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Technical Perspective
‘What Is the Ideal Operating System?’
By Daniel Lohmann 

kernel for your specific use case. The 
results are compelling: Code size and 
attack surface are reduced by 50%–80%, 
known vulnerabilities by 34%–74%. Nev-
ertheless, even 10 years after becoming 
available1 and even though trends like 
function-as-a-service have led to a mas-
sive increase of dedicated VMs running 
in the cloud, automatic kernel tailoring 
is still not employed in practice. Why is 
that the case?

In the following paper, the authors 
put a fresh view on the practicability 
of automatic kernel debloating. They 
take the stand of a cloud-service inte-
grator to analyze the shortcomings and 
obstacles of the existing techniques 
and overcome them in an easy-to-
use tool named COZART. Their main 
technical contribution, besides an im-
proved approach to detect the required 
kernel features, is the introduction 
of composability of platform-specific 
and application-specific kernel feature 
sets, which significantly reduces effort 
when preparing a tailored VM for func-
tion-as-a-service scenarios.

However, their paper is of much 
broader interest, as it also shows us 
that the (felt) abundance of comput-
ing resources has led our discipline to 
become careless and our software sys-
tems to include way too much cruft. We 
all teach our students how to use and 
design extensible software systems. 
But the more challenging part really is 
to design software that is shrinkable. 
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MY OPE N IN G QUE STION for oral exams 
is an icebreaker for nervous students 
because no answer is wrong. It always 
depends on the application.

Operating systems (OSs) provide no 
business value on their own. Their sole 
purpose is to ease the development, 
integration, and operation of applica-
tions—that is, to provide the “right” 
set of abstractions and policies (and 
map them efficiently to the underlying 
hardware) for a particular application 
use case. The application use case may 
be your general-purpose desktop com-
puter, an embedded real-time system, 
or your business service running in the 
cloud. The ideal OS provides exactly 
what is needed for your application—
but nothing more.

Fulfilling the what-is-needed part, 
that is, the functional requirements, 
has become relatively easy. Linux, for 
instance, supports about 30 differ-
ent hardware architectures and ap-
plication domains from embedded 
real-time systems up to ultra-scale 
servers. It is the nothing-more part (a 
nonfunctional requirement) that is 
challenging. The enormous versatili-
ty of modern OSs comes at the price of 
a significant code and memory bloat: 
Approximately 50%–80% of the OS 
code remains unused. Even though 
many users tend to not care about a 
few MiB of RAM and a few GiB of disk 
space taken by cruft (“RAM is cheap. 
Disks are even cheaper.”), this never-
theless comes at a price:

 ˲ Bloat scales. What may appear neg-
ligible for a single system leads to sig-
nificant hardware and energy costs for 
cloud providers, who host thousands 
of these systems. Code that is not there 
does neither prolong boot time nor 
consume memory or network band-
width.

 ˲ Increased attack surface. While you 
may have no use for feature X, an at-
tacker might be more than happy about 
its presence on your system. Code that 
isn’t there cannot be abused.

 ˲ Higher maintenance efforts. Patch-
ing your systems early and, thus, way 

too often? Code that is not there does 
not need to be patched.

System software developers are 
aware of these problems but are caught 
between the conflicting demands of 
broad versatility and case-specific ef-
ficiency. To overcome this dilemma 
and make everybody happy, most OSs 
support a broad range of features and 
hardware platforms but can be tailored 
at compile-time with respect to a spe-
cific use case, often by means of condi-
tional compilation as shown in accom-
panying listing.

In Linux, support for symmetric mul-
tiprocessing (SMP) is an optional fea-
ture and the feature flag CONFIG_SMP 
is used throughout the kernel code (it is 
said to be an “#ifdef hell”) to tailor 
its implementation for single- or multi-
core operation. The Kconfig frontend 
(just enter “make menuconfig”) 
presents all available features and 
their dependencies for configuration 
in a tree-like structure. Hence, you can 
tailor Linux to provide exactly what is 
needed for your application—the ideal 
OS is at your fingertips!

The only thing is Linux already pro-
vides more than 17,000 such CONFIG_ 
flags—and keeps on growing. So which 
ones do you need? OS tailoring has not 
only become a more than tedious task, 
it also still requires profound expert 
knowledge. It is understandable that 
people prefer the include-all standard 
configuration.

This is where approaches for auto-
matic kernel tailoring (and, thus, de-
bloating) come into play. In a nutshell, 
they first “measure” the features needed 
by your application while executing on 
an (instrumented) include-all kernel. In 
the second step, this information is then 
aggregated to derive a tailored kernel 
configuration and build a specialized 
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inline void spin_irq_lock(raw spinlock t *lock) {
       irq_disable();
#ifdef CONFIG_SMP
       spin_acquire(&lock)
#endif
}

http://dx.doi.org/10.1145/3524299
http://doi.acm.org/10.1145/3524301


MAY 2022  |   VOL.  65  |   NO.  5  |   COMMUNICATIONS OF THE ACM     101

Set the Configuration 
for the Heart of the OS:  
On the Practicality of Operating  
System Kernel Debloating
By Hsuan-Chi Kuo, Jianyan Chen, Sibin Mohan, and Tianyin Xu

DOI:10.1145/3524301

Abstract
This paper presents a study on the practicality of operating  
system (OS) kernel debloating, that is, reducing kernel 
code that is not needed by the target applications. Despite 
their significant benefits regarding security (attack sur-
face reduction) and performance (fast boot time and 
reduced memory footprints), the state-of-the-art OS kernel 
debloating techniques are not widely adopted in practice, 
especially in production environments. We identify the 
limitations of existing kernel debloating techniques that 
hinder their practical adoption, such as both accidental 
and essential ones. To understand these limitations, we 
build an advanced debloating framework named Cozart 
that enables us to conduct a number of experiments on dif-
ferent types of OS kernels (such as Linux and the L4 micro-
kernel) with a wide variety of applications (such as HTTPD, 
Memcached, MySQL, NGINX, PHP, and Redis). Our experi-
mental results reveal the challenges and opportunities 
in making OS kernel debloating practical. We share these 
insights and our experience to shed light on addressing 
the limitations of kernel debloating techniques in future 
research and development efforts.

1. INTRODUCTION
Commodity operating systems (OSs), such as Linux and 
FreeBSD, have grown in complexity and size over the years. 
However, an application usually requires only a small sub-
set of OS features22 that highlights the bloat that exists in 
OS kernels. Such bloat in OS kernels leads to increased 
attack surfaces, prolonged boot time, and increased 
memory usage. Application-oriented OS kernel debloat-
ing—reducing the kernel code that is not needed by target 
applications—is reported to be effective in mitigating the 
above issues. For example, prior work reported that 50%–
85% of the attack surface can be reduced by debloating the 
Linux kernel for the server software16 and that 34%–74% 
of known security vulnerabilities can be nullified in the 
Linux kernel by only including kernel modules that are 
needed by the target applications.4

Recent trends in function as a service and microservices, 
where numerous kernels are often packed and run in virtual 
machines (VMs), further strengthen the importance of ker-
nel debloating. In these scenarios, VMs run small applica-
tions and each application tends to be “micro” with a small 

The original version of this paper was published in 
Proceedings of the ACM on Measurement and Analysis of 
Computing Systems, May 2020.

kernel footprint.3, 11 Some recent virtualization technologies 
(e.g., LightVM18) require users to provide minimalistic Linux 
kernels for target applications.

Debloating OS kernels by hand-picking kernel features 
is impractical due to the complexity of commodity-off-
the-shelf (COTS) OSs.9, 23, 24 Linux, for example, has more 
than 14,000 configuration options (as of v4.14) with hun-
dreds of new options introduced every year. Kernel configu-
rators (e.g., KConfig) do not help debloat the kernel but 
only provide a user interface for selecting configuration 
options. Given the poor usability and incomplete docu-
ments,9 it is difficult for users to select the minimal ker-
nel configuration.

Recently, several automated kernel debloating tech-
niques and tools have been proposed and built.12, 15–18, 21, 25 
Despite their diversity, existing kernel debloating tech-
niques share the same working principle, that is, the fol-
lowing three steps: (1) running the target application 
workloads and tracing the kernel code that was executed 
during the application runs; (2) analyzing the traces and 
determining the kernel code that is needed by the target 
applications, and (3) assembling a debloated kernel that 
only includes the code required by the applications.

Configuration-driven (also known as feature-driven) 
debloating is the de-facto method for OS kernel debloat-
ing.6, 13, 16–18, 21, 25 Most existing tools use configuration-driven 
debloating techniques as they are among the few techniques 
that can produce stable kernels. Configuration-driven ker-
nel debloating reduces kernel code based on features: a ker-
nel configuration option corresponds to a kernel feature. 
A debloated kernel only includes features for supporting 
the target application workloads.

However, despite their attractive benefits regarding 
security and performance, automated kernel debloating tech-
niques are not widely adopted in practice, especially in 
production use cases. This is not due to a lack of demand—
we observe that many cloud vendors (e.g., Amazon AWS, 
Microsoft Azure, and Google Cloud) handcraft the Linux 
kernel code to reduce code, which is not as effective as 
automated kernel debloating techniques (Section 2.4). Our 
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last two are essential that require efforts beyond the specific 
debloating techniques themselves.

1.2. Results and findings
We focus on OS kernels deployed in cloud environments 
that are typically used as guest OSs to run untrusted applica-
tions with high-performance requirements.

We developed Cozart, a new OS kernel debloating 
framework on top of QEMU. Cozart employs instruction-
level tracing from QEMU to achieve visibility into the boot 
phase. Cozart tracks the kernel code and maps it to ker-
nel configuration options. Cozart moves kernel tracing 
off the critical path—with our framework, one can gen-
erate Configlets (a set of configuration options) offline 
specific to an application or a deployment environment. 
We term the former Applets and the latter Baselets. 
Given a set of target applications, Cozart can generate a 
debloated kernel by directly composing the Applets and 
the Baselet generated offline into a full kernel configura-
tion. Such composability enables Cozart to incrementally 
build new kernels by reusing Configlets (saving repeti-
tive tracing efforts) and previously built files (e.g., the 
object files and LKMs).

We use Cozart as a vehicle to conduct a number of 
experimental studies on different types of OS kernels (such 
as Linux, the L4 microkernel1, and Amazon Firecracker 
 kernel2) with a wide variety of applications (such as HTTPD, 
Memcached, MySQL, NGINX, PHP, and Redis). Our studies 
lead to the following results and findings:

• Existing techniques initialize kernel tracing too late 
and cannot observe the boot phase, which is critical 
to producing a bootable kernel. Cozart uses the trac-
ing feature provided by the hypervisor to obtain end-
to-end observability and produce stable kernels. 
Kernels debloated by Cozart do not have perfor-
mance regressions, meanwhile, it achieves a 13+% 
reduction of boot time and over 4MB memory savings 
of the systems.

• Kernel debloating can be done within tens of seconds if 
the configurations of the target applications are known. 
The composability of Cozart allows Applets to be 
prepared offline. To deploy a new application on a 
debloated kernel, Cozart can compose the Applets of 
the target application with the Configlets of the cur-
rent kernel to generate a new debloated kernel.

• Using instruction-level tracing (as opposed to ftrace) 
can address kernel configuration options that control 
intra-function features. The overhead of instruction-
level tracing is acceptable for running test suites and 
performance benchmarks.

• An essential limitation of using dynamic-tracing 
based techniques is the imperfect existence of test 
suites and benchmarks. Specifically, the official test 
suites of many open source applications have low code 
coverage. Combining different workloads (e.g., using 
both test suites and performance benchmarks) to 
drive the application could alleviate this limitation to 
a certain extent.

goal is to understand the limitations of kernel debloating 
methods that hinder their practical adoption and share our 
experience to shed light on addressing these limitations.

1.1. Accidental and essential limitations
We identify five major limitations of existing kernel debloat-
ing techniques based on our own experiences of using exist-
ing tools and our interactions with practitioners.

• No visibility during the boot phase. Existing techniques 
can only be initiated after the kernel boot and hence 
cannot observe what kernel code is loaded during 
the boot phase (mainly due to their reliance on 
ftrace). As a result, the kernel debloated by exist-
ing techniques oftentimes cannot boot6 because 
critical modules could be missing from the 
debloated kernel. Our experiments show that up to 
79% of kernel features can only be captured by 
observing the boot phase. Furthermore, existing 
techniques could miss important performance and 
security features that are, again, only loaded at boot 
time (e.g., CONFIG_SCHED_MC for multicore support 
and CONFIG_SECURITY_NETWORK), leading to 
reduced performance and security.

• Lack of support for fast application deployments. Using 
existing tools, deploying a new application on a debloated 
kernel requires going through the entire three steps of 
tracing, analysis, and assembling. The process is time-
consuming (can take hours or even days) and thus pre-
vents agile application deployment because starting up 
a new application needs to wait until the generation of 
the debloated kernel is completed.

• Coarse granularity. Existing techniques use ftrace 
that can only trace kernel code at the function level. 
Function-level tracing is too coarse-grained to track 
configuration options that affect intrafunction code.

• Incomplete coverage of kernel footprints. Because kernel 
debloating uses dynamic tracing, it requires applica-
tion workloads (encoded as benchmarks) to drive ker-
nel code execution to maximize coverage. However, it is 
challenging for benchmarks to cover the complete ker-
nel footprints of target applications, and the debloated 
kernel would likely crash at runtime especially if the 
application reaches kernel code that was not observed 
during tracing.

• Not distinguishing what is executed versus what is needed. 
Existing techniques include kernel features that are 
reached during the application workloads, even though 
the executed code may not be actually needed, for 
example, a second filesystem may be initialized but 
never needed.

To analyze the above limitations, we divide them into essences 
(limitations inherent in the nature and assumptions of ker-
nel debloating) and accidents (those that exist in current 
kernel debloating techniques but that are not inherent to 
the process). We believe that the first three limitations are 
accidental and can be addressed by improving the design 
and implementation of the debloating tools, whereas the 
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• Domain-specific information can be used to further 
debloat the kernel by removing the kernel modules that 
were executed in the baseline kernel but are not needed 
during actual deployment. Take Xen and KVM as exam-
ples. We can use Cozart to further reduce the kernel 
size (by 40+% and 39+%) based on the xenconfig and 
kvmconfig configuration templates respectively.

• Application-oriented kernel debloating can lead to fur-
ther kernel code reduction for microkernels (e.g., L4) 
and even extensively customized kernels (e.g., the 
Firecracker kernel). The reduction is significant: 47.0% 
for L4 and 19.76% for Firecracker.

2. KERNEL CONFIGURATION
We first provide an overview of the kernel configuration eco-
system using Linux as an example.

2.1. Configuration options
A kernel configuration is composed of a set of configuration 
options. A kernel module could have multiple options, each 
of which controls which code will be included in the final 
kernel binary. Configuration options control different gran-
ularities of kernel code such as statements and functions 
which are implemented by C preprocessors, as well as object 
files which are implemented based on Makefiles entries.

C preprocessors select code blocks based on #ifdef/ 
#ifndef directives—configuration options are used as 
macros to determine whether to include such conditional 
groups in the compiled kernel. Figure 1a and b shows exam-
ples of C preprocessors for two configuration options, with 
statement and function granularity, respectively.

Makefiles are used to determine whether or not to include 
certain object files in the compiled kernel. For instance, 
in Figure 1c, CONFIG_CACHEFILES_HISTOGRAM and 
CONFIG_CACHEFILES are both configuration options in a 
Makefile. The detailed characteristics of kernel configura-
tion patterns have been studied before.7, 19

Statement-level configuration options (such as those in 
Figure 1a) cannot be identified by function-level tracing used 
by existing kernel debloating tools.12, 13, 16 In fact, we find 
that 31% of C preprocessors in Linux 4.18 are statement-
level options.

The number of configuration options in modern mono-
lithic OS kernels is increasing rapidly as a result of the rapid 
growth of kernel code and features. Taking Linux as an 
example, the kernel versions 5.0, 4.0, and 3.0 have 16,527, 
14,406, and 11,328 configuration options, respectively.

2.2. Configuration languages
Various OS kernels employ different configuration lan-
guages to instruct the compiler on which code to include 
in the compiled kernel. For example, Linux and L4/Fiasco 
use KConfig, eCos uses CDL, and FreeBSD uses a key-
value format. The languages allow for the definition of 
configuration options and dependencies between them. 
Without loss of generality, we use KConfig as an example 
of kernel configuration semantics throughout the rest of 
this paper.

Configuration option types. An option in KConfig is 
one of bool, tristate, or constant. A bool option 
means the code will either be statically compiled into 
the kernel binary or excluded, whereas tristate allows 
the code to be compiled as a Loadable Kernel Module 
(LKM)—a standalone object that can be loaded at run-
time. A constant option can have a string or numeric 
value that is provided as a variable to the kernel code. An 
option can depend on another. KConfig employs a recur-
sive process to enforce configuration dependencies14 by 
recursively selecting dependent options and deselecting 
options whose dependencies are not met. The final kernel 
configuration has valid dependencies but could be differ-
ent from user input (for instance, if the input configura-
tion violates dependency requirements).

2.3. Configuration templates
The Linux kernel ships with a number of manually crafted 
configuration templates. But, configuration templates 
are not a solution to the kernel debloating challenges due 
to their hardcoded nature and need for manual interven-
tion—they cannot adapt to different hardware platforms 
and do not have knowledge of application requirements. 
For example, a kernel built from tinyconfig cannot boot 
on standard hardware,20 not to mention support any other 
applications. Some tools12, 13 treat localmodconfig as a 
minimized configuration. But, localmodconfig shares 
the same set of limitations of static configuration templates: 
it does not debloat configuration options that control state-
ment-or function-level C preprocessors and does not deal 
with loadable kernel modules.

The templates kvmconfig and xenconfig are cus-
tomized for kernels running on KVM and Xen setups. They 
provide domain knowledge of the underlying virtualization 
and hardware environment. In Section 6.5, we will use the 
information encoded in these templates to explore domain-
specific debloating.

Figure 1. Kernel configuration that controls different granularities of kernel code in Linux kernels. The patterns are common in other kernels 
such as FreeBSD, L4, and eCos.

static int send_signal(...) {
int from_ancestor_ns = 0;

#ifdef CONFIG_PID_NS
from_ancestor_ns = ...;

#endif
return __send_signal(...,

from_ancestor_ns);
}

(a) Statement (C preprocessor)

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
struct page *vm_normal_page_pmd(...) {

unsigned long pfn = pmd_pfn(pmd);
...

out:
return pfn_to_page(pfn);

}
#endif

(b) Function (C preprocessor)

cachefiles-y := bind.o daemon.o ...

cachefiles-$(CONFIG_CACHEFILES_HISTOGRAM)\
+= proc.o

obj-$(CONFIG_CACHEFILES) := cachefiles.o

(c) Object file (Makefiles)
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2.4. Linux kernels in the cloud
Linux is still the dominant OS kernel in virtual machines 
(VMs) provided by cloud services. We focus on Ubuntu and 
Amazon Linux 2 as the representative kernels in the cloud. 
We analyze the Linux kernels provided by vendor VM 
images. We find that the cloud vendors all debloat the 
vanilla Linux kernel to some extent. However, the debloat-
ing efforts are manual and sometimes ad hoc. As shown 
in Table 1, the customization by cloud vendors is often 
done by directly removing loadable kernel modules (LKMs). 
Table 1 shows the inconsistency between the actual num-
ber of LKM files and the number of LKMs recorded at the 
compilation time during kernel builds. It shows that the 
kernels are initially built with many more LKMs that are 
removed later. A drawback of manually trimming LKM 
binaries is the potential for violating dependencies (an 
LKM could depend on multiple other LKMs that may 
have been manually trimmed).

Importantly, there is significant potential for 
improvements, that is, further debloating the kernel 
based on application requirements. The bottom half of 
Table 1 compares the kernels provided by cloud vendors 
against the debloated variants produced by Cozart for 
the official Ubuntu and Amazon Linux 2 (the baselines). 
We use the Apache Web Server (HTTPD) as the target 
application. Overall, Cozart can achieve kernel code 
reductions by 34.91% for Ubuntu and up to 40.72% for 
Amazon Linux 2.

We also study the minimized kernel used by Amazon Fire-
Cracker, a micro VM specialized for Function as a Service 
(AWS Lambda). The Firecracker kernel is based on Linux 
with handcrafted kernel configuration (910 configuration 
options). Table 1 shows that kernel debloating can further 
reduce such a minimized kernel by 17.69% using HTTPD as 
the target application.

3. COZART
Cozart is a new OS kernel debloating framework. It inte-
grates our solutions to deal with the accidental limitations 
in its design and to support for analyzing the essential 
limitations. Cozart shares high-level principle with the 
state-of-the-art kernel debloating techniques—it traces 
the kernel footprint of (target) application workloads to 
determine the required kernel. The debloated kernel will 

only include those kernel features instead of all available 
ones or those enabled in default configurations. Cozart 
distinguishes itself from the other state-of-the-art kernel 
debloating techniques6, 16–18, 21, 25 in the following aspects:

• End-to-end visibility. Cozart leverages the visibility of 
the hypervisor to implement end-to-end observations 
that can trace both the kernel boot phase and applica-
tion workloads. We build Cozart on top of QEMU. 
Cozart targets OS kernels of cloud VMs.

• Composability. A key principle of Cozart is to make 
kernel configuration composable, by dividing them into 
a set of Configlets. A Configlet is a set of configura-
tion options that is either (a) used to boot the kernel on 
a given deployment environment (e.g., a VM) or (b) 
ones needed by a target application (e.g., HTTPD). The 
former are named Baselets and the latter, Applets.  
A Baselet is not necessarily the minimal set of config-
urations needed to boot on a specific hardware but 
rather a set of configuration options that Cozart traces 
during the boot phase. A Baselet can be composed 
together with one or more Applets to generate the final 
kernel configuration.

• Reusability. Configlets can be stored in databases 
and be reused as long as the deployment environment 
and the application binaries do not change. Cozart 
moves kernel tracing and application workload runs 
off the critical path of the kernel debloating. This 
reusable nature avoids repetitive tracing and work-
load runs, making Configlet generation a one-time 
effort.

• Support for fast application deployment. Reusability 
and composability support fast deployment. Given a 
deployment environment and the target application(s), 
Cozart can effectively retrieve the Baselet and 
Applets and compose them into the required kernel 
configuration and then build the debloated kernel 
using the generated configuration.

• Fine-grained configuration tracing. Cozart uses pro-
gram counter-based tracing provided by QEMU to iden-
tify configuration options based on low-level code 
patterns as described in Figure 1.

Figure 2 presents the architecture of Cozart. It requires 
three types of inputs: (1) the kernel source code, (2) the base-
line configuration, and (3) the application workloads that 
drive the kernel execution.

Cozart operates in the following two phases (see 
Figure 2):

• Offline phase. Config Tracker is used to track configura-
tion options required by the deployment environment 
and the target application ; Configlet Generator gen-
erates Configlets (such as both Baselets and Applets) 
and stores them in Configlet DB .

• Online phase. Given the target deployment environment 
and applications, Cozart uses the Kernel Composer to 
generate the configuration by composing the corre-
sponding Baselet and Applets  and then uses Kernel 

Kernel # Options (bin/LKM) Size

Ubuntu Ubuntu 18.10 Cloud 2495/5147 62007918
Debloated by COZART −51.28%/−99.86% −65.09%
AWS Amazon Linux 2 1214/946 (929) 58917847
Debloated by COZART −29.82%/−97.46 (−97.42)% −59.28%
AWS Firecracker 910/0 15136127
Debloated by COZART −17.69%/NA −19.61%
Google
AWS
Azure

Ubuntu 18.10 Minimal
Ubuntu 18.10 Minimal
Ubuntu 18.10

2454/989 (4993)
1966/949 (3075)
1745/859 (1799)

57155890
53605858
53312392

“Size” includes kernel binary and LKMs.

Table 1. Configuration options and sizes of the Linux kernels 
 provided by Ubuntu, Google, AWS, and Azure.
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Builder to build the debloated kernel .

3.1. Tracking configuration options
Cozart tracks configuration options during the kernel exe-
cution driven by the target application. Cozart is expected 
to trace applications individually to generate Applets. It 
can later compose multiple Applets online. Configuration 
tracking is done via the following three steps.

Tracing Program Counters (PCs). Cozart uses the 
PC register to capture the addresses of instructions that are 
being executed. Our implementation uses the exec_tb_
block provided by QEMU. To ensure that the traced PCs 
belong to target applications instead of other processes 
(e.g., background services), Cozart uses a customized init 
script that does not start any other applications. This script 
mounts filesystems (/tmp, /proc, and /sys), enables net-
work interfaces (lo and eth0) and, finally, starts the appli-
cation directly after kernel boot.

We disable Kernel Address Space Layout Randomization 
(KASLR) to be able to correctly map the addresses to source 
code. Note that this is only done during the tracking phase—
the debloated kernel can still use KASLR.

Mapping PCs to source code statements. Cozart 
uses addr2line to map a PC to the corresponding state-
ment in the source code to identify the kernel modules used 
at runtime. addr2line uses the debugging information in 
the kernel binary.

Loadable kernel modules (LKMs) need additional han-
dling. An LKM is a standalone binary that can be loaded 
into a kernel at runtime. Because LKMs are not loaded into 
memory at a fixed address, addr2line cannot be directly 
applied. In Cozart, we use /proc/modules to obtain the 
start address of each of the loaded LKMs and then map 
the PCs to statements in the LKM binary. An alternative is 
to leverage localmodconfig, a kernel utility that outputs 
currently loaded LKMs. However, localmodconfig only 
provides information at the module granularity and cannot 
help debloat fine-grained intra-LKM configuration options.

Attributing statements to configurations. Cozart 
attributes source code statements to configuration options 

based on the three patterns presented in Figure 1. For the C 
preprocessor based patterns (see Figure 1a and b), Cozart 
analyzes C source files to extract the preprocessor directives 
(e.g., #ifdef) and then checks whether statements within 
these directives are executed. For Makefile-based patterns (see 
Figure 1c), Cozart determines if a configuration option should 
be selected at the granularity of the object files. For instance, 
in Figure 1c, CONFIG_CACHEFILES needs to be selected if 
any of the corresponding files (bind.o, cachefiles.o, or 
daemon.o) are used.

3.2. Generating CONFIGLETS
Baselets and Applets are generated during the (offline) 
phase in which configuration options are tracked. Cozart 
marks the end of the boot phase using a landmark program—
a C program created by us that uses mmap to map an empty 
stub function to a pre-defined “magic address” (we use 
0x333333333000 and 0x222222222000 for the start and the 
end respectively) and invokes the stub function. The init 
script described in Subsection Tracing Program Counters 
calls the landmark before running the target application. 
Therefore, Cozart can recognize the (end of the) boot phase 
based on the magic address in the PC trace.

Cozart takes the configuration options from the appli-
cation and filters out the hardware-related options that are 
observed during the boot phase. These hardware features 
are defined based on their location in the kernel source code 
(e.g., options located in /arch, /drivers, and /sound). We 
do not exclude the possibility that a hardware-related option 
may only be observed during the execution of an applica-
tion, for example, it loads a new device driver on demand (in 
such cases, the application is hardware-specific).

3.3. Composing CONFIGLETS
Cozart compOSs the Baselet with one or more Applets 
to produce a final configuration that is used to build the 
kernel. Cozart first creates a union of the options in all the 
Configlets into an initial configuration and then resolves 
the dependencies between them using an SAT solver.  
It models the configuration dependencies as a Boolean 
satisfiability problem and uses a SAT solver to generate a 
final configuration—a valid configuration is one that satis-
fies all the specified dependencies between configuration 
options. This is needed because KConfig does not ensure all 
the selected options are included but deselects unsatisfied 
dependencies. We follow the SAT-based modeling for ker-
nel configuration described in literature7 and use PicoSAT 
in Cozart.5 It is possible that the SAT solver returns multiple 
valid solutions. In this case, our implementation uses the 
first solution returned from the solver.

3.4. Kernel builder
Cozart uses the standard kernel build system (KBuild for 
Linux) to build the debloated kernel based on the configu-
ration composed using the Configlets. As building is on 
the critical path of kernel debloating, Cozart optimizes the 
build time by leveraging the incremental build support of 
modern tools (e.g., make). Cozart caches the previous build 
results (e.g., the object files and LKMs) to avoid redundant 

Figure 2. Cozart overview: Config tracker records configuration 
options used by the target application. Configlet generator 
processes these options into Configlets and stores them in Configlet 
DB. Kernel composer produces the final configuration. Kernel builder 
builds the debloated kernel.
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compilation and linking. When a configuration change hap-
pens, only the modules with the changes to internal con-
figuration options need to be rebuilt whereas the other files 
can be reused. We find this feature to be particularly useful 
when a debloated kernel needs to support a new application 
because most applications share many modules but only 
differ in a small number of modules.

4. STUDY METHODOLOGY
We use six popular open source server applications that are 
commonly deployed in cloud environments, viz. HTTPD 
(v2.4), NGINX (v1.15), Memcached (v1.5), MySQL (v5.7), PHP 
(v7.2), and Redis (v4.0). For each application, we use both 
its official test suite as well as performance benchmarks to 
drive the kernel, based on which we use Cozart to generate 
the Configlets.

We use the official benchmarks to measure the applica-
tion performance running on the debloated kernel and to 
verify that no regression was introduced by the debloating. 
All the performance experiments were performed on a KVM-
based VM with 4 VCPUs and 8GB RAM running on an Intel 
Xeon Silver 4110 CPU operating at 2.10 GHz. We report the 
benchmark results as the average of 20 runs.

Our baseline kernel is Linux kernel v4.18.0 from the latest 
Ubuntu 18.10 Cloud Image. We also repeated all our experi-
ments on Linux kernel v5.1.9 from Fedora 30 and observed 
similar results. Therefore, we only present the results from 
the Ubuntu 18.10 Cloud Image as the baseline.

5. DEBLOATING EFFECTIVENESS
We use Cozart to debloat the baseline kernel for our target 
applications. Cozart achieves more than 80% kernel reduc-
tion (see Table 3). We verify that all the debloated kernels 
can not only boot but run application workloads success-
fully, such as the performance benchmarks and test suites.

Boot time reduction. The second column in Table 2 
shows the boot time (and the reduction with regards to 
the baseline kernel) of the debloated kernel for each 
application. We measure the boot time by reading from 
/proc/uptime that records the duration of the system 
being on since its last restart. The kernels debloated 
by Cozart achieve a time reduction of close to 14%. The 
reduction is attributed to the savings in loading smaller 
kernel images and the skipping of initialization and device 
registration for the removed modules (e.g., Fuse filesystem 
and Hot Plug PCI controller).

Application performance. We benchmark the perfor-
mance of applications running on debloated kernels gener-
ated by Cozart and compare the results to the baseline. We 
do not expect any performance improvements. We expect no 
performance regressions either as Cozart does not remove 
performance optimization code.

Table 2 (the third column) shows the improvements of 
application performance running on debloated kernels with 
regards to the baseline. There is no performance regression; 
instead, the debloated kernels show marginal performance 
improvements (for all the applications) mainly because appli-
cations load faster and have smaller memory overheads.

Memory savings. We define memory savings as the reduc-
tion in the memory region needed to host the loaded ker-
nel binary, measured by MemTotal as read from /proc/ 
meminfo. The numbers in Table 2 are aligned to the page 
size. We observe about 4MB memory savings across the 
debloated kernels for single applications. Applications have 
similar reduction results (discussed in Section 6.1).

Application Boot Time (ms) App. Perf. (%)
Mem. 

Save(KB)

Baseline
Apache HTTPD
Memcached
MySQL
Nginx
PHP
Redis

646
561 (−13.16%)
557 (−13.78%)
558 (−13.62%)
562 (−13.00%)
556 (−13.93%)
556 (−13.93%)

0.00
+1.70%
+3.44%
+0.29%
+3.53%
+0.21%

+3.49/3.78%

0
+4,012
+4,012
+4,016
+4,016
+4,012
+4,012

Table 2. Boot time, application performance and memory reduction 
for debloated kernels.

Summary: The debloated kernels produced by Cozart 
are all stable—they can directly boot and support the 
expected application workloads. They can boot 13+% 
faster than baseline kernels and achieve more than 4MB 
memory savings at runtime.

6. FINDINGS AND IMPLICATIONS
This section selectively presents our findings. Please refer to 
the original paper for the complete discussion.

6.1. Boot phase visibility
Experiences with the state-of-the-art tools. Existing tools 
do not have automatic solutions to tackle the boot phase 
because they use ftrace for kernel tracing, which can only 
be started after the boot process is complete.

To work around this limitation, Undertaker16 turns on 
ftrace as early as possible, that is, at the initialization of the 
RAM disk (initrd). However, we find that it is still not early 
enough, because hardware detection happens before mount-
ing RAM disk. As a result, some disk drivers (e.g., the SCSI disk 
support) are not captured by Undertaker, and even the disk 
support itself has to be whitelisted. To make the debloated 
kernel bootable, Undertaker eventually requires users to set 
a small whitelist to ensure certain configuration options are 
included. However, as articulated in recent literature,6 “that 
brings the user back to the original configuration issue.”

LKTF13 attempts to address the invisibility of the boot 
phase using a search-based approach. It fills in configuration 
options into the unbootable kernel generated by Undertaker 
until the kernel eventually boots. LKTF is supposed to take 
approximately 5 h to generate a bootable kernel.6 We were 
not able to run LKTF because its implementation is hard-
coded to a few old kernel versions. Also, the debloated ker-
nel generated by LKTF is not guaranteed to include all the 
original security and performance configurations.

Boot-phase visibility with COZART. Cozart addresses 
the visibility limitation using a lower level of tracing—at 
the hypervisor level. This brings a key advantage of Cozart: 
every debloated kernel by Cozart can boot and run stably.
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We next use Cozart to generate the Configlet for 
Docker Runtime (dockerd) using the standard hello-
world example that starts dockerd, pulls the hello-
world image, and launches a container. We generate 
debloated kernels by composing multiple Applets (such 
as the target application and dockerd) and the Baselets. 
The lower half of Table 3 shows the reduction achieved by 
debloated Linux kernels running applications in Docker 
containers. We find that the dockerd Configlet contains 
most of the Applets already. The debloated kernels have 
similar reduction ratios.

For the LAMP stack, we use Cozart to compose the 
Configlets of each application (HTTPD, MySQL, and PHP), 
together with the Baselet to generate a debloated kernel for 
the entire stack. We deploy phpMyAdmin and ensure that 
the functionalities of all components work properly. The 
debloated kernel shows a size reduction of 17.13% for the 
statically linked kernel binary and 86.80% for LKMs.

Cozart generates the Baselet for Ubuntu 18.10, which 
contains 1212 (out of 2443) statically-linked modules and 7 
(out of 5001) LKMs. We reduce 1231 static-linked modules 
and 4994 LKMs compared with the baseline kernel (Ubuntu 
18.10). Take drivers as an example. The vanilla kernel aims 
to support a variety of hardware and thus contains drivers 
for different devices. Cozart only includes the one observed 
in the traces (i.e., those used by the applications), such as 
acpi, scsi, cpufreq, tty, char, and dma drivers.

Summary: Boot-phase visibility is critical to producing 
a bootable kernel. Cozart leverages the tracing feature 
provided by the hypervisor to support end-to-end 
observability (such as the complete boot phase and 
application workloads) and produce stable kernels that 
can always boot and run applications stably.

6.2. Composability
We evaluate Cozart’s composability with the following three 
cases: (1) individual application: for each application, we use 
Cozart to compose an Applet and the Baselet to gener-
ate a tailored debloated kernel; (2) individual application in a 
container: for each application, we use Cozart to compose 
an Applet along with the Configlet of the Docker Runtime 
(dockerd) in conjunction with the Baselet; (3) multiple appli-
cations: we use Cozart to compose a debloated kernel to support 
a LAMP stack. We use a separate application, phpMyAdmin (a 
MySQL administration tool with PHP interfaces), to validate 
the LAMP stack as well as individual application works.

Table 3 shows the debloating results of the first two types 
of compositions, in comparison with the baseline kernel. 
The reason why all the reduction numbers look similar is 
that 96%–99% of the configuration options are drawn from 
the Baselet that is generated from the same VM. Cozart 
compOSs the Baselet with the target Applet to achieve 
17+% and 86+% size reductions for static-linked kernel bina-
ries and LKMs, respectively.

Application

# Remaining kernel modules Kernel size reduction

Static LKM Static LKM Default Overall

Ubuntu Vanilla (Baseline) 2443 5001 0% 0% 0% 0%
Base configlet
Apache HTTPD
Memcached
MySQL
NGINX
PHP
Redis
Docker
Docker + Apache HTTPD
Docker + Memcached
Docker + MySQL
Docker + NGINX
Docker + PHP
Docker + Redis

1212
1213
1215
1221
1215
1216
1217
1232
1233
1233
1239
1233
1236
1237

7
7
7
7
7
7
7

35
35
35
35
35
35
35

−17.21%
−17.19%
−17.19%
−17.13%
−17.19%
−17.21%
−17.17%
−17.02%
−16.99%
−16.99%
−16.93%
−16.99%
−16.98%
−16.98%

−86.80%
−86.80%
−86.80%
−86.80%
−86.80%
−86.80%
−86.80%
−75.11%
−75.10%
−75.10%
−75.10%
−75.10%
−75.11%
−75.10%

−29.52%
−29.50%
−29.50%
−29.46%
−29.50%
−29.50%
−29.49%
−27.30%
−27.27%
−27.27%
−27.22%
−27.27%
−27.30%
−27.26%

−83.53%
−83.52%
−83.52%
−83.51%
−83.52%
−83.53%
−83.52%
−83.01%
−83.00%
−83.00%
−82.99%
−83.00%
−83.01%
−83.00%

“Default” refers to a conservative baseline that only includes the LKMs that are autoloaded based on Ubuntu 18.10 configuration (Ubuntu includes all the LKMs but does not load every 
one by default). “Overall” refers to the overall kernel space (all modules).

Table 3. Characteristics of the debloated kernel generated by Cozart based on Configlet composition.

Summary: The composability of Cozart enables users 
to maintain application-specific kernel configuration in 
Applets and deployment-specific kernel configuration 
in Baselets. A complete kernel configuration can be 
generated by composing the Applets and Baselet.

6.3. Fast application deployment
A limitation of existing techniques, when one wants to 
deploy a new application onto a debloated kernel (i.e., cus-
tomized for a different application), is that the entire pro-
cess from tracing to the recompilation must be repeated. 
Thus, fast application deployment cannot be supported.

We argue that the aforementioned limitation is caused by 
the design of existing techniques that make tracing an inte-
gral component of the debloating process—that is, the tool 
has to first trace the kernel by running application workloads 
and then compile the kernel based on the results. Our work 
shows that tracing requires significantly more time than 
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they are designed to exercise different parts of the applica-
tion software. As shown in Table 4, test suites provide higher 
code coverage when compared to the benchmarks. However, 
the code coverage of the test suites is also imperfect—the 
coverage varies from 29% to 73%.a We conclude that the lack 
of high-coverage tests is an essential limitation of dynamic-
tracing based debloating techniques. Automated testing 
techniques such as fuzz testing and concolic testing might 
improve the coverage and alleviate the limitations. On the 
other hand, they are not silver bullets. Note that code cov-
erage is not equal to kernel reach. A test suite with 100% 
coverage can cover all possible system calls invoked by the 
application, but not all possible kernel states.

The configuration options discovered by benchmarks are 
not always included in the Applets from test suites. For exam-
ple, in Memcached, CONFIG_PROC_SYSCTL only exists in 
Applets generated by the benchmark when Memcached reads 
the maximum number of file descriptors to check whether it 
can allocate more connections in an overloaded situation.

compiling. Specifically, the tracing time depends on the 
application workloads (test suites or benchmarks)—a more 
complete workload would lead to higher tracing overhead. 
With Cozart, tracing can be decoupled from the compila-
tion and, thus, can be done offline, as long as the resulting 
Configlets are preserved. If we have the Configlets for the 
target applications, debloating a kernel takes less than 2 min 
when compiled from scratch.

We also explore incremental builds from previously 
debloated kernels, where we add a new application on top of 
an existing debloated kernel. Such incremental builds are 
effective, attributed to the fact that many applications share 
common configuration options and only slightly differ. As a 
result, Cozart only needs to (re-)compile these small num-
ber of additional modules. It reuses the majority of the pre-
viously built binaries. It only takes tens of seconds (in the 
presence of cold caches) to rebuild the kernel for supporting 
a new application and only a few seconds if the cache is hot 
(typically when dedicated build servers are in use).

Application

Test suite Benchmark

Coverage # Options Coverage # Options

HTTPD
Memcached
NGINX
MySQL
PHP
Redis

29%
73%
69%
68%
61%
57%

76
120
123
120
115
115

13%
26%

8%
13%

6%
11%

97
80
80
93
35
65

Table 4. Statement coverage and number of configuration options 
of the target applications reached by the official performance 
 benchmarks versus official test suites.

Summary: An essential limitation of dynamic-tracing-
based debloating techniques is the imperfection in test 
suites and benchmarks. Specifically, the official test suites 
of many open source applications have low code coverage.

6.5. Using domain-specific information
Another essential limitation of existing kernel debloating 
techniques is the inability to distinguish between kernel 
code that is executed during the tracing versus code that is 
needed. It is possible that the code is not needed but hap-
pens to be on the execution paths. For example, in VMs, ker-
nel code for BIOS, thermal control, and power management 
is executed but not needed to boot the VM.

We also studied the opportunities to further debloat the 
kernel, based on domain knowledge, to remove the code. We 
study both, KVM-based VMs and Xen VMs. We leverage con-
figuration templates, kvmconfig and xenconfig, in the 
Linux source tree as domain-specific information. For exam-
ple, kvmconfig uses virtio as the I/O interface for both net 
and block devices whereas xenconfig uses the Xen frontend 
(Dom0) as the main I/O interface; the original Baselet also 
uses other I/O interfaces (such as the SCSI disk driver) that 
are not needed for KVM or Xen VMs.

We use these two templates to replace the original Baselets 
to further debloat the already-debloated kernel for KVM and 
Xen. We observe a 40+% and 39+% kernel size reduction of KVM 
and Xen, respectively, compared with the original Baselet and 
a result of 40+% and 41+% reduction in the number of configu-
ration options for KVM and Xen, respectively. The reduction 
comes from the fact that many kernel modules (e.g., partition 
types, processor features, BIOS, thermal control, power man-
agement, ACPI, and input devices) are executed by the base-
line kernel at the boot time; however, those modules are not 
needed if the deployment is on KVM or Xen.

Summary: Kernel debloating can be done within tens of 
seconds if the configuration options of target applications 
are known. Cozart’s composability allows Applets to be 
prepared offline. In fact, deploying a new application can 
also be done on a debloated kernel within tens of seconds.

6.4. Coverage
One essential concern of applying existing techniques is the 
completeness of the debloated kernel. If the target applica-
tion reaches code that is not included in the debloated ver-
sion, the kernel could potentially crash or result in errors.

The prior studies on debloating techniques implicitly 
assume that running a benchmark could cover the kernel 
footprint of the target applications. Take Web servers as an 
example. Prior studies use simple benchmarks that access 
static documents to generate debloated kernels.16

Table 4 shows the coverage (in terms of number of state-
ments) of each target application when running the official 
performance benchmark suites, as measured by gcov. The 
coverage reached by the official benchmark is low, ranging 
from 6% to 26%. Typically, the benchmarks only exercise the 
steady states of the target applications but miss the other 
part of the application program (e.g., other features, error 
handling, and recovery procedures).

Test suites can, potentially, complement benchmarks; 

a It is reported, however, that test suites for industrial software have much 
higher code coverage.10
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Summary: Domain-specific information can be used to 
effectively remove the kernel code that is executed in the 
baseline kernel but is not needed at deployment time.
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7. GENERALITY
We ported Cozart to debloat the L4 microkernel1, 8 and the AWS 
Firecracker kernel.2, 3 The L4/Fiasco microkernel also uses KConfig 
as the configuration language as Linux does. For Firecracker, we 
modified the kernel bus from MMIO to PCI to enable QEMU 
tracing and changed the bus back before booting on Firecracker.

L4 microkernel. The result of applying Cozart to L41 is 
surprising—the debloated kernel is 47% smaller, compared 
to the default. The reason for the significant reduction is that 
the default L4/Fiasco configuration enables a heavy kernel 
debugger, CONFIG_JDB, that contributes to a big part of the 
final kernel size. The debloated kernel no longer includes 
this module. Although it may sound straightforward that 
removing a debugger makes the kernel smaller in size, 
without an automatic tool such as Cozart, it is nontrivial 
to examine and select every configuration option manually.

Firecracker. Although still based on Linux, Amazon 
Firecracker kernel is a special case as the kernel is exten-
sively minimized to optimize for Function-as-a-Service 
workloads. We apply Cozart on the Firecracker kernel 
using the target applications (Section 4) to understand the 
space for application- specific kernel debloating, especially 
for an extensively optimized kernel such as Firecracker.

Overall, Cozart reduces the number of kernel configura-
tion options from 910 to 729 (a 20% reduction), leading to 
a 19.76% kernel size reduction and an 11% faster boot time 
(reduced from 104 to 92.5 µs).

Summary: Application-oriented kernel debloating can 
be used to further kernel code reduction even for 
microkernels and extensively customized kernels.

8. CONCLUSION
OS kernel debloating techniques have not received wide-ranging 
adoption due to the instabilities of the debloated kernels, the lack 
of speed, completeness issues, and the need for manual inter-
vention. This paper studies such debloating techniques with the 
goal of making them practical in real-world deployments. We 
identify the limitations of existing techniques that hinder their 
practical adoption. We developed Cozart, an automatic kernel 
debloating framework that enables us to conduct a number of 
experiments on different types of operating systems with a wide 
variety of applications. We share our solutions in addressing the 
accidental limitations of OS kernel debloating and we also dis-
cuss the challenges and opportunities in addressing the essen-
tial limitations toward practical debloating techniques. We have 
made Cozart and the experiment data publicly available at: 
https://github.com/hckuo/Cozart.
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