that (rt + 1) ×T < rt ×k ×T , or k > (rt + 1)/rt .

Session: Session 12B: Memory management — I forgot. ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1106

References
[1] Jeongseob Ahn, Seongwook Jin, and Jaehyuk Huh. 2012. Revisiting

Hardware-assisted Page Walks for Virtualized Systems. In Proceedings

of the 39th Annual International Symposium on Computer Architecture

(ISCA’12).

[2] Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav Etsion. 2017.

Do-It-Yourself Virtual Memory Translation. In Proceedings of the 44th

Annual International Symposium on Computer Architecture (ISCA’17).

[3] Kursad Albayraktaroglu, Aamer Jaleel, XueWu, Manoj Franklin, Bruce

Jacob, Chau-Wen Tseng, and Donald Yeung. 2005. BioBench: A Bench-

mark Suite of Bioinformatics Applications. In IEEE International Sym-

posium on Performance Analysis of Systems and Software (ISPASS’05).

[4] AMD. 2019. Architecture Programmer’s Manual (Volume 2). https:

//www.amd.com/system/files/TechDocs/24593.pdf.

[5] Jean-Philippe Aumasson, Willi Meier, Raphael Phan, and Luca Henzen.

2014. The Hash Function BLAKE. Springer.

[6] A. Awad, S. D. Hammond, G. R. Voskuilen, and R. J. Hoekstra. 2017.

Samba: A Detailed Memory Management Unit (MMU) for the SST Simu-

lation Framework. Technical Report SAND2017-0002. Sandia National

Laboratories.

[7] Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar,

Ali Shafiee, and Vaishnav Srinivas. 2017. CACTI 7: New Tools for

Interconnect Exploration in Innovative Off-Chip Memories. ACM

Transactions on Architecture and Code Optimization (TACO) 14, 2 (June

2017).

[8] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2010. Translation

Caching: Skip, Don’t Walk (the Page Table). In Proceedings of the 2010

International Conference on Computer Architecture (ISCA’10).

[9] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2011. SpecTLB: A

Mechanism for Speculative Address Translation. In Proceedings of

the 38th Annual International Symposium on Computer Architecture

(ISCA’11).

[10] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and

Michael M. Swift. 2013. Efficient Virtual Memory for Big Memory

Servers. In Proceedings of the 40th Annual International Symposium on

Computer Architecture (ISCA’13).

[11] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha

Manne. 2008. Accelerating Two-dimensional Page Walks for Virtu-

alized Systems. In Proceedings of the 13th International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS XIII).

[12] Abhishek Bhattacharjee. 2013. Large-reach Memory Management

Unit Caches. In Proceedings of the 46th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-46).

[13] Abhishek Bhattacharjee. 2017. Translation-Triggered Prefetching. In

Proceedings of the 22nd International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS’17).

[14] Abhishek Bhattacharjee, Daniel Lustig, and Margaret Martonosi. 2011.

Shared Last-level TLBs for Chip Multiprocessors. In Proceedings of the

2011 IEEE 17th International Symposium on High Performance Computer

Architecture (HPCA’11).

[15] Abhishek Bhattacharjee and Margaret Martonosi. 2010. Inter-Core

Cooperative TLB Prefetchers for Chip Multiprocessors. In Proceed-

ings of the 15th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS XV).

[16] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D.

Dissertation. Princeton University.

[17] Nadav Chachmon, Daniel Richins, Robert Cohn, Magnus Christensson,

Wenzhi Cui, and Vijay Janapa Reddi. 2016. Simulation and Analysis

Engine for Scale-OutWorkloads. In Proceedings of the 2016 International

Conference on Supercomputing (ICS’16).

[18] J. Bradley Chen, Anita Borg, and Norman P. Jouppi. 1992. A Simulation

Based Study of TLB Performance. In Proceedings of the 19th Annual

International Symposium on Computer Architecture (ISCA’92).

[19] Jonathan Corbet. 2005. Four-level page tables. https://lwn.net/Articles/

117749/.

[20] Jonathan Corbet. 2017. Five-level page tables. https://lwn.net/Articles/

717293/.

[21] Guilherme Cox and Abhishek Bhattacharjee. 2017. Efficient Address

Translation for Architectures with Multiple Page Sizes. In Proceed-

ings of the 22nd International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS’17).

[22] Cort Dougan, Paul Mackerras, and Victor Yodaiken. 1999. Optimizing

the Idle Task and Other MMU Tricks. In Proceedings of the Third Sym-

posium on Operating Systems Design and Implementation (OSDI’99).

[23] Stephane Eranian and David Mosberger. 2000. The Linux/ia64 Project:

Kernel Design and Status Update. Technical Report HPL-2000-85. HP

Laboratories Palo Alto.

[24] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul Spirakis. 2005.

Space Efficient Hash Tables with Worst Case Constant Access Time.

Theory of Computing Systems 38, 2 (Feb. 2005), 229–248.

[25] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and Michael M. Swift.

2014. Efficient Memory Virtualization: Reducing Dimensionality of

Nested Page Walks. In Proceedings of the 47th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO-47).

[26] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston,

Alexandra Fedorova, and Vivien Quéma. 2014. Large Pages May Be

Harmful on NUMA Systems. In Proceedings of the 2014 USENIX Con-

ference on USENIX Annual Technical Conference (USENIX ATC’14).

[27] Mel Gorman and Patrick Healy. 2010. Performance Characteristics of

Explicit Superpage Support. In Proceedings of the 2010 International

Conference on Computer Architecture (ISCA’10).

[28] Charles Gray, Matthew Chapman, Peter Chubb, David Mosberger-

Tang, and Gernot Heiser. 2005. Itanium — A System Implementor’s

Tale. In Proceedings of the 2005 USENIX Annual Technical Conference

(USENIX ATC’05).

[29] Fei Guo, Seongbeom Kim, Yury Baskakov, and Ishan Banerjee. 2015.

Proactively Breaking Large Pages to Improve Memory Overcommit-

ment Performance in VMware ESXi. In Proceedings of the 11th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-

ronments (VEE’15).

[30] Frank T. Hady, Annie P. Foong, Bryan Veal, and Dan Williams. 2017.

Platform Storage Performance With 3D XPoint Technology. Proc. IEEE

105, 9 (2017).

[31] Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2018. Devirtual-

izing Memory in Heterogeneous Systems. In Proceedings of the 23rd

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’18).

[32] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. ACM

SIGARCH Computer Architecture News 34, 4 (Sept. 2006), 1–17.

[33] Jerry Huck and Jim Hays. 1993. Architectural Support for Translation

Table Management in Large Address Space Machines. In Proceedings

of the 20th Annual International Symposium on Computer Architecture

(ISCA’93).

[34] IBM. 2005. PowerPC Microprocessor Family: The Program-

ming Environments Manual for 32 and 64-bit Microproces-

sors. https://wiki.alcf.anl.gov/images/f/fb/PowerPC_-_Assembly_-

_IBM_Programming_Environment_2.3.pdf.

[35] Intel. 2010. Itanium Architecture Software Developer’s Manual (Vol-

ume 2). https://www.intel.com/content/www/us/en/products/docs/

processors/itanium/itanium-architecture-vol-1-2-3-4-reference-set-

manual.html.

[36] Intel. 2015. 5-Level Paging and 5-Level EPT (White Pa-

per). https://software.intel.com/sites/default/files/managed/2b/80/5-

level_paging_white_paper.pdf.

[37] Intel. 2018. Sunny Cove Microarchitecture. https://en.wikichip.org/

wiki/intel/microarchitectures/sunny_cove.

[38] Intel. 2019. 64 and IA-32 Architectures Software Developer’s Manual.

Session: Session 12B: Memory management — I forgot. ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1107

[39] Bruce L. Jacob and Trevor N. Mudge. 1998. A Look at Several Memory

Management Units, TLB-refill Mechanisms, and Page Table Organiza-

tions. In Proceedings of the 8th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS

VIII).

[40] Joefon Jann, Paul Mackerras, John Ludden, Michael Gschwind, Wade

Ouren, Stuart Jacobs, Brian F. Veale, and David Edelsohn. 2018. IBM

POWER9 system software. IBM Journal of Research and Development

62, 4/5 (June 2018).

[41] Gokul B. Kandiraju and Anand Sivasubramaniam. 2002. Going the Dis-

tance for TLB Prefetching: An Application-driven Study. In Proceedings

of the 29th Annual International Symposium on Computer Architecture

(ISCA’02).

[42] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal,

Mark D. Hill, Kathryn S. McKinley, Mario Nemirovsky, Michael M.

Swift, and Osman Ünsal. 2015. Redundant Memory Mappings for

Fast Access to Large Memories. In Proceedings of the 42nd Annual

International Symposium on Computer Architecture (ISCA’15).

[43] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,

and Emmett Witchel. 2016. Coordinated and Efficient Huge Page

Management with Ingens. In Proceedings of the 12th USENIX Conference

on Operating Systems Design and Implementation (OSDI’16).

[44] Linux Kernel. 2019. Page Table Types. https://git.kernel.org/pub/scm/

linux/kernel/git/stable/linux.git/tree/arch/x86/include/asm/pgtable_

types.h?h=v4.19.1.

[45] Piotr R. Luszczek, David H. Bailey, Jack J. Dongarra, Jeremy Kepner,

Robert F. Lucas, Rolf Rabenseifner, and Daisuke Takahashi. 2006. The

HPC Challenge (HPCC) Benchmark Suite. In Proceedings of the 2006

ACM/IEEE Conference on Supercomputing (SC’06).

[46] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel

Forsgren, Gustav Hållberg, Johan Högberg, Fredrik Larsson, Andreas

Moestedt, and Bengt Werner. 2002. Simics: A Full System Simulation

Platform. IEEE Computer (2002).

[47] Yashwant Marathe, Nagendra Gulur, Jee Ho Ryoo, Shuang Song, and

Lizy K. John. 2017. CSALT: Context Switch Aware Large TLB. In

Proceedings of the 50th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO-50).

[48] Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and Ching-

Yung Lin. 2015. GraphBIG: Understanding Graph Computing in the

Context of Industrial Solutions. In International Conference for High

Performance Computing, Networking, Storage and Analysis (SC’15).

[49] Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. 2002. Prac-

tical, Transparent Operating System Support for Superpages. In Pro-

ceedings of the 5th USENIX Symposium on Operating Systems Design

and Implementation (OSDI’02).

[50] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo Hashing.

Journal of Algorithms 51, 2 (May 2004), 122–144.

[51] Ashish Panwar, Sorav Bansal, and K. Gopinath. 2019. HawkEye: Effi-

cient Fine-grained OS Support for Huge Pages. In Proceedings of the

Twenty-Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS’19).

[52] Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making

Huge Pages Actually Useful. In Proceedings of the 23rd International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS’18).

[53] Misel-Myrto Papadopoulou, Xin Tong, André Seznec, and Andreas

Moshovos. 2015. Prediction-Based Superpage-Friendly TLB Designs.

In Proceedings of the 2015 IEEE 21st International Symposium on High

Performance Computer Architecture (HPCA’15).

[54] Chang Hyun Park, Taekyung Heo, Jungi Jeong, and Jaehyuk Huh. 2017.

Hybrid TLB Coalescing: Improving TLB Translation Coverage under

Diverse Fragmented Memory Allocations. In Proceedings of the 44th

Annual International Symposium on Computer Architecture (ISCA’17).

[55] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and Gabriel H.

Loh. 2014. Increasing TLB Reach by Exploiting Clustering in Page

Translations. In Proceedings of the 2014 IEEE 20th International Sympo-

sium on High Performance Computer Architecture (HPCA’14).

[56] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek

Bhattacharjee. 2012. CoLT: Coalesced Large-Reach TLBs. In Proceed-

ings of the 45th Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO-45).

[57] Binh Pham, Ján Veselŷ, Gabriel H. Loh, and Abhishek Bhattacharjee.

2015. Large Pages and Lightweight Memory Management in Virtu-

alized Environments: Can You Have it Both Ways?. In 48th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO-48).

[58] Moinuddin K. Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran.

2011. Phase Change Memory: From Devices to Systems (1st ed.). Morgan

& Claypool Publishers.

[59] Arun F. Rodrigues, Jeanine Cook, Elliott Cooper-Balis, K. Scott Hem-

mert, Chad Kersey, Rolf Riesen, Paul Rosenfeld, Ron Oldfield, and

Marlow Weston. 2006. The Structural Simulation Toolkit. In Proceed-

ings of the 2006 ACM/IEEE conference on Supercomputing (SC’10).

[60] Theodore H. Romer, Wayne H. Ohlrich, Anna R. Karlin, and Brian N.

Bershad. 1995. Reducing TLB and Memory Overhead Using Online

Superpage Promotion. In Proceedings of the 22nd Annual International

Symposium on Computer Architecture (ISCA’95).

[61] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAM-

Sim2: A Cycle Accurate Memory System Simulator. IEEE Computer

Architecture Letters (2011).

[62] Jee Ho Ryoo, Nagendra Gulur, Shuang Song, and Lizy K. John. 2017.

Rethinking TLB Designs in Virtualized Environments: A Very Large

Part-of-Memory TLB. In Proceedings of the 44th Annual International

Symposium on Computer Architecture (ISCA’17).

[63] Ashley Saulsbury, Fredrik Dahlgren, and Per Stenström. 2000. Recency-

Based TLB Preloading. In Proceedings of the 27th Annual International

Symposium on Computer Architecture (ISCA’00).

[64] Shekhar Srikantaiah and Mahmut Kandemir. 2010. Synergistic TLBs

for High Performance Address Translation in Chip Multiprocessors.

In Proceedings of the 43rd Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO-43).

[65] Synopsys. 2019. Design Compiler. https://www.synopsys.com.

[66] SysBench. 2019. A modular, cross-platform and multi-threaded bench-

mark tool. http://manpages.ubuntu.com/manpages/trusty/man1/

sysbench.1.html.

[67] Madhusudhan Talluri and Mark D. Hill. 1994. Surpassing the TLB

Performance of Superpages with Less Operating System Support. In

Proceedings of the 6th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS VI).

[68] Madhusudhan Talluri, Mark D. Hill, and Yousef A. Khalidi. 1995. A

New Page Table for 64-bit Address Spaces. In Proceedings of the 15th

ACM Symposium on Operating Systems Principles (SOSP’95).

[69] Madhusudhan Talluri, Shing Kong, Mark D. Hill, and David A. Patter-

son. 1992. Tradeoffs in Supporting Two Page Sizes. In 19th International

Symposium on Computer Architecture (ISCA’92).

[70] The Linux Kernel Archives. 2019. Transparent Hugepage Support.

https://www.kernel.org/doc/Documentation/vm/transhuge.txt.

[71] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz.

2014. XSBench - The Development and Verification of a Performance

Abstraction for Monte Carlo Reactor Analysis. In PHYSOR 2014 - The

Role of Reactor Physics toward a Sustainable Future.

[72] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.

2019. Translation Ranger: Operating System Support for Contiguity-

Aware TLBs. In Proceedings of the 46th International Symposium on

Computer Architecture (ISCA’19).

[73] Idan Yaniv and Dan Tsafrir. 2016. Hash, Don’t Cache (the Page Table).

In Proceedings of the 2016 ACM SIGMETRICS International Conference

on Measurement and Modeling of Computer Science (SIGMETRICS’16).

Session: Session 12B: Memory management — I forgot. ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1108

