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This paper presents a study on the practicality of operating system (OS) kernel debloating—reducing kernel
code that is not needed by the target applications—in real-world systems. Despite their significant benefits
regarding security (attack surface reduction) and performance (fast boot times and reduced memory footprints),
the state-of-the-art OS kernel debloating techniques are seldom adopted in practice, especially in production
systems.We identify the limitations of existing kernel debloating techniques that hinder their practical adoption,
including both accidental and essential limitations. To understand these limitations, we build an advanced
debloating framework named Cozart which enables us to conduct a number of experiments on different
types of OS kernels (including Linux and the L4 microkernel) with a wide variety of applications (including
HTTPD, Memcached, MySQL, NGINX, PHP and Redis). Our experimental results reveal the challenges and
opportunities towards making kernel debloating techniques practical for real-world systems. The main goal of
this paper is to share these insights and our experiences to shed light on addressing the limitations of kernel
debloating in future research and development efforts.
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1 INTRODUCTION

1.1 Motivation

Commodity operating systems (OSes), such as Linux and FreeBSD, have grown in complexity and
size over the years. However, each application usually requires a small subset of OS features [56, 74],
rendering the OS kernel bloated. The bloated OS kernel leads to increased attack surface, prolonged
boot time and increased memory usage. Application-oriented OS kernel debloating—reducing the
kernel code that is not needed by the target applications—is reported to be effective in mitigating
many of the above issues. For example, Kurmus et al. [46] report that 50%–85% of the attack surface
can be reduced by debloating the Linux kernel for server software. Alharthi et al. [17] show that
34%–74% of known security vulnerabilities can be nullified in the Linux kernel if it only includes
kernel modules that are needed by the target application(s).
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Recent trends in Function-as-a-Service (FaaS) and microservices, where numerous kernels are
often packed and run in virtual machines (VMs), further highlight the importance of kernel debloat-
ing. In these scenarios, most VMs run small applications [20, 21, 49, 52], and each application tends
to be “micro” with a small kernel footprint [31, 37, 64]. Some of the recent virtualization systems,
such as LightVM [52], require users to provide minimalistic Linux kernels specialized for target
applications.

DebloatingOS kernels by hand-picking kernel features is impractical. The complexity of commodity-
off-the-shelf (COTS) OSes (e.g., Linux) makes manual debloating infeasible [16, 33, 46]. Linux 4.14,
for example, has more than 14,000 configuration options with hundreds of new configuration
options introduced every year (see Figure 2). Kernel configurators (such as KConfig [42]) do not
help debloat the kernel but only provide a user interface for selecting configuration options. Given
the poor usability and incomplete and even incorrect documentation [33], it is prohibitively difficult
for users to select the minimal kernel configuration manually.
Recently, several automated kernel debloating techniques and tools have been proposed and

built [25, 38, 39, 45–48, 52, 69, 71, 79]. Despite their different implementations, existing kernel
debloating techniques share the same working principle with the following three steps: (1) running
the target application workloads, meanwhile tracing the kernel code that were executed during the
application runs; (2) analyzing the traces and determining the kernel code needed by the target
applications; (3) building a debloated kernel that only includes the code required by the applications.
Configuration-driven (also known as feature-driven) kernel debloating techniques are the de

facto method for OS kernel debloating [25, 38, 39, 46–48, 52, 69, 71, 79]. Most existing kernel
debloating tools use configuration-driven techniques as they are among the few techniques that
can produce stable kernels. Configuration-driven kernel debloating reduces kernel code based on
features—a kernel configuration option is corresponding to a kernel feature. A debloated kernel
only includes features for supporting the target application workloads. As shown by recent studies,
configuration-driven kernel debloating can effectively reduce the size of the kernel by 50%–85% [46],
attack surface by 50%—85% [46], and security vulnerabilities by 34%–74% [17]. This paper focuses
on configuration-driven kernel debloating and their open-source implementations.

However, despite their attractive benefits regarding security and performance, automated kernel
debloating techniques are seldom adopted in practice, especially in production systems. This is
certainly not due to a lack of demand—we observe that many cloud vendors (e.g., Amazon AWS,
Microsoft Azure and Google Cloud) reduce the Linux kernel code in a handcrafted manner, which
is not as effective as automated kernel debloating techniques (Section 3). The goal of this paper is
to understand the limitations of kernel debloating techniques that hinder their practical adoption
and to share our experience to shed light on addressing the limitations.

1.2 Accidental and Essential Limitations

We identify five major limitations of existing kernel debloating techniques based on our own
experiences of using existing kernel debloating tools and our interactions with practitioners.

• No visibility of kernel boot phases. Existing debloating techniques use ftrace that can only
be initiated after the kernel boot and hence cannot observe what kernel code is loaded during
the boot phase1. As a consequence, critical modules (e.g., disk drivers) might be missing,
and the debloated kernel generated by existing techniques oftentimes cannot boot [25]. Our
experiments show that up to 79% of kernel features can only be captured by observing the
boot phase. Even if the debloated kernel can boot, the kernel could miss certain performance
and security features loaded at the boot time, leading to reduced performance and security.

1We show ftrace’s incapability of observing the boot phase even with the RAM disk based solution (initrd) in Section 7.1.
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We find that many performance and security features are only loaded at the boot time, e.g.,
CONFIG_SCHED_MC for multicore support and CONFIG_SECURITY_NETWORK.

• Lack of support for fast application deployment. Using existing tools, debloating for a new
combination of applications or deploying a new application on a debloated kernel would
require going through the entire three-step debloating process of tracing, analysis, and
building as described in Section 1.1. The process is time-consuming (can take hours or even
days) and thus prevent agile application deployment—starting up a new application would
have to wait until the generation of the debloated kernel.

• Coarse-grained tracing. Existing techniques use ftrace, which can only trace kernel code
at the function level. However, function-level tracing is too coarse a granularity to track
configuration options that affect intra-function code.

• Difficulties in covering the complete kernel footprint. Since kernel debloating uses dynamic
tracing, it requires application workloads (typically encoded in benchmarks) to drive kernel
code execution. However, it is challenging for benchmarks to cover the complete kernel
footprint of the target applications, and the debloated kernel would crash if the application
reaches kernel code that was not observed during tracing.

• Not distinguishing what is executed versus what is needed. Existing techniques treat any kernel
features that are reached during the application workloads, even though the executed code
may not be actually needed. For example, a second filesystem might be initialized but never
needed.

To analyze the above limitations, we divide them into essence (the limitations inherent in the nature
and assumptions of kernel debloating) and accidents (those that exist in current kernel debloating
techniques but that are not inherent). We believe that the first three limitations are accidental
and can be addressed by improving the design and implementation of the debloating techniques,
while the last two limitations are essential that require efforts beyond the debloating techniques
themselves.

1.3 Our Study and Results

This paper studies the limitations of existing OS kernel debloating techniques towards making
OS kernel debloating practical, effective and fast. We focus on OS kernels deployed in cloud
environments that are commonly used as guest OSes to run untrusted applications often with
stringent performance requirements.

To study the limitations, we carefully designed and implemented an advanced OS kernel debloat-
ing framework named Cozart2 built on top of QEMU [8]. Cozart employs a low-level tracing
provided by QEMU to obtain visibility of the boot phase. Cozart uses instruction-level tracing
to track the kernel code and map the kernel code to kernel configuration options. Cozart moves
kernel tracing off the critical path: with Cozart, one can generate Configlets (a set of con-
figuration options) specific to an application or a deployment environment offline. We term the
former Applets and the latter Baselets. Given a set of target applications, Cozart can generate a
debloated kernel by directly composing the Applets and the Baselet generated offline into a full
kernel configuration. Such composability enables Cozart to incrementally build new kernels by
reusing Configlets (saving repetitive tracing efforts) and previous build files (e.g., the object files
and LKMs).
We use Cozart as a vehicle to conduct a number of experimental studies on different types of

OS kernels (including Linux, the L4 microkernel and Amazon Firecracker) with a wide variety of

2Cozart is publicly available at https://github.com/hckuo/Cozart.
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applications (including HTTPD, Memcached, MySQL, NGINX, PHP and Redis). Our studies lead to
the following findings and results:

• Existing kernel debloating techniques initialize in-kernel tracing methods (e.g., ftrace) too late
and cannot observe the boot phase, which is critical to producing a bootable kernel. Cozart
leverages the tracing feature provided by the hypervisor to support end-to-end observability
(including the complete boot phase and application workloads) and produce stable kernels
that can always boot and run applications stably. The debloated kernel by Cozart does
not have performance regressions (but slightly improves application performance) while
achieving more than 13% reduction of boot time and more than 4MB memory savings.

• Kernel debloating can be done within tens of seconds if the configuration options of target
applications are known. The composability of Cozart allows users to prepare Applets offline.
To deploy a new application on a debloated kernel, Cozart composes the Applet of the
target application with the Configlets of the current kernel to generate a new debloated
kernel within tens of seconds.

• Using instruction-level tracing (instead of ftrace) can address kernel configuration options
that control intra-function features. The overhead of instruction-level tracing is acceptable
for running test suites and performance benchmarks, given that those can be done offline.

• An essential limitation of using dynamic-tracing based techniques for kernel debloating
(which are the de facto approach) is the imperfect test suites and benchmarks. Specifically,
the official test suites of many open-source applications have low code coverage. Combining
different workloads (e.g., using both test suites and performance benchmarks) to drive the
application could alleviate the limitation to a certain extent.

• Domain-specific information can be used to further debloat the kernel by removing the
kernel modules that were executed in the baseline kernel but are not needed by the actual
deployment. Take Xen and KVM as examples. We can use Cozart to further reduce the kernel
size by 40+% and 39+% based on the xenconfig and kvmconfig configuration templates
provided by the Linux kernel source.

• Application-oriented kernel debloating can lead to further kernel code reduction for mi-
crokernels (e.g., L4) and extensively customized kernels (e.g., the Firecracker kernel). The
reduction is significant: 47.0% for the L4 microkernel and 19.76% for the Firecracker kernel.

2 KERNEL CONFIGURATION

This section provides an overview of kernel configuration ecosystem using Linux as an example.
Kernel debloating is not specific to Linux, and Cozart is generic and portable to different OSes.

2.1 Configuration Options

A kernel configuration is composed of a set of configuration options. A kernel module could have
multiple configuration options, each of which controls which code will be included in the final
version. Configuration options control different granularities of kernel code including statements,
functions as well as object files that are implemented based on C preprocessors and Makefiles
entries.
C preprocessors select code blocks based on #ifdef or #ifndef directives — configuration

options are used (as macros) to determine whether or not to include conditional groups in the
compiled kernel. Figures 1a and 1b show examples of C preprocessors for two configuration options,
with the granularity of statements and functions, respectively.

Makefiles are used to determine whether or not to include certain object files in the compiled
kernel. For instance, in Figure 1c, CONFIG_CACHEFILES_HISTOGRAM and CONFIG_CACHEFILES
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static int send_signal(...) {
int from_ancestor_ns = 0;

#ifdef CONFIG_PID_NS
from_ancestor_ns = ...;

#endif
return __send_signal(...,

from_ancestor_ns);
}

(a) Statement (C preprocessor)

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
struct page *vm_normal_page_pmd(...) {

unsigned long pfn = pmd_pfn(pmd);
...

out:
return pfn_to_page(pfn);

}
#endif

(b) Function (C preprocessor)

cachefiles-y := bind.o daemon.o ...

cachefiles-$(CONFIG_CACHEFILES_HISTOGRAM)
+= proc.o↩→

obj-$(CONFIG_CACHEFILES) := cachefiles.o

(c) Object file (Makefiles)

Fig. 1. Kernel configuration that controls different granularities of kernel code in Linux kernels. The same

patterns are common in other kernels such as FreeBSD, L4, and eCos.

are both configuration options. The detailed characteristics of kernel configuration patterns have
been studied before [26, 29, 54].

Note that statement-level configuration options (Figure 1a) cannot be identified by function-level
tracing (e.g., ftrace) used by existing kernel debloating tools [38, 39, 46, 71]. We find that 31% of
C preprocessors in Linux 4.18 are options at the statement level.

The number of configuration options in modern monolithic OS kernels is increasing rapidly as a
result of the rapid growth of the kernel code and features. Figure 2 shows the growth of kernel
configuration options of Linux and FreeBSD on a yearly basis. Taking Linux as an example, the
Linux kernel 5.0, 4.0 and 3.0 have 16,527, 14,406, 11,328 configuration options respectively.

2.2 Configuration Languages

Different OS kernels employ a variety of configuration languages to instruct the compiler on
which code to include in the compiled kernel. For example, Linux and L4/Fiasco use KConfig [68],
eCos uses a component definition language (CDL) [75], and FreeBSD uses a simple key-value
format [12]. Despite different language syntaxes, the configuration language allows the definition
of configuration options and dependencies between them. Without loss of generality, we use
KConfig as an example of kernel configuration semantics through the rest of this paper.

Configuration Option Types. A configuration option in KConfig could be bool, tristate
or constant. A bool option means the code will either be statically compiled into the kernel
binary or excluded, while tristate allows the code to be compiled as a Loadable Kernel Module
(LKM)—a standalone object that can be loaded at runtime. A constant option can have a string
or numeric value that is provided as variables to the kernel code (e.g., kernel log buffer size:
CONFIG_LOG_BUF_SHIFT). In Linux 4.18, 48% of configuration options are bool (must be compiled
into the kernel,e.g., threads and memory), 49% are tristate (mostly device drivers), and the
remaining 3% is constant.
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Fig. 2. The unrelenting growth of configuration options in Linux and FreeBSD showing the need for debloating.

Each point is a release tag of the code repositories.

Configuration Dependencies. Two configuration options A and B can have one of the follow-
ing dependencies:

• A depends on B: A can be selected only if B is selected (e.g., TMPFS_XATTR depends on
TMPFS);

• A selects B: B is forcefully selected if A is selected (e.g., TMPFS_POSIX_ACL selects TMPFS_XATTR);
• A implies B: B is selected by default if A is selected (e.g., FUTEX implies RT_MUTEXES).
However, implied options (B in the above example) can be unselected explicitly.

The Linux kernel configuration system, KConfig, employs a recursive process to enforce the above
configuration dependencies [42]. It recursively selects configuration options that are implied
and selected and deselects options whose depend relationship is not met. The final kernel
configuration always follows valid dependencies but could be different from user input (if the input
configuration violates dependency requirements).

2.3 Configuration Templates

The Linux kernel ships with a number of manually crafted configuration templates that includes:

• defconfig for the default configuration,
• tinyconfig includes very basic modules [58]
• localmodconfig disables all loadable kernel modules that are not currently loaded.
• kvmconfig enables options for KVM guest support.
• xenconfig enables options for Xen Dom0 and guest support.

We would like to note that configuration templates are not a solution to the kernel debloating
challenges because the configuration templates are all handcrafted and hardcoded. They cannot
adapt to different hardware platforms and do not have knowledge of the application requirements.
For example, we find that the kernel built from tinyconfig cannot boot on standard hardware [58],
not to mention supporting applications. Some prior work [38–40] treats localmodconfig as a
minimized configuration; however, localmodconfig shares the same set of limitations of static
configuration templates: it does not debloat configuration options that control statement- or
function-level C preprocessors and does not deal with loadable kernel modules.
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kvmconfig and xenconfig are customized for kernels running on KVM and Xen setups. They
provide domain knowledge of the underlying virtualization and hardware environment. In Sec-
tion 7.5, we use the information encoded in these templates to explore the potential of debloating
kernels with domain knowledge.

3 LINUX KERNELS IN THE CLOUD

Since we target kernel debloating for cloud-based environments, we conduct a study on existing
OS kernels provided by major cloud service providers, including Amazon AWS, Google Cloud and
Microsoft Azure.
In current cloud services, Linux is the dominant OS kernel in VMs provided by Amazon AWS,

Microsoft Azure and Google Cloud. Most cloud vendors only provide Linux and Windows servers
with Ubuntu, being the most popular distribution [27, 35]. Amazon provides its customized Linux-
based server named Amazon Linux 2 [1] for EC2 instances. Therefore, we focus on Ubuntu and
Amazon Linux 2 as the representative kernels in the cloud.

We analyze the Linux kernels provided by official Virtual Machine (VM) images. We find that the
cloud vendors all debloat the vanilla Linux kernel to some extent. However, the debloating efforts
are manual and sometimes ad hoc. As shown in Table 1, the customization by cloud vendors is
often done by directly removing LKMs from the file system (or adding new LKMs). Table 1 shows
the inconsistency between the actual number of LKM files and the number of LKMs recorded at
the compilation time during kernel builds. Our observations show that the kernels are initially
built with many more LKMs that are then removed later from the built kernels. A drawback of
manually trimming LKM binaries is the potential for violating dependencies (an LKM could depend
on multiple other LKMs that may have been manually trimmed).

Importantly, there is a significant potential of improvements to further debloat the kernel based
on the applications. Table 1 (the bottom half) compares the kernels provided by cloud vendors with
the debloated variants produced by Cozart for the official Ubuntu and Amazon Linux 2, which are
the baselines respectively. We use the Apache Web Server (HTTPD) as the target application.
As shown in Table 1, Cozart can further reduce the kernel size significantly on top of the

manually customized Linux kernels. Overall, Cozart can achieve reductions of the kernels by

Table 1. Configuration options and sizes of the Linux kernels provided by Ubuntu, Google, AWS, and Azure.

“Kernel size” includes kernel binary and LKMs. “# Options” is categorized into “kernel binary / LKM.” Many

kernels are customized by removing or adding LKMs; the actual LKMs are inconsistent with the number at

the compilation time (in parentheses).

Kernel # Options
∗

Kernel Size

Ubuntu Ubuntu 18.10 Cloud Image 2495 / 5147 62007918
Debloated by Cozart for HTTPD -51.28%/-99.86% -65.09%

AWS Amazon Linux 2 1214 / 946 (929) 58917847
Debloated by Cozart for HTTPD -29.82%/ -97.46 (-97.42)% -59.28%

AWS Firecracker 910 / 0 15136127
Debloated by Cozart for HTTPD -17.69% / NA -19.61%

Google Ubuntu 18.10 Minimal 2454 / 989 (4993) 57155890
AWS Ubuntu 18.10 Minimal 1966 / 949 (3075) 53605858
Azure Ubuntu 18.10 1745 / 859 (1799) 53312392

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 3. Publication date: March 2020.



3:8 Hsuan-Chi Kuo, Jianyan Chen, Sibin Mohan, and Tianyin Xu

34.91% for Ubuntu and by up to 40.72% for Amazon Linux 2, respectively, for HTTPD as the target
application. We will report the detailed results for other applications in Section 7.
We also studied the minimized kernel used by Amazon FireCracker, which is a micro VM

specialized for Function as a Service (e.g., AWS Lambda). The Firecracker kernel is based on Linux
with handcrafted kernel configuration (910 configuration options), which offers memory overhead
of less than 5MB per thread in a guest VM to allow the creation of up to 150 Firecracker instances
per second per host. We can see from Table 1 that kernel debloating can still benefit from such a
minimized kernel with a reduction of 17.69% using HTTPD as the target application.

4 COZART

Cozart is an advanced OS kernel debloating framework. We use Cozart as a vehicle to understand
both the accidental and essential limitations of kernel debloating techniques. Specifically, Cozart
integrates our solutions to the accidental limitations in its design, while including support for
analyzing the essential limitations.

We chose to develop a new tool instead of building on top of existing tools (e.g., Undertaker [46]
and LKTF [39]) because the new design would require substantial architectural changes and does
not fit in the current implementation of existing tools.

4.1 Design Principles

Cozart shares the same high-level working principle as the state-of-the-art kernel debloating
techniques [25, 46, 47, 52, 69, 71, 79]. It traces the kernel footprint reached by the target application
workloads to determine the kernel configuration required by the target application. The debloated
kernel will only include those kernel features instead of all available features or features enabled
in default configurations. Cozart distinguishes itself from the state-of-the-art kernel debloating
techniques [25, 46–48, 52, 69, 71, 79] in the following aspects:

• End-to-end visibility. Cozart targets OS kernels used in cloud-based virtual machines.
Therefore, Cozart leverages the visibility of the hypervisor to implement end-to-end obser-
vations that are able to trace both the kernel boot phase and application workloads. We build
Cozart on top of QEMU.

• Composability. A key principle behind Cozart is to make kernel configuration composable.
Cozart divides a kernel configuration into a set of Configlets. A Configlet is a set of
configuration options used to boot the kernel on a given deployment environment (e.g., a VM)
or a set of configuration options needed by a target application (e.g., HTTPD). The former is
named Baselet and the latter is named Applet. Figure 3 shows examples of Baselet of the
Firecracker MicroVM and an Applet of HTTPD. Note that a Baselet is not necessary the
minimal set configuration to boot on a specific hardware. Instead, it is a set of configuration
options that Cozart traces during the boot phase. Therefore, a Baselet is specialized for
the hardware that Cozart traces. A Baselet can be composed with one or more Applets
that are generated with the same Baselet to generate the final kernel configuration, which
can be used to build the debloated kernel.

• Reusability. The Configlets can be stored in persistent storage and be reused as long as
the deployment environment, and the application binaries do not change. Cozart moves
kernel tracing and application workload runs off the critical path of the kernel debloating:
with Cozart, one can conduct kernel tracing and application workload offline and maintain
the resultant Configlets in databases. The reusability also avoids repetitive tracing and
workload runs, making Configlet generation a one-time effort.
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CONFIG_HYPERVISOR_GUEST
CONFIG_KVM_GUEST
CONFIG_PARAVIRT
CONFIG_VIRTIO
CONFIG_VIRTIO_BLK
CONFIG_VIRTIO_MMIO
CONFIG_VIRTIO_NET
CONFIG_VIRTUALIZATION
...

(a) Baselet of Firecracker

CONFIG_EPOLL
CONFIG_EXT4_ENCRYPTION
CONFIG_EXT4_FS
CONFIG_EXT4_FS_POSIX_ACL
CONFIG_EXT4_FS_SECURITY
CONFIG_FUTEX
CONFIG_INET
CONFIG_IP_MROUTE
...

(b) Applet of HTTPD

Fig. 3. Examples of Configlets.

• Support for fast application deployment. The reusability and composability form the
foundation of supporting fast deployment in Cozart. Given a deployment environment (e.g.,
a VM) and the target application(s), Cozart can effectively retrieve the Baselet and Applets
and compose them into the kernel configuration. Cozart then builds the debloated new
kernel using the generated kernel configuration. Cozart also caches the intermediate build
results (e.g., the object files) corresponding to the Configlets and uses the incremental build
support provided by the build system.

• Fine-grained configuration tracing. Cozart uses Program Counter (PC) based tracing
provided byQEMU to identify configuration options based on the corresponding code patterns
described in Figure 1. We chose PC tracing based on the observation that function-level
tracing (e.g., ftrace) cannot deal with configurations inside functions (Figure 1c).

The ability to generate fine-grained Configlets and the composability of Configlets also allows
us to compare Applets generated by various test suites and benchmarks and to further customize
Baselets based on domain knowledge.
Figure 4 presents the overview architecture of Cozart. Cozart requires three types of inputs:

(1) the kernel source code, (2) the baseline configuration and (3) the application workloads that
drive the kernel execution.

Cozart operates in the following two phases (Figure 4):
• Offline phase. Config Tracker is used for tracking the configuration options used by the
deployment environment and target application 1 ; Configlet Generator is used to generate
Configlets (including both Baselets and Applets and store them in Configlet DB 2 ).

• Online phase.Given the target deployment environment and the target applications, Cozart
uses Kernel Composer to generate the kernel configuration by composing the corresponding
Baselet and Applets 3 and then uses Kernel Builder to build the debloated kernel 4 .

4.2 Tracking Configuration Options

Cozart tracks kernel configuration options used during the kernel execution driven by the target
application. Cozart is expected to trace every individual application in order to generate the
Applet for the application (which will be stored in Configlet DB). Cozart can later compose
multiple Applets of different applications during the online phase.

Configuration tracking is done as follows:
(1) Tracing program counters (PCs) of target application(s);
(2) Mapping PCs to source code;
(3) Correlating source code to configuration options.
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Fig. 4. Cozart overview: Config tracker records configuration options used by the target application. Configlet

generator processes these options into Configlets and stores them in Configlet DB. Kernel composer takes

Configlets and produces the final configuration. Kernel builder builds the debloated kernel based on the

final configuration.

4.2.1 Tracing Program Counters. Cozart uses the Program Counter (PC) register to capture
the addresses of instructions that are being executed. Our implementation uses exec_tb_block
provided by QEMU. To ensure that the traced PCs come from the target applications instead of
other processes (e.g., background services), Cozart uses a customized init script that does not
start any other applications. The init script mounts filesystems (/tmp, /proc and /sys), enables
network interfaces (lo and eth0) and, finally, starts the application directly after kernel boot.

Cozart disables Kernel Address Space Layout Randomization (KASLR) to be able to map the
addresses to source code correctly. Please note that the disabling of KASLR is only limited to the
configuration tracking phase—the final debloated kernel can still use KASLR. In other words, this is
not a limitation of Cozart.

4.2.2 Mapping PCs to Source Code Statements. Cozart uses addr2line [51] to map a PC to
the corresponding statement in the source code to understand which kernel module is used during
the kernel execution. addr2line utilizes the debugging information compiled in the kernel binary
with the baseline configuration.

Loadable kernel modules (LKMs) need additional handling. An LKM is a standalone binary that
can be loaded into a kernel during runtime. Since LKMs are not part of the kernel binary, they are
not loaded into memory at a fixed address; therefore, addr2line cannot be directly applied. In
Cozart, we use /proc/modules to obtain the start address of each one of the loaded LKMs and
then map the PCs to the statement in the LKM binary.

An alternative is to leverage localmodconfig, a kernel utility that outputs current loaded LKMs.
However, localmodconfig only provides information at the granularity of an entire LKM and
thus cannot help debloating an LKM based on fine-grained intra-LKM configuration options.

4.2.3 Attributing Statements to Configuration Options. Cozart attributes source code state-
ments to configuration options based on the three patterns presented in Figure 1. We implement
text-based analysis based on the semantics of C preprocessors and Makefiles. For the C preprocessor
based patterns (Figures 1a and 1b), Cozart analyzes C source files to extract the preprocessor
directives (e.g., #ifdef) and then checks whether statements within these directives are executed.
For Makefile based patterns (Figure 1c), Cozart determines if a configuration option should be
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selected at the granularity of the object files. For instance, in Figure 1c, CONFIG_CACHEFILES needs
to be selected if any of the corresponding files (cachefiles.o, bind.o and daemon.o) are used.

4.3 Generating Configlets

Baselets and Applets are generated during the phase in which configuration options are tracked.
Cozart marks the end of the boot phase using a landmark program—a C program that mmaps an
empty stub function to a pre-defined “magic address” (we use 0x333333333000 and 0x222222222000
for the start and end) and invokes the stub function. The init script described in Section 4.2.1 calls
the landmark program before running the target application. Therefore, Cozart can recognize the
(end of) boot phase based on the magic address in the PC trace.

Cozart takes the configuration options from the application and filters out the hardware-related
options that are observed during the boot phase. These hardware features are defined based on
their location in the kernel source code (for instance, options located in /arch, /drivers and
/sound). We do not exclude the possibility that a hardware-related option may only be observed
during the execution of an application, e.g., it loads a new device driver on demand (in such cases,
the application is hardware-specific).

4.4 Composing Configlets

Cozart composes the Baselet with one or multiple Applets to produce a final kernel configu-
ration that is used to build the kernel. Cozart first unions the configuration options in all the
Configlets into an initial configuration and then resolves the dependencies between the configura-
tion options (Section 2.2) using an SAT solver. Cozart does not use KConfig, which would silently
deselect unsatisfied dependencies during compilation to ensure a valid configuration. To ensure
all the selected configuration options to be included in the final debloated kernel, we model the
configuration dependencies as a boolean satisfiability problem and use an SAT solver to generate
a final configuration—a valid configuration is one that satisfies all the specified dependencies
between configuration options. We follow the SAT-based modeling for kernel configuration options
described in [26, 72] and use PicoSAT in the implementation of Cozart [19]. It is possible that the
SAT solver returns multiple valid solutions. In this case, our current implementation will use the
first solution returned from the solver. Note that the first solution may not strictly be the smallest
one among all the returned solutions in terms of size; on the other hand, it is straightforward to
compile the kernels for all the returned solutions and select the one for the minimal size.

4.5 Kernel Builder

Cozart uses the standard kernel build system (KBuild for Linux) to build the debloated kernel based
on the kernel configuration composed from Configlets. As kernel building is on the critical path
of kernel debloating, Cozart optimizes the build time by leveraging the incremental build support
of modern build tool (e.g., make). Cozart caches the previous build results (e.g., the object files and
loadable kernel modules) to avoid redundant compilation and linking. Upon a configuration change,
only the modules with the changes of internal configuration options need to be rebuilt, while the
other files can be reused. We find this feature to be particularly useful when a debloated kernel
needs to support an additional new application because most applications share many modules but
only differ in a small number of modules.

5 STUDY METHODOLOGY

Target Applications. We use six popular open-source server applications, presented in Table 2,
that are commonly deployed in virtualized cloud environments. For each application, we use both
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Table 2. Applications and their benchmarks and test suites used in our study All the test suites are the official

ones shipped with the open-source projects.

Application Benchmark (Metrics) Test Suite

HTTPD (v2.4) Apache benchmark ab (RPS) Apache-Test [2]
NGINX (v1.15) Apache benchmark ab (RPS) NGINX-test [6]
Memcached (v1.5) Memtier benchmark (RPS) Memcached/t [5]
MySQL (v5.7) sysbench (throughput) MySQL test [11]
PHP (v7.2) PHP perf. benchmark (execution time) PHP-test [7]
Redis (v4.0) Redis benchmark (throughput) Redis-test [9]

its official test suite and performance benchmarks to drive the kernel, based on which we use
Cozart to generate the Configlets.

Performance Benchmarking Setups. We use the official performance benchmarks listed in
Table 2 to measure the application performance running in the auto-debloated kernel, in order to
verify that the debloating does not introduce any performance regression. All the performance
experiments (including the measurement of build times) were performed on a KVM-based VM with
4 VCPUs and 8 GB RAM running on an Intel®Xeon®Silver 4110 CPU operating at 2.10 GHz. We
report the benchmark results as the average results of 20 runs.

Baseline Kernel. Our baseline kernel is Linux kernel version 4.18.0 from the latest Ubuntu
18.10 Cloud Image (the most widely used Linux distribution, Section 2). We also repeated all
our experiments on Linux kernel version 5.1.9 from Fedora 30 (the top two most popular Linux
distributions deployed in cloud environments [10]). We observe very similar results. Therefore, we
only present the results from the Ubuntu 18.10 Cloud Image as the baseline.
Besides the Linux kernel, we also applied Cozart to the L4/Fiasco microkernel and Amazon

Firecracker’s kernel, as discussed in Section 8.

6 DEBLOATING EFFECTIVENESS

We use Cozart to debloat the baseline kernel for the target applications listed in Table 2. Cozart
achieves more than 80% kernel reduction (Table 4), which we will discuss in detail in Section 7.2.
All the debloated kernel can boot and run application workloads, including the corresponding
performance benchmarks and test suites.

To validate that the application workloads running on the debloated kernels have normal runtime
behavior, we compare the test results and the log messages generated by the applications running
on the debloated kernels and the baseline kernel. We verify that the application behaviors are
identical. Additionally, we compared statement-level code coverage results of the applications
running on the debloated kernel versus the baseline kernel. We find the coverage results are similar
with difference within 1% due to certain non-determinism of test cases. In summary, the debloated
kernel does not cause any runtime failure of the target applications.

In the remaining of this section, we report the performance of the debloated kernel generated by
Cozart with regards to the baseline kernel in the following aspects: (1) boot time reduction, (2)
performance benchmark results, and (3) memory savings.

Boot Time. Boot time is critical to provide elastic runtime environments for the serverless
computing. The second column in Table 3 shows the boot time (and the corresponding reduction
with regards to the baseline kernel) for each debloated kernel for the target application. We measure
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Table 3. Boot time, application performance and memory reduction for debloated kernels. The baseline is the

original kernel of the Ubuntu 18.10 Cloud Image. The benchmarks for measuring application performance are

described in Table 2. Note that we show both get and set requests for Redis.

Application Boot Time (ms) App. Perf. (%) Memory Save (KB)

Baseline 646 0.00 0

Apache HTTPD 561 (-13.16%) +1.70% +4,012
Memcached 557 (-13.78%) +3.44% +4,012
MySQL 558 (-13.62%) +0.29% +4,016
Nginx 562 (-13.00%) +3.53% +4,016
PHP 556 (-13.93%) +0.21% +4,012
Redis 556 (-13.93%) +3.49/3.78% +4,012

the boot time by reading the value from /proc/uptime that contains the duration of the system
being on since its last restart. The numbers in the table present the average boot time for ten
runs. The kernels debloated by Cozart achieve a time reduction of close to 14%. The reduction is
attributed to the savings in load time for a smaller sized kernel image and the skipping of module
initialization and device registration for the parts that have been removed (e.g., Fuse file system
and Hot Plug PCI controller—both of which may have been removed as part of the debloating).

The boot time depends on the Baselet that, in turn, depends on the original kernel as discussed
in Section 7.3. A small Baselet will lead to shorter boot times. Surprisingly, Cozart is able to
achieve a similar percentage of reduction for Firecracker’s kernel with the boot times at less than
100 microseconds.

Application Performance. We benchmark the performance of the applications running on
debloated kernels generated by Cozart and compare the benchmark results with the baseline kernel.
We do not expect any performance improvements; instead, we look for performance regressions
due to removal of performance optimization modules from the original kernels. Note that this is
not supposed to happen by the design of Cozart, but we run the performance benchmarks as
sanity checks.
Table 3 (the third column) shows the improvements of application performance running on

debloated kernels with regards to the baseline. There is no performance regression for any of the
applications; instead, the debloated kernels show marginal performance improvements for all the
applications, mainly because applications load faster and have smaller memory overheads.

Memory Savings. Smaller memory usages can improve resource utilization. Debloated kernels
can have the benefit of memory savings. We define memory savings as the reduction in the memory
region that hosts the loaded kernel binary, measured by MemTotal, as read from /proc/meminfo.
The numbers shown in Table 3 are aligned to page sizes (4 KB in our system). We observe about 4
MB memory savings across the debloated kernels for single applications because the kernel size
reduction contributes to memory savings, and all applications have similar reduction percentages
(which we will discuss in Section 7.1).

To Summarize: The debloated kernels produced by Cozart are all stable—they can directly boot
and support the expected application workloads. The debloated kernels can boot 13+% faster
than the baseline kernel. The debloated kernel has slightly higher performance compared with
the baseline kernel. The debloated kernels achieve more than 4MB memory savings at runtime.
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Table 4. Characteristics of the debloated kernel generated byCozart based onConfiglet composition. “Static”

and “LKM” refer to all the statically-linked modules and loadable kernel modules, respectively. “Default”

refers to a very conservative baseline that only includes the LKMs that are auto-loaded based on Ubuntu 18.10

configuration (Ubuntu includes all the LKMs but does not auto-load every single one by default). “Overall”

refers to the overall kernel space (all the modules).

Application
# Remaining Kernel Modules Kernel Size Reduction

Static LKM Static LKM Default Overall

Ubuntu Vanilla (Baseline) 2443 5001 0% 0% 0% 0%

Base configlet 1212 7 -17.21% -86.80% -29.52% -83.53%
Apache HTTPD 1213 7 -17.19% -86.80% -29.50% -83.52%
Memcached 1215 7 -17.19% -86.80% -29.50% -83.52%
MySQL 1221 7 -17.13% -86.80% -29.46% -83.51%
NGINX 1215 7 -17.19% -86.80% -29.50% -83.52%
PHP 1216 7 -17.21% -86.80% -29.50% -83.53%
Redis 1217 7 -17.17% -86.80% -29.49% -83.52%

Docker 1232 35 -17.02% -75.11% -27.30% -83.01%
Docker + Apache HTTPD 1233 35 -16.99% -75.10% -27.27% -83.00%
Docker + Memcached 1233 35 -16.99% -75.10% -27.27% -83.00%
Docker + MySQL 1239 35 -16.93% -75.10% -27.22% -82.99%
Docker + NGINX 1233 35 -16.99% -75.10% -27.27% -83.00%
Docker + PHP 1236 35 -16.98% -75.11% -27.30% -83.01%
Docker + Redis 1237 35 -16.98% -75.10% -27.26% -83.00%

7 FINDINGS AND IMPLICATIONS

7.1 Boot Phase Visibility

This section discusses the visibility limitation of the state-of-the-art kernel debloating techniques.
It also explains how Cozart addresses this accidental limitation by design.

Kernel debloating has to take care of the kernel boot phase in which the necessary kernel modules
are loaded to make sure the kernel can start up and run on the deployment environment; otherwise
the kernel could either fail to boot or have performance and security regressions due to missing
important options that are loaded during the boot phase.

7.1.1 Our Experiences with State-of-the-Art Kernel Debloating Tools. The state-of-the-art
tools, as exemplified by Undertaker [46], do not have an automatic solution to tackle the boot phase.
This is because existing tools use ftrace for kernel tracing, which can only be started after kernel
boot. Therefore, existing tools do not have the visibility to the kernel boot phase.
To work around this limitation, Undertaker turns on ftrace as early as possible by extending

the system-provided initial RAM disk (initrd) [46]. However, we show that turning on ftrace at
the initialization of RAM disk is not early enough. As shown in Appendix A, hardware detection
happens earlier than mounting RAM disk. We show that disk drivers are not captured in Undertaker,
and even the RAM disk support itself has to be whitelisted.

To make the debloated kernel bootable, Undertaker eventually requires users to set a whitelist to
ensure certain configuration options are included. However, as articulated in [25], “that brings the
user back to the original configuration issue.” Given the dynamics of kernel configuration (Figure 2),
it is hard for the handcrafted whitelist to keep updated with the kernel evolution.

We use Undertaker to debloat the same Linux kernel presented in the Undertaker paper [46]. Un-
dertaker produces an unbootable kernel. In addition, serial console options (e.g., CONFIG_SERIAL_8250
and CONFIG_SERIAL_8250_CONSOLE) are missing, which makes the kernel print no messages. We
manually add back the serial console, and we find that EXT4 filesystem is misconfigured as an
LKM (caused by its design bugs). Besides, the SCSI disk support (CONFIG_BLK_DEV_SD) is absent
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Fig. 5. Boot-phase configuration options in Baselet and in the baseline kernel. We break down the options

based on the Linux kernel source tree.

as the current whitelist only preserves an older disk interface, i.e., ATA (CONFIG_SATA_AHCI).3
Our experience is consistent with the other report [25]. It shows that using a handcrafted whitelist
is not a sustainable solution.

LKTF [39] attempts to address the invisibility to the boot phase using a search-based approach.
LKTF fills in configuration options into the unbootable kernel generated by Undertaker until the
kernel can eventually boot. It is reported that LKTF takes about five hours to generate a bootable
kernel [25]. Although the debloated kernel generated by LKTF has a higher chance to boot (it
is reported that the kernel boots in 1/5 of the time [25]), LKTF involves building and testing a
lot of kernels in VMs until one can successfully boot. We are not able to run LKTF because its
implementation is hardcoded to a small number of old kernel versions. The kernel generated by
LKTF may have reduced performance and security, as LKTF does not guarantee to include all the
original security and performance configuration in the debloated kernel.

7.1.2 Boot-phase Visibility with Cozart. Cozart addresses the visibility limitation using a
lower level tracing provided by the hypervisor, as discussed in Section 4.2. The tracing allows
Cozart to observe the complete lifecycle of a kernel and thus include all the modules that are
loaded during the boot phase. This brings a key advantage of Cozart: Every debloated kernel by
Cozart can boot and run stably.

Cozart generates the Baselet for Ubuntu 18.10, which contains 1212 (out of 2443) statically-
linked modules and 7 (out of 5001) LKMs. We reduce 1231 static-linked modules and 4994 LKMs
compared with the baseline kernel (Ubuntu 18.10). Figure 5 breaks it down based on the subdirecto-
ries in the kernel source tree. The majority of reduction is from drivers, net, sound, and fs (file
systems), with a reduction of 94+% in total.

Consider drivers as an example. The vanilla kernel aims to support a variety of hardware and thus
contains drivers for different devices (e.g., network cards, PCI and media devices). Cozart only
includes the one observed in the traces (i.e., those used by the applications), including acpi, scsi,
cpufreq, tty, char, and dma drivers. The vanilla kernel contains different filesystems (fs) such as
FAT and Fuse. Cozart only keeps EXT4 as the filesystem that results in only 48 fsmodules in the de-
bloated kernel (e.g., CONFIG_EXT4_FS, CONFIG_EXT4_POSIX_ACL, CONFIG_EXT4_ENCRYPTION)

3Despite that the kernel debloated by Undertaker does not boot, we still report its overall kernel reduction of 91.38% as a
reference.
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out of 271 in the baseline. The reduced kernel also includes pseudo-filesystems (e.g., proc and sys)
and other fs options (e.g., CONFIG_FS_IOMAP, CONFIG_FS_MBCACHE) to satisfy dependencies.

To Summarize: Existing kernel debloating techniques initialize in-kernel tracing methods (e.g.,
ftrace) too late and cannot observe the boot phase, which is critical to producing a bootable
kernel. Cozart leverages the tracing feature provided by the hypervisor to support end-to-end
observability (including the complete boot phase and application workloads) and produce stable
kernels that can always boot and run applications stably. The debloated kernel by Cozart does
not have any performance regression, as shown in Section 6.

7.2 Composability

We show that Configlets can be automatically composed to generate a debloated kernel config-
uration. A kernel configuration can be composed with one Baselet plus one or more Applets.
As described in Section 4.4, Cozart first unions the configuration options in the Configlets and
resolves configuration dependencies.

7.2.1 Composition Experiments. We evaluate Cozart’s composability with the following four
types of compositions:

• Individual application. We use Cozart to compose each individual Applet and the Base-
let to generate a debloated kernel tailored for an individual application.

• Individual application in a container.We use Cozart to compose the Applet along with
the Configlet of the Docker Runtime (dockerd) in conjunction with the Baselets.

• Multi-application.We use Cozart to compose a debloated kernel to support the LAMP [4]
stack (that includes Apache HTTPD, MySQL and PHP). We use a separate application, a
MySQL administration tool with a PHP interface, to validate the LAMP stack works, in
addition to each individual application in the stack.

7.2.2 Applet Characteristics. Cozart successfully generates the Applets for all of the target
applications listed in Table 2. Figure 6 shows the breakdown of the Applets based on the Linux
kernel source tree.

All applications have similar distributions across the subdirectories. The average Configlet size
is 117, which is ≈1% of the total number of Linux kernel configuration options. The small percentage
is expected because (1) most of the options are for hardware features (81+% are hardware options),
and (2) applications typically use a small number of system calls and thus have a small kernel
footprint. The results also indicate the benefit of decoupling Applets and Baselets—one can rapidly
reconfigure the kernel to accommodate new applications as long as we have the corresponding
Applets, as shown in Section 7.3.

7.2.3 Composition Effectiveness. Table 4 shows the detailed debloating results of the first and
second types of composition (single application and application in a container).4 The reductions are
with regard to the baseline kernel. The reason why the reduction numbers look very similar is that
96–99% of the configuration options are from the Baselet generated from the same VM. Cozart
can compose the Baselet with the target Applet to achieve 17+% size reduction for static-linked
kernel binaries and 86+% size reduction for loadable kernel modules (LKMs).
We next use Cozart to generate the Configlet for Docker Runtime (dockerd) using the stan-

dard hello-world example that starts dockerd, pulls the hello-world image, and launches a
4We do not focus on security analysis in this paper and, thus, do not report security metrics such as GenSec and IsoSec [46] or
vulnerability reduction [17] (those analysis cannot be automated). We limit ourselves to the understanding that a reduction
in total code results in an improved security posture due to reduced attack surfaces.
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container. We generate debloated kernels by composing multiple Applets (including the target
application and dockerd) and the Baselets, in a manner similar to how we generate single-
application kernels. The debloated kernel can execute all the performance benchmarks described in
Table 2. The lower half of Table 4 shows the reduction achieved by debloated Linux kernels running
single applications in Docker containers. Specifically, we can see that the dockerd Configlet
contains most of the Applets already. The debloated kernels have similar reduction ratios.
To compose the kernel configuration for the LAMP stack, we use Cozart to compose the

Configlets of each application (HTTPD, MySQL, and PHP), together with the Baselet to generate
a debloated kernel for the entire stack. We deploy and run a separate application, phpMyAdmin (a
MySQL administration tool with a PHP-based interface). We manually exercise the application to
ensure the functionalities of all components (i.e., PHP, MySQL and HTTPD) are used. We find no
error messages to verify that (1) the kernel supports LAMP stack applications and (2) the kernel
supports workloads are different from those used to generate each individual Applet. We find
that phpMyAdmin works properly without any dysfunctions. The debloated kernel shows a size
reduction of 17.13% for a statically-linked kernel binary and 86.80% for LKMs.

To Summarize: The composability of Cozart enables users to generate and maintain application-
specific kernel configuration in Applets and deployment-specific kernel configuration in Base-
lets. A complete kernel configuration can be generated by composing Applets and Baselet.

7.3 Fast Application Deployment

A limitation of existing kernel debloating techniques, when one wants to deploy a new application
onto a debloated kernel (customized for a different application), is that she has to repeat the entire
debloating process from tracing to the re-compilation.5 Given that debloating a kernel could take
hours or days, existing debloating techniques cannot support fast application deployment.

We argue that the aforementioned limitation is caused by the design of existing techniques which
make tracing an integral component of the debloating process—the debloating tool has to first trace
the kernel by running application workloads and then compile the kernel based on the tracing
results. Table 5 compares the tracing time and compilation time. We can see that tracing requires
5One can prepare debloated kernels for every combination of applications and thus save repeated tracing effort. However,
this requires prohibitive storage costs due to the combinatorial space. For example, for 10 applications, the potential
combinations of applications running on a kernel are 210.
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Table 5. The debloating time for tracing and compilation (from scratch and from a previous baseline build).

Application

Tracing Time Build Time (second)

(second) From Scratch From Baseline

Baseline 0 1035.84 N/A

HTTPD 658.09 119.75 125.47
Memcached 2463.75 119.33 123.92
NGINX 3975.25 119.17 122.52
MySQL 310550.32 119.49 123.37
PHP 14989.02 119.16 123.81
Redis 13004.33 119.57 123.03

Table 6. The number of new options when comparing the new Applet and the composed kernel, and the

time it takes to build. Hot/cold refers to hot/cold disk cache.

Applications # New Modules Time (Sec.)

Existing New (Options) (Hot/Cold)

Apache PHP 0 0/0
Apache + PHP Redis 1 5.67/30.73
Apache + PHP MySQL 2 18.07/64.78
Docker + Apache + PHP MySQL 0 0/0

significantly more time than compiling. Specifically, the tracing time depends on the application
workloads (test suites or benchmarks)—a more complete workloads would lead to higher tracing
overhead. For example, MySQL has 5567 test files and requires 86 hours in total to finish the tracing.
With Cozart, tracing can be decoupled from the compilation and thus can be done offline, as

long as the results, Configlets, are maintained. If we have the Configlets of the target applications,
debloating a kernel takes less than two minutes if compiled from scratch, as shown in Table 5.

7.3.1 Build from Scratch. As shown in Table 5, building a debloated kernel from scratch takes
less than two minutes. The build is more than 8.5× faster than building the baseline kernel, as the
debloating skips more than 83% of kernel code (Table 4). The compilation time is proportional to
the code size.

We also explore the benefits of incremental builds that reusing intermediate files (e.g., object files
and LKMs) of a build for the baseline kernel. Our hypothesis is that the build for the debloated
kernel should be able to reuse many of the object files and speed up. Surprisingly, we find that such
practice does not help speed up the build, but instead slowing down the build slightly, as shown
in Table 5. The reason is that the configuration of the debloated kernel is dramatically different
from the baseline kernel, and only a few files can be reused—we observe that more than 99% of
files need to be re-compiled. On the other hand, when building from a previous build, KBuild needs
to check the reusability of each object file, with the overhead being more than the benefit.

7.3.2 Incremental Builds from Debloated Kernels. We then explore the benefits of incremen-
tal builds from debloated kernels, instead of the baseline kernel. We design a few experiments
where we want to add a new application on top of an existing debloated kernel and measure the
additional build time, as shown in Table 6.
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We find that the incremental builds from debloated kernels are very effective. This is mainly
attributed to the fact that many applications share common configuration options and only differ
in a small number of options. As a result, Cozart only needs to (re-)compile these small number of
additional modules, while reusing the majority of the originally built binaries. As shown in Table 6,
our framework only needs tens of seconds in the presence of cold caches to rebuild the kernel for
supporting a new application, while only a few seconds if the cache is hot (typically when dedicated
build servers are in use). The incremental build time is determined by the number and size of
the new modules that need to be included. Especially, in two cases, the build is entirely skipped,
because the Applet of the new application is included in the current Configlets. Note that this
cannot be supported without the exposure and analysis of Configlets—in existing debloating
techniques, the same cases have to go through the tracing and building process.

To Summarize: Kernel debloating can be done within tens of seconds if the configuration options
of target applications are known. The composability of Cozart allows users to prepare Applets
offline. To deploy a new application on a debloated kernel, Cozart composes the Applet of the
target application with the Configlets of the current kernel to generate a new debloated kernel
within tens of seconds.

7.4 Coverage

One of the essential concerns of applying existing kernel debloating techniques is the completeness
of the debloated kernel regarding the kernel footprint of the target applications. If the target
application reaches kernel code that is not included in the debloated kernel, the kernel could
potentially crash or returns errors to the applications.

The prior studies on kernel debloating techniques implicitly assume that running a benchmark
could cover the kernel footprint of the target applications. Taking web servers as the example, prior
studies use simple benchmarks that access static documents to generate the debloated kernel [46].
Table 7 shows the statement coverage of each target application when running the official

performance benchmark suites. We use gcov, an open-source source code coverage analyzer. We
can see that the statement coverage reached by the official benchmark is very low—the statement
coverage ranges from 6% to 26%. Typically, the benchmarks only exercise the steady states of the
target applications, while missing the other part of the application program (e.g., other features,
error handling and recovery states). Take web servers such as HTTPD and NGINX as examples. The
benchmarks only exercise the code path for serving static web pages and only lead to a statement

Table 7. Statement coverage and number of kernel configuration options of the target applications reached

by the official performance benchmarks versus official test suites.

Application

Test Suite Benchmark

Coverage # Options Coverage # Options

HTTPD 29% 76 13% 97
Memcached 73% 120 26% 80
NGINX 69% 123 8% 80
MySQL 68% 120 13% 93
PHP 61% 115 6% 35
Redis 57% 115 11% 65
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coverage of 13% and 8% respectively. As a result, the debloated kernel generated based on those
benchmarks can hardly support workloads different from the benchmarks.
Test suites can potentially complement benchmarks in exercising the application’s kernel foot-

print, as test suites are designed to exercise different parts of the software and its use cases. Therefore,
we explore the feasibility and effectiveness of using test suites for kernel debloating, given that
mature software systems usually provide high-coverage test suites, as shown in Table 2.
As shown in Table 7, test suites provide much higher code coverage compared with the bench-

marks. However, we can see that the code coverage of the test suites is not perfect. For the
open-source applications evaluated in this paper, the statement coverage varies from 29%–73%. It is
reported, however, that test suites for industrial software have much higher code coverage. For
example, Google reports that the code coverage of their software projects are above 80% [34, 65]. We
conclude that lack of high-coverage tests is an essential limitation for the adoption of existing kernel
debloating techniques based on dynamic tracing. We believe that automated testing techniques
such as fuzzing testing [44, 53] and concolic testing [30, 66] and other symbolic execution based
test generation techniques [22, 23] can effectively improve the test coverage and alleviate the
limitations. On the other hand, those test auto-generation techniques are not silver bullets, e.g.,
fuzz testing provides few guarantees on coverage, while symbolic execution is challenging to scale.

We compare the Applets generated from benchmarks versus test suites. Table 7 shows the size
of the two Applets for each application. In general, test suites have higher code coverage and
lead to the larger size of Applets, compared with benchmarks. The only exception is HTTPD.
The Applet generated from the benchmark has 23 more options, despite lower code coverage. We
attribute this to HTTPD’s poor test suite.
Interestingly, we find that the configuration options discovered by benchmarks are not always

included in the Applets from test suites even for high-coverage test suites such as Memcached.
In Memcached, there are three options that only exist in Applets generated by the benchmark.
One of them is CONFIG_PROC_SYSCTL, which is captured when Memcached reads the maximum
number of file descriptors to check whether it can allocate more connections in the scenario where
the number of requests overloads the Memcached server.

Wewould like to note that code coverage cannot guarantee the coverage of the target application’s
kernel reach (the kernel features needed to support the application). A test suite with 100% statement
coverage can cover all possible system calls invoked by the target application, but provides no
guarantee to cover all possible system call argument values, or all possible kernel states. Hence, the
limitations of dynamic tracing is essential (not accidental) to existing kernel debloating techniques.

To Summarize: An essential limitation of using dynamic-tracing based techniques for kernel
debloating (which are the de facto approach) is the imperfect test suites and benchmarks. Specifi-
cally, the official test suites of many open-source applications have low code coverage. Combining
different workloads (e.g., using both test suites and performance benchmarks) to drive the appli-
cation could alleviate the limitation to a certain extent. On the other hand, code coverage cannot
guarantee the coverage of the target application’s kernel reach.

7.5 Using Domain-specific Information

One essential limitation of existing kernel debloating techniques is the inability to distinguish
between kernel modules which are executed during the tracing versus those that are needed. Current
techniques (including Cozart) keep all the kernel modules/code that are used during the boot
phase or during application workloads in the debloated kernel. However, modules/code that are
executed are not necessarily needed—it is possible that they are reached only because they happen
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Table 8. Boot-related kernel reduction on top of the Baselet using domain-specific information (the

kvmconfig and xenconfig templates provided by the Linux kernel).

Static Kernel Size

# Remaining Kernel Modules

Static LKM

Original debloated kernel 20579167 1215 7

KVM 12302255 (-40.22%) 680 (-44.03%) 1 (-85.71%)
XEN Guest (DomU) 12524616 (-39.14%) 709 (-41.65%) 2 (-71.43%)

to exist on the execution paths. For example, for virtual machines (VMs), kernel modules/code for
BIOS, thermal control, power management are executed but are not needed to boot the VM.
In this section, we study the opportunities of further debloat the kernel based on domain

knowledge to remove the kernel modules/code that are not needed for the deployment. We study
KVM-based VMs (such as Amazon Firecracker) and Xen VMs. As described in Section 2.3, the
Linux source code provides configuration templates, kvmconfig and xenconfig, which provide
domain-specific information for KVM and Xen respectively. For example, kvmconfig uses virtio
as the I/O interface for both net and block devices, while xenconfig uses the Xen front-end (Dom0)
as the main I/O interface; the original Baselet also uses other I/O interfaces such as the SCSI disk
driver which are not needed for KVM and Xen VMs.
We use these two templates to replace the original Baselets to further debloat the already-

debloated kernel for KVM (we use Amazon Firecracker as the KVM frontend) and Xen, respectively.
Table 8 shows the results. We observe a 40+% and 39+% kernel size reduction of KVM and Xen

compared with the original Baselet, which is a result of 40+% and 41+% reduction in the number of

configuration options for KVM and Xen, respectively.

The significant reduction comes from the fact that many kernel modules (including partition
types, processor features, BIOS, thermal control, power management, ACPI, input devices and
legacy serial support) are executed by the baseline kernel at the boot time and thus are included
by Cozart. However, those modules are not needed if the deployment is KVM or Xen virtual
machines. Therefore, with domain-specific information of these VMs, we can further remove those
modules.

To Summarize: Domain-specific information can be used to further debloat the kernel by re-
moving the kernel modules that are executed in the baseline kernel but are not needed by the
actual deployment. Take Xen and KVM as examples. We can use Cozart to further reduce the
kernel size by 40+% and 39+% based on the xenconfig and kvmconfig configuration templates
provided by the Linux kernel source.

8 GENERALITY

To the best of our knowledge, all existing kernel debloating tools and studies only focus on the
generic Linux kernel. We report our experience in debloating other types of OS kernels by porting
Cozart to the L4/Fiasco microkernel and the Firecracker kernel.

8.1 Cozart Portability

Cozart is portable to other types of OS kernels. We have ported Cozart to debloat the L4/Fiasco
microkernel and the Firecracker kernel. We apply Cozart on the L4/Fiasco microkernel that also
uses KConfig as the configuration language with minor changes to a newer source tree layout and
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different build steps. We modify the kernel bus from MMIO to PCI for QEMU tracing and change
the bus back to boot on Firecracker.

Our experience shows that configuration-driven kernel debloating techniques are independent
of kernel architectures, regardless of whether they are monolithic kernels or microkernels. The
porting only requires the integration with the kernel configuration system (e.g., KConfig) and the
kernel build system (e.g., KBuild).

8.2 L4 Microkernel

We apply Cozart to the L4/Fiasco microkernel [3]. The result is surprising—the debloated kernel
is 47% smaller when compared to the default. The reason for the significant reduction is that
the default L4/Fiasco kernel configuration enables a heavy kernel debugger, CONFIG_JDB, that
contributes to a big part of the final kernel. The debloated kernel no longer houses this module. We
would like to note that it may sound straightforward that removing a debugger makes the kernel
smaller in size; however, without an automated solution like Cozart, it is impractical to examine
and select every single configuration option manually, given the hundreds and ever-increasing
number of configuration options (L4/Fiasco has 218 configuration options). This has been repeatedly
validated by recent user studies on system configuration management [33, 76–78].

We choose to run an ambient occlusion renderer benchmark, aobench [18], as none of the
applications in Table 2 can directly run on L4/Fiasco. We run aobench in a KVM-based VM with 1
VCPU and 128 MB RAM and observe a performance improvement of 4%.

8.3 Firecracker

While still based on Linux, Amazon Firecracker’s kernel is a special case, as the kernel is extensively
minimized to optimize for Function-as-a-Service workloads (Firecracker does not support generic
Linux kernel). We apply Cozart on the Firecracker kernel using the target applications listed in
Table 2 to understand the space for application-specific kernel debloating like Cozart to benefit
an extensively optimized kernel like Firecracker.
Overall, Cozart reduces the number of kernel configuration options from 910 to 729 (a 20%

reduction), leading to a 19.76% kernel size reduction and an 11% faster boot time (reduced from 104
microseconds to 92.5 microseconds).6

To Summarize: Application-oriented kernel debloating can lead to further kernel code reduction
for microkernels (e.g., L4) and extensively customized kernels (e.g., the Firecracker kernel). The
reduction is significant: 47.0% for the L4 microkernel and 19.76% for the Firecracker kernel.

9 RELATEDWORK

Much research has shown the effectiveness of configuration-driven kernel debloating regarding the
reduction of attack surfaces [46, 71], security vulnerabilities [17] and many others [13–15]. Kurmus
et al. [46] provide a formal definition of the attack surface and devise two models for quantifying
the attack surface as a security metric. Their measurement based on two server use cases shows
that configuration-driven kernel debloating can reduce the attack surface by 50%–85% under both
models. Alharthi et al. [17] conduct a comprehensive analysis of 1530 Linux kernel vulnerabilities
documented in the National Vulnerability Database since 2005. The analysis reports that 89%
of the vulnerabilities can be nullified by configuration, and 34%–74% of them can be avoided if
configuration-driven debloating is applied. Our work is complementary to the aforementioned

6We use Firecracker’s own mechanism to measure the boot time instead of reading from /proc/uptime. Firecracker uses a
pre-defined I/O port to notify boot completions.
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studies. The focus of this paper is to study the practicality of configuration-driven kernel debloating,
with the goal of realizing the security and performance benefits in real-world deployments.

Our work mainly focuses on configuration-driven debloating techniques, which are the de facto
method for debloating OS kernels [25, 38, 39, 46–48, 52, 69, 71, 79]. Specifically, most open-source
kernel debloating tools, the artifacts we studied, use configuration-driven techniques. There have
been a number of software debloating techniques based on program analysis, compiler optimizations,
andmachine learning. However, those approaches only target user-space applications [24, 32, 36, 61–
63, 67, 70] and currently cannot work with OS kernels due to the limitations of analysis techniques
(e.g., the scalability and soundness of binary and source code analysis). A series of ongoing efforts
have been undertaken in the Linux kernel community to carve the kernel for small environments,
including garbage collection and link-time optimization [59, 60], as well as manually debloating
based on the hardware [57, 58]. However, the motivation to shrink the kernel and the security
implication (e.g., attack surface reduction) is unclear.
Unikernels (also known as Library OS) [28, 41, 43, 49, 50, 55, 73] eliminate the privilege barrier

between kernel and user spaces and have a standalone image that contains both the kernel and
application. Unikernels have a very small kernel because the kernel code is only included when the
application includes it explicitly. However, unikernels are not universal because of the overheads of
porting applications that rely on Linux system call APIs—it requires non-trivial developer time and
expertise. Cozart is mainly designed for monolithic kernels such as Linux and FreeBSD which
are the de facto kernels used in practice, despite recent advances in microkernel and unikernel
research (discussed in Section 3). We have not experimented Cozart with unikernels. In principle,
we believe that Cozart can still benefit unikernels as long as the unikernel exposes a configuration
system to support the configurability of the target applications in a similar vein as how Cozart
works with microkernels (Section 8.2).

10 CONCLUSION

OS kernel debloating techniques have not received wide-ranging adoption due to the instabilities
of the debloated kernels, the lack of speed, completeness issues, and the requirements for manual
intervention. This paper studies the practicality of OS kernel debloating techniques with the goal
of making kernel debloating practical in real-world deployments. We identify the limitations of
existing kernel debloating techniques that hinder their practical adoption. To understand these
limitations, we build Cozart, an automated kernel debloating framework which enables us to
conduct a number of experiments on different types of OS kernels with a wide variety of applications.
We share our experience and solutions in addressing the accidental limitations that exist in the
existing kernel debloating techniques and discuss the challenges and opportunities in addressing
the essential limitations that are critical to the practicality of OS kernel debloating.

We have made Cozart and the experiment data publicly available at:

https://github.com/hckuo/Cozart
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A KERNEL INITIALIZATION

The following code snippet is a simplified version of the Linux kernel initialization procedure. It
presents evidence that to start tracing from RAM disk (as used by Undertaker [46]) is too late. RAM
disks are only executed (Line 26) after tens of subsystems finish initialized. The detailed discussion
can be found in Section 7.1.1.

1 /* linux5.1.9/init/main.c */
2 static int __ref kernel_init(void *unused)
3 {
4 int ret;
5 ...
6

7 workqueue_init();
8 init_mm_internals();
9 do_pre_smp_initcalls();
10 lockup_detector_init();
11 smp_init();
12 sched_init_smp();
13 page_alloc_init_late();
14 cpuset_init_smp();
15 shmem_init();
16 driver_init();
17 init_irq_proc();
18 do_ctors();
19 usermodehelper_enable();
20 do_initcalls();
21

22 ...
23 integrity_load_keys();
24 load_default_modules();
25 ...
26 run_init_process(ramdisk_execute_command); /* Too late! */
27 ...
28 }
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