
DEBCOVDIFF: Differential Testing of Coverage
Measurement Tools on Real-World Projects

Wentao Zhang, Jinghao Jia, Erkai Yu, Darko Marinov, Tianyin Xu
University of Illinois Urbana-Champaign, Urbana, IL, USA
{wentaoz5, jinghao7, erkaiyu2, marinov, tyxu}@illinois.edu

Abstract—Measuring code coverage is a critical practice in
software testing. Incorrect or misleading coverage information
reported by automatic tools can increase the software devel-
opment cost and lead to negative consequences especially for
safety-critical software. Ensuring the correctness of coverage
measurement tools is therefore important. Prior studies have
applied various techniques to find bugs in Gcov and LLVM-cov,
the two most widely used coverage tools for C/C++. However,
those studies had two limiting factors. First, they used only
small, often synthetic, programs, potentially missing bugs in real-
world scenarios. Second, they focused only on basic line coverage,
neglecting advanced metrics that are both more complex to
implement and commonly required for safety-critical software.

This paper presents the first empirical study of coverage
measurement tools for real-world projects. We implement DE-
BCOVDIFF, a testing framework that takes Debian packages as
the input programs and performs differential testing of Gcov and
LLVM-cov, for line coverage and two advanced coverage metrics.
We design robust differential oracles to (1) filter out discrepancies
arising from subtle differences in the tool output presentation,
(2) overcome the nondeterministic nature of certain packages,
and (3) support advanced coverage metrics. From results on 47
Debian packages, we identify 34 new bugs, including 2 crashing
bugs and 32 deeper bugs that produce wrong coverage reports.

I. INTRODUCTION

Measuring code coverage [1] is a critical step in software
testing. Code coverage reflects which portion of code-under-
test is covered during execution and gives an important in-
dicator of test-suite adequacy [2]. Various coverage metrics
have been proposed, including line coverage, branch coverage,
and modified condition/decision coverage (MC/DC) [3]–[5].
Beyond measuring test-suite adequacy, code coverage has been
widely used in fault localization [6], fuzz testing [7], compiler
validation [8], flaky-test detection [9], etc. Code coverage is
incorporated in software development cycles, e.g., by compa-
nies such as Google [10], [11], and for certification in safety-
critical industries, such as aviation [12] and automotive [13].

To facilitate the measurement of code coverage, automatic
tools have been developed, either open-source [14], [15]
or commercial [16], [17], for different programming lan-
guages [18], [19]. Ensuring the correctness of these coverage
measurement tools is crucial given the diverse uses of code
coverage. For example, Google reports how difficulties with
the tools frustrate the developers and make them less willing
to adopt code coverage in their workflow [10]. Moreover, in-
correct or misleading coverage reported by the tools can delay
software releases [10], reduce bug-detection effectiveness [2],
and give developers a false sense of assurance [12], [13].

While ensuring the reliability of coverage measurement
tools is important, it is also challenging due to the absence of
specifications for code coverage and the difficulty in crafting
precise test oracles for tool output. Prior work [20]–[23] used
several techniques—including differential testing [24] and
automated test generation [25]—to reveal bugs in Gcov [14]
and LLVM-cov [15], the two most widely used coverage tools
for C/C++. For example, by identifying different line coverage
counters between reports produced by the two tools, C2V [20]
found 42 and 28 bugs in Gcov and LLVM-cov, respectively.

However, prior studies [20]–[23] have two limitations. First,
they used only small, synthetic programs as test inputs, (e.g.,
using Csmith [25]) or samples of the tool’s compiler test cases
(GCC and LLVM). The program diversity is limited by the
design of the synthesizer [26] or developers’ manual efforts.
On the other hand, real projects exhibit high diversity in terms
of language syntax, project-specific idioms, software bugs,
undefined behavior [27], and project scale and organization,
which is hard to capture by small test inputs. While testing
the tools with synthetic inputs is valuable, testing only with
synthetic inputs can be insufficient to assure the reliability
for real software. Bugs found with synthetic programs may
not occur in real projects [28]; more importantly, synthetic
programs may miss bugs that do occur in real projects [26].

Second, prior work focused only on basic line coverage,
neglecting advanced metrics such as branch coverage (III-D2)
and MC/DC (III-D3). However, these advanced metrics are
potentially harder to implement correctly [29]–[31]; moreover,
they are arguably more important and commonly required for
safety-critical software [12], [13]. Testing coverage measure-
ment tools for advanced metrics is more challenging than for
line coverage because of the lack of standard representations
in coverage reports (see Section III-D).

To illustrate the above two points, Listings 1 and 2 show
a bug revealed in our work and reported as LLVM#131505.
It originates from line 313 in hostname.c of the package
hostname (Listing 1), where LLVM-cov reports the second
condition (macro IN6_IS_ADDR_MC_LINKLOCAL) to have two
outcomes, and strikingly, this condition was evaluated as true
18.4E (18.4× 1018) times during test execution. Gcov reports
this condition to have four outcomes and none executed, so our
differential oracle flags the difference. (Prior work on line cov-
erage [20]–[23] misses this bug because it is about branch cov-
erage.) The LLVM-cov report is self-contradictory: (1) all lines
in the snippet are reported not executed (line coverage 0, left of
‘|’), (2) the preceding condition (IN6_IS_ADDR_LINKLOCAL

312 0 | if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr) ||

Branch (2 outcomes): [0,0]

313 0 | IN6_IS_ADDR_MC_LINKLOCAL(&sin6->sin6_addr))

Branch (2 outcomes): [18.4E,1]

314 0 | continue;

Listing 1. A bug found with hostname-3.23+nmu1/hostname.c.

// test.h
1 | #define FOO(x) ((x)[0] && x[1])
// main.c

1 | #include <test.h>
2 | int g = 1, buf[100];
3 1 | int main(void) {
4 1 | if (g || FOO(buf)) { return 1; }

Branch (4 outcomes): [1,0,18.4E,1]
MC/DC (2 conditions): [F,F]

5 0 | return 0;
6 1 | }

Listing 2. Reduced input program for LLVM#131505.

at line 312) is reported never evaluated (both its true and
false outcomes are “executed” 0 times, while it should have
been false sometimes for the second condition to even be
evaluated at all), and (3) the value of 18.4E is too large given
the test execution time.

To report this new bug to the developers, we reduced the
code (Listing 2) and summarized the triggering conditions as
a program with (1) a macro from a system header (line 1
of main.c), where (2) the macro definition involves sub-
scripting the argument, x, in parentheses (line 1 of test.h).
The bug stems from the way LLVM-cov tries to improve
performance of coverage measurement by not adding a counter
for each basic block but computing some dependent counters
based on other counters. Specifically, LLVM-cov calculates
one condition counter value from the relationship CTotal =
CTrue + CFalse, and actually maintains only two counter
variables, deriving the third value. In this case, an incorrect
CFalse = 1 and the correct CTotal = 0 lead to the wrong
CTrue = −1; the counter value “18.4E” is −1 in 64-bit two’s
complement. In addition to this negative value, the same code
makes LLVM-cov report lower numbers of branch outcomes
and MC/DC conditions (4 and 2, respectively) than Gcov (6
and 3, respectively).

From this example, we can distill at least two lessons. First,
one metric (e.g., branch coverage) may be wrong even if
another metric (e.g., line coverage) is correct. Second, program
synthesizers, such as Csmith [25], lack expressiveness and
may not generate specific complex conditions needed to reveal
bugs, e.g., this case needs multiple files (.h and .c). In
contrast, real projects are naturally organized in multiple files,
which can challenge coverage measurement tools.

To this end, we developed a new testing framework, named
DEBCOVDIFF, that takes real code, namely Debian pack-
ages, as the input programs and performs differential testing
of coverage measurement tools, namely Gcov and LLVM-

cov. Debian packages have been used for differential testing
of compilers [28], but applying the methodology to cover-
age measurement tools faces new challenges—while com-
piler bugs manifest through miscompilation [28], coverage
measurement bugs require specialized test oracles [20]–[23].
Moreover, coverage measurement involves additional steps
over general compiler testing (“build-run-measure” vs. “build-
run”) and relies on additional toolchains (e.g., compiler-rt,
llvm-profdata, and llvm-cov). Specifically, to address
advanced coverage metrics (namely, branch coverage and
MC/DC) that lack standard representations in coverage re-
ports, DEBCOVDIFF develops ways to canonicalize coverage
reports for differential analysis. To utilize real code as test
inputs, DEBCOVDIFF addresses nondeterminism of program
execution by automatically filtering out coverage reports of
nondeterministic code paths. (Prior work [20]–[23] assumed
small synthetic code to be deterministic.)

By applying DEBCOVDIFF on 47 Debian packages, we
conduct the first empirical study of two tools, Gcov and
LLVM-cov, on real code. We make these contributions:

• Framework for real-world software: We develop DE-
BCOVDIFF for testing coverage tools on real code. We
select 47 Debian packages as the input programs to test
two tools (Gcov and LLVM-cov) for three metrics (line
coverage, branch coverage, and MC/DC).

• Differential testing oracles: DEBCOVDIFF performs
differential testing of the coverage reports generated by
the two tools, using robust oracles to (1) filter out benign
discrepancies arising from subtle differences in the tool
output presentation and (2) overcome the nondeterminis-
tic nature of certain packages.

• Bug reports: We identify 34 new bugs, including 2
crashing bugs (in LLVM-cov) for 6 packages and 32
deeper bugs (in LLVM-cov and Gcov) that produce wrong
coverage reports for some of other 41 packages.

The new bugs we find (1) are in very recent versions of Gcov
and LLVM-cov (which potentially include fixes for bugs found
in prior work [20]–[23]) and (2) stem from real-world projects,
thus, arguably more likely to be encountered by developers.
Our artifact is at https://github.com/xlab-uiuc/DebCovDiff.

II. BACKGROUND AND SCOPE

Code coverage informs developers which portion of code
is executed (“covered”), usually after running tests. Guided
by the coverage information—if it is correct!—the developers
can improve their code or tests accordingly [1].

Various code coverage metrics and tools exist [32].
Gcov [14] and LLVM-cov [15] are the most popular tools
for C/C++. In addition to the basic line coverage (related to
statement coverage [32]), these tools also measure branch cov-
erage (related to decision coverage [32]) which tells whether
different outcomes of conditional branches are executed. Both
Gcov [31] and LLVM-cov [30] have recently added support for
modified condition/decision coverage (MC/DC) [5], an even
more rigorous metric that requires (1) each Boolean condition
in a decision to be executed with both true and false

https://github.com/xlab-uiuc/DebCovDiff

Line
Coverage

Branch
Coverage

MC/DC

Coverage A

Test Inputs

Coverage B

Coverage Measurement Differential Oracles

Reports
Real-World

Debian
Packages

Tool B

Tool …

Tool A

Study Subjects

Fig. 1. High-level workflow of DEBCOVDIFF.

outcomes; and (2) the condition in question to independently
affect the decision’s outcome. Given its power, MC/DC is
required for software certification in many safety-critical in-
dustries, including aviation [12] and automotive [13].

An important difference is between precise “source cov-
erage” (e.g., produced by Gcov and LLVM-cov) and “ap-
proximate coverage” (e.g., used in grey-box fuzzers such
as AFL [33] and libFuzzer [34]). In general, the former
creates coverage reports as source code annotated with extra
coverage information (line counters, branch counters, etc.)
after a certain execution (e.g., program has exited), while the
latter is consumed by the fuzzer and more light-weight to be
measured at runtime. (Exceptions exist, e.g., classfuzz [7] uses
Gcov for fuzzing.) We focus on source coverage tools based
on compiler instrumentation, namely Gcov and LLVM-cov,
because these tools are the most widely used for C/C++ and
aim at presenting precise, not approximate, coverage.

III. METHODOLOGY

We describe the methodology of our study and the design
of DEBCOVDIFF. DEBCOVDIFF follows the common flow
of differential testing (Figure 1)—it gives the same test input
(program) to two tools, generates respective coverage measure-
ments, and produces a report based on differential oracles.

A. Study Subjects

DEBCOVDIFF can compare coverage measurement tools
that produce at least one of line coverage, branch cover-
age, or MC/DC (§II). We focus on Gcov and LLVM-cov
for C/C++, because they are widely adopted, open-source,
and have been extensively tested by prior research [20]–
[23]. We report all results on the versions from September
2024, specifically GCC c1fb78fb and LLVM ce9a2c65.
We use LLVM-cov in its “source-based code coverage”
mode [35] because it (1) supports MC/DC and (2) was
used in prior studies [20]–[23]. (The LLVM project provides
more modes for coverage instrumentation, including, a mode
emulating Gcov, profile-guided optimization, and Sanitizer-
Coverage [36].) To add a tool to DEBCOVDIFF, we provide
information on (1) the executable programs for compilation
(CC, CXX, LD, AR, etc.), e.g., clang++; (2) the build flags for
coverage measurement, e.g., -fprofile-instr-generate,
-fcoverage-mapping, -fcoverage-mcdc; and (3) the
postprocessing steps, e.g., invocation of llvm-profdata and
llvm-cov. Following prior work [20]–[23], we compile input
programs with -O0 to disable all optimizations, because cov-
erage reports get even noisier with optimizations enabled [20].

B. Test Inputs

We test coverage tools with real-world projects. We choose
Debian packages, because they (1) are used by prior work on
testing compilers (but not coverage tools) [28], (2) represent
popular and diverse real-world software, (3) are extensively
tested under default settings for distribution and may build
with the coverage tools, (4) can be compiled and tested using a
general infrastructure sbuild [37], and (5) offer “reproducible
builds” to some degree [38]–[40], which is important to reduce
nondeterminism that could mislead differential testing.

We select a subset of all Debian packages, aiming for impor-
tance and representativeness, using the following procedure:
• Debian 12.8 has 63,417 binary packages for amd64 archi-
tecture in the “main” component [41].

• We start from the 103 binary packages whose “priority”
field [42] is in the highest groups “required”, “important”,
and “standard”: 33, 32, and 38 packages, respectively.

• Because multiple binary packages come from the same
source package (e.g., the binary packages mount, fdisk,
and more come from the source package util-linux), we
identify 78 unique source packages for 103 binary packages
and use source packages as the unit of our study.

• 57 out of 78 packages are written primarily in C/C++. We
attempt to measure coverage (§III-C) for all 57.

• For 32 out of 57 packages, we can successfully generate
coverage reports using both Gcov and LLVM-cov, so we
conduct differential testing (§III-F) with all 32 packages.

• We randomly pick 10 more packages from lower-priority
groups; 9 out of 10 packages successfully generate coverage
reports using both Gcov and LLVM-cov.
In total, we use 41 packages to conduct differential testing.

(Sections IV-A and IV-F describe why coverage reports were
not generated for 26 packages.) Our final selection of 41
packages spans a diverse range of functionalities, including
essential system utilities (e.g., coreutils, util-linux),
networking tools (inetutils, iproute2, traceroute),
compression libraries (bzip2, xz-utils, lz4), services and
their management (apache2, cron, dbus), and user-facing
tools (nano, wget, man-db). We believe that our selection
is both relevant and heterogeneous to represent real code for
evaluating coverage tools.

C. Coverage Measurement

We use three general steps to obtain coverage measure-
ment: (1) compile packages with coverage instrumentation,
(2) execute compiled binary, and (3) generate coverage reports.
We integrate these steps into Debian’s own sbuild [37]
infrastructure, which initiates the build for each package in a
clean chroot. To make our results reproducible and to enable
easier inspection, we allocate an isolated chroot and reuse it
for the same ⟨tool,flags⟩ pair.

By default, sbuild builds every package using the GCC
version of that distro (namely, GCC 12.2.0 in Debian 12.8),
although an override can be explicitly specified in certain

packages. To experiment with arbitrary ⟨tool,flags⟩ pairs, we
build on top of the best practices for building Debian packages
with different compilers [28], [43]. We replace the installed
/usr/bin/{gcc,g++,cpp} with a wrapper script so we can
(1) drop in the compiler-toolchain-under-test and (2) force the
desired build flags for coverage measurement (as registered
to DEBCOVDIFF, §III-A). Our wrapper script provides higher
flexibility than prior work [28] for hooking compiler invoca-
tions and manipulating build flags. Marcozzi et al. [28] specify
build flags via /etc/dpkg/buildflags.conf, which works
for most packages, but flags from this file are appended to the
package-specific flags, so using their approach would have not
allowed us to force -O0 on all packages. As in [28], [43], we
use the “hold” feature of dpkg to prevent our scripts from
being overwritten by the system package manager.

To run the compiled code and collect its coverage, we use
two approaches. First, we add simple commands to run the
executable binary produced for each package. For example,
for grep, our commands call grep once to find a string and
once to not find a string. The lzo2 package produces a library;
to run its code, we build and run one of its sample applications.
Second, we experiment with existing tests shipped with Debian
packages, namely dh_auto_test [44], to understand how
more thorough test suites affect our results (see Section IV-G).

After program execution, DEBCOVDIFF runs the postpro-
cessing steps to generate coverage reports (§III-A). We save
coverage reports in JSON (already supported by both Gcov and
LLVM-cov). LLVM-cov does not include line coverage in its
JSON output, so we collect its line coverage in the LCOV [45]
format. All output is unified (§III-D) and compared (§III-F).

D. Coverage Definitions

Prior work [20]–[23] considered only line coverage; we
revisit its definition and also define branch coverage and
MC/DC. We consider coverage for each code line and for each
source file in a package. Let t ∈ {A,B} be a tool under test,
and l1, . . . , lN be the lines in an N -line input source file. For
each line L ∈ {l1, . . . lN}, t produces three coverage values:
line coverage Lt, branch coverage Bt, and MC/DC Mt; each
can be None if the line is not instrumented for that coverage
metric. Tools decide differently what lines to instrument; e.g.,
for line coverage, commonly uninstrumented are empty lines,
comment lines, or lines with just a curly brace.

1) Line coverage: Lt is a nonnegative integer value.
2) Branch coverage: Bt for a line where t finds Ot

outcomes (different control flows) is represented as a list
Bt = [b1, . . . , bOt

], where bj represents how many times the j-
th outcome was taken. For example, if a line has Pt conditions,
i.e., atomic Boolean expressions [32], branch coverage would
be Bt = [bT1 , b

F
1 , . . . , b

T
Pt
, bFPt

], where bTi and bFi represent
how many times the true and false outcomes of the i-th
condition were taken.

Several challenges arise in practice for differential testing.
First, a tool may not indicate which outcome belongs to
which condition when a line has multiple conditions, which
is the case for Gcov. Second, tools may represent outcomes

differently, e.g., Gcov treats switch statements as a multiple-
outcome branch, while LLVM-cov treats each case label as a
binary-outcome branch. Also, for compile-time constant con-
ditions, LLVM-cov has a special “outcome” called “constant
folded”, while Gcov does not output anything. Third, the
number of outcomes for the same line can differ across tools,
i.e., OA ̸= OB , which is a type of inconsistency in our study.

Figure 2 shows a code snippet with a logical expression
split across lines and the conditions that Gcov and LLVM-cov
include in their branch coverage reports. LLVM-cov report
reflects exactly how the source code is written. However,
Gcov not only places c4 off by one line but also presents
all conditions at line 3 in one outcome list [b1, ..., b6] without
indicating which outcome belongs to which condition. Our
manual inspection has determined the mapping between out-
comes and conditions; it turns out Gcov altered the order of
the conditions from the order in the source code. As a result,
comparing branch coverage across these lines is challenging:
for lines 3 and 4, OA ̸= OB ; for line 2, the comparison of
different conditions misleads the differential oracle.

1 return
2 c1 &&
3 c2 && c3 &&
4 c4;

t = LLVM-cov Ot t = Gcov Ot

c1 2 c2 2
c2, c3 4 c1, c3, c4 6
c4 2 None 0

Fig. 2. An example confusing Gcov branch coverage report: Gcov does not
present branches following the source-code order.

3) MC/DC: Mt is represented as a list Mt = [m1, ...,mQt
]

where Qt is the total number of conditions reported by t,
and mj is a Boolean value that represents whether the j-
th condition is covered. Qt for MC/DC suffers from similar
challenges as Ot for branch coverage. For example, Figure 3
shows that both tools group all four conditions from the same
decision, making MC/DC less sensitive to multi-line logical
expressions. Nevertheless, Gcov still exhibits the off-by-one-
line misplacement, making none of the three lines comparable.
Moreover, MC/DC in LLVM-cov excludes 1-condition deci-
sions (e.g., if (x == y) has no MC/DC report), while Gcov
keeps them in the coverage report.

1 return
2 c1 &&
3 c2 && c3 &&
4 c4;

t = LLVM-cov Qt t = Gcov Qt

None 0 None 0
None 0 c1, c2, c3, c4 4
c1, c2, c3, c4 4 None 0

Fig. 3. Example confusing MC/DC reports on different lines.

These differences in coverage presentation for branch cov-
erage and MC/DC pose great challenges for DEBCOVDIFF.
However, we do not count them as bugs but as different
conventions between the tools. It is debatable whether these
should be treated as bugs, and a standard should be developed
for code coverage tools, potentially with some “undefined
behavior”, much like the standard for the C programming
language [46]. We resort to using filters and heuristics to
mitigate the misleading effects of differences and to identify
real bugs rather than inconsistencies due to conventions.

Algorithm 1 Detecting coverage inconsistencies for a line
Input: Line coverage Lt and history L, branch coverage Bt and history B,

MC/DC Mt and history M; t ∈ {A,B}
Output: Inconsistencies I at this line, initially an empty set

1: if LA is not None and LB is not None then ▷ Line coverage
2: if LA ·LB ̸= 0 and LA ̸= LB and ISSTABLE(LA, LB , L) then
3: I ← I + (line val, LA, LB)
4: end if
5: end if
6: if BA is not None and BB is not None then ▷ Branch coverage
7: if LEN(BA) ̸= LEN(BB) then
8: I ← I + (branch num,BA,BB)
9: else

10: B′
A,B′

B ,B′ ← SORT(BA,BB ,B)
11: if B′

A ̸= B′
B and ISSTABLE(B′

A, B′
B , B′) then

12: I ← I + (branch val,BA,BB)
13: end if
14: end if
15: end if
16: if MA is not None and MB is not None then ▷ MC/DC
17: if LEN(MA) ̸= LEN(MB) then
18: I ← I + (mcdc num,MA,MB)
19: elif MA ̸= MB and ISSTABLE(MA, MB , M)
20: I ← I + (mcdc val,MA,MB)
21: end if
22: end if
23:
24: procedure ISSTABLE(xA,xB ,X)
25: return X has T identical records of xA, xB (e.g., T = 6)
26: end procedure

Transforming the source code (e.g., placing all conditions
on one line) may solve some of the problems, e.g., in Figures 2
and 3. However, it is important to (1) make tool users aware
of the issue when they attempt to measure their real software
with various coding styles, or even better (2) change tools to
more reasonably handle such software.

E. Nondeterminism in Coverage Measurement

Prior work [20]–[23] tested coverage tools using small
programs that rarely exhibit nondeterminism; Cod [21] and
Decov [22] explicitly state that deterministic programs are
pre-requisites for their testing. In contrast, we use real code
from Debian packages that can exhibit nondeterminism, and
running the same code on the same input can give a different
coverage report even when measured by the same coverage
tool. (In general, Debian packages can produce nondeterminis-
tic binaries, despite efforts on reproducible builds [39], [40].)
To mitigate the nondeterminism, which could lead to false
alarms in differential testing, we run our simple commands
T = 6 times, and the existing tests (which are longer and
tend to be more nondeterministic) T = 60 times. We store
the coverage results for each line across all T runs in the
history L, B, M for the three metrics. Algorithm 1 reports as
inconsistencies only code paths with stable coverage numbers,
i.e., all T runs are identical. We require each such code path
to be deterministic in each of LLVM-cov and Gcov reports.
We found that code paths in LLVM-cov’s and Gcov’s reports
were always equi-deterministic—either both deterministic or
both nondeterministic—for our simple commands but not
necessarily for the existing tests.

Algorithm 2 Sorting branch coverage and history
1: procedure SORT(BA,BB ,B)
2: permA ← np.sortarg(BA) ▷ Index permutation
3: permB ← np.sortarg(BB)
4: for k in range(LEN(B)) do
5: BA,k,BB,k ← B[k]
6: B′[k]← BA,k[permA],BB,k[permB]
7: end for
8: return BA[permA],BB [permB],B′
9: end procedure

F. Differential Testing Oracles

Algorithm 1 shows our procedure for reporting inconsisten-
cies in coverage reports from two tools. The inputs are the
coverage reports for each line and the coverage history across
T runs. The output identifies five types of inconsistencies, one
from prior work on testing line coverage and four new types
for branch coverage and MC/DC:

• line val: line coverage counters differ when both are
nonzero, called “Type C” in C2V [20]; we leave differences
with zero counters (called “Type A” and “Type B” in
C2V [20]) as future work.

• branch num, mcdc num: the number of outcomes (Ot

in branch coverage) or the number of conditions (Qt in
MC/DC) differs between the two reports.

• branch val, mcdc val: the execution counters (bj in branch
coverage) or coverage of single conditions (mj in MC/DC)
differs between the two reports.

Before reporting any inconsistency, our algorithm ensures
that the relevant coverage is stable across all T runs (e.g.,
line 2 of Algorithm 1) so the difference is less likely caused
by execution nondeterminism. Our algorithm checks for each
tool (A and B) that the coverage by the tool has the exact
same value in all T runs. These checks are not needed for the
number of outcomes in branch coverage and the number of
conditions in MC/DC because these numbers come from the
static code instrumentation, not from the dynamic runs.

To tackle different ordering of branch outcomes between
the tools, we map outcomes from one tool to the other using
the sorting heuristic from Algorithm 2. This approach reduces
false positives caused by inconsistent ordering. E.g., for input
BA = [0, 1, 42, 10] and BB = [11, 42, 0, 1], it automatically
aligns the difference between outcomes (originally the fourth
and first, respectively) after sorting (both become the third).
However, sorting does not guarantee that the match is in the
right condition order and can lead to false negatives, e.g., [0, 1]
and [1, 0] may need to be reported as a difference but do not
get reported after sorting.

G. Inspection and Deduplication

We inspect inconsistencies to identify bugs. Determining
which tool is buggy is relatively easy based on the code
semantics and surrounding coverage. For example, different
execution counters may be contradictory within one basic
block or violate invariants (e.g., Ctotal ̸= Cthen + Celse).

Determining which inconsistencies are likely due to the
same bug, i.e., duplicates, and minimizing code for large code-
bases are much more challenging. We determine unique bugs
based on the language constructs in the input program, e.g.,
“push_back of a char pointer into a std::string vector”.
This criterion matches prior work [20] but may overcount
(bugs triggered by different language constructs could be fixed
by the same patch) or undercount bugs (similar programs with
the same language constructs may require different patches).

// LLVM#37125
13 2 | while (1) { // correct answer should be 1
14 1 | last = 1;
15 1 | fjmp ();

// LLVM#37081
15 1 | if ((ret = setjmp(buf)) != 0) {
16 1 | printf("True branch.\n");
17 1 | } else {
18 0 | printf("False branch.\n"); // correct answers
19 0 | bar(buf, 2); // should be 1’s
20 0 | }

Listing 3. Likely the same bug reported twice in [20] because of different
“types” (numerical relationship between the tool’s report and ground truth).

Prior work [20] additionally considers the zero vs. nonzero
counter values. However, such difference can lead to duplicates
being counted as different bugs. For example, in Listing 3,
C2V [20] considers the two reports as different bugs because
the type of LLVM#37125 is “wrong frequency”, and the
type of LLVM#37081 is “missing marking”. However, the
language construct is the same—“setjmp/longjmp wrapped
in another function”. The developers argued that the reports
may be duplicate. Our inspection shows that it is likely the
same bug: LLVM-cov does not recognize that a function—a
wrapper around longjmp in this example—may never return
to its caller site (longjmp can jump to nonlocal destinations)
and thus incorrectly assigns the same counter values to the
function call and statements after it. Therefore, we do not use
differences between zero and nonzero coverage counters as a
criterion to determine duplicates. In brief, our criteria are more
conservative than C2V [20].

IV. ANALYSIS

A. Tool Crashes

As summarized in Section III-A, for 26 packages, we could
not successfully produce coverage reports using both Gcov and
LLVM-cov. Our inspection finds 2 crashing bugs in LLVM-
cov that come from 6 packages: LLVM#95739 crashes only
for MC/DC, while LLVM#95831 crashes for all three metrics.
We found no crashing problems in Gcov.

Listings 4 and 5 show our reduced input programs for the
two bugs. In Listing 4, LLVM#95739 triggers when a user-
defined macro (Line 2) expands to a logical expression that
in turn contains another macro (Line 3) defined in a separate
system header (Line 1). In Listing 5, LLVM#95831 triggers
when an entire header file is included in the middle of a func-
tion body. Similar patterns are widely used in real-world code,
e.g., 5 packages (bash, diffutils, findutils, sed, tar)
wrap around macros from <ctype.h>, <bits/stat.h>, etc.

TABLE I
COMPARED AND INCONSISTENT LINES, BRANCHES, AND DECISIONS.

Lines Branches Decisions
Total compared 168,549 44,126 7,527
Median compared 2,207 641 93
Total inconsistent
(* num + * val) 199 2,098

(1,884 + 214)
30

(29 + 1)
Median inconsistent
(* num, * val) 1 14

(13, 0)
0

(0, 0)

in a way similar to Listing 4. However, program synthesizers,
such as Csmith, are unlikely to generate such patterns, unless
specifically tailored. In retrospect, once a bug is found, we can
always change a synthesizer to generate such patterns, but that
also lowers its probability to generate other code patterns.

1 #include <ctype.h>
2 #define IS_WORD_CHAR(ch) \
3 (isalnum (ch) || (ch) == ’_’)
4 int main(void) { return IS_WORD_CHAR(’c’); }

Listing 4. Input program for LLVM#95739, reduced from tar package.

1 void a() {
2 #include <stdint.h>
3 }

Listing 5. Input program for LLVM#95831, reduced from zsh package.

Both bugs are in LLVM-cov, one manifesting at the Clang
frontend and the other during postprocessing (when invoking
llvm-cov). Both bugs result in assertion failures. Reducing
program inputs for these crashes is easier than for coverage
inconsistencies, because the invariant (“interestingness” in
terms of C-Reduce [47]) for automatic reduction is clear:
parsing the tool log should find the assertion failure message.

B. Coverage Report Inconsistencies for Simple Commands

On the 41 Debian packages which produced coverage using
both Gcov and LLVM-cov, we perform differential testing.
Table I summarizes the results using our simple commands
(Section III-C). Figure 4 shows the breakdown across the
packages. We make some high-level observations:
• The total number of compared sites decreases from line
coverage to branch coverage to MC/DC, as expected from
their definitions. Notably, no decision is compared in the
sl package, because (1) the project is small, with only one
source file and one header file; (2) LLVM-cov does not
consider 1-condition decisions for MC/DC (Section III-D);
and (3) one instance of if ((c1 ? CONST1 : c2) ==

CONST2) is considered a 2-condition decision by Gcov but
not considered a decision by LLVM-cov.

• The two types of branch coverage and MC/DC inconsis-
tencies (Section III-F) have big differences. The reason is
that the instrumentation produces the number of outcomes
and conditions statically, regardless of the actual program
execution. However, the coverage of individual outcomes
depends on the code paths exercised during execution.
As shown in Figure 4, 39 of 41 packages exhibit an

inconsistency in at least one of line coverage, branch coverage,
or MC/DC. The two exceptions—shadow and dbus—have the

sh
ad
ow

db
us

de
bi
an
ut
il
s sl

ho
st
na
me

li
bl
oc
kf
il
e

sy
sv
in
it

fi
le

di
st
ro
-i
nf
o

kr
b5

ne
wt

ps
mi
sc

ba
se
-p
as
sw
d

bz
ip
2

pa
m

co
re
ut
il
s

ut
il
-l
in
ux

cr
on

tr
ac
er
ou
te

xz
-u
ti
ls

if
up
do
wn

lz
o2

gz
ip

lz
ma

dm
id
ec
od
e

pr
oc
ps

pc
iu
ti
ls

ne
t-
to
ol
s

ma
n-
db lz
4

in
et
ut
il
s

cu
rl

ma
wk

gr
ep

le
ss

ls
of

na
no

e2
fs
pr
og
s

wg
et

ap
ac
he
2

ip
ro
ut
e2

100

101

102

103

104

N
u

m
b

er
of

In
st

an
ce

(s
)

Compared Lines

Inconsistent Lines

Compared Branches

Inconsistent Branches

Compared Decisions

Inconsistent Decisions

Fig. 4. Compared and inconsistent lines, branches, and decisions per Debian package (sorted by compared lines).

lowest number of compared lines. In terms of particular cover-
age metrics, 22 packages exhibit line coverage inconsistencies,
39 (38 for branch num and 18 for branch val) exhibit branch
coverage inconsistencies, and 16 (15 for mcdc num and 1 for
mcdc val) exhibit MC/DC inconsistencies.

We inspected 1,240 inconsistencies (all for MC/DC, and a
random subset of line and branch coverage). Our inspection
found 256 inconsistencies caused by 22 new bugs and two
known bugs (§IV-B2), 954 caused by at least 15 convention
differences (§IV-D), and 30 caused by using two different
compilers, e.g., compiler-specific strings inserted in the binary
executable programs leading to benign differences.

1) New Bugs: Table II lists the new bugs that we reported.
The top and bottom parts list the 22 and 10 new bugs found for
our simple commands (§III-C) and existing tests (elaborated
in §IV-G), respectively. We have two key observations:
• Despite substantial research on finding bugs in line cov-

erage [20]–[23], we still find new bugs for line coverage.
These new bugs demonstrate that using Debian packages
as inputs increases the richness of C/C++ language fea-
tures over small programs, e.g., automatically generated
by Csmith [25]. Additionally, we find 8 bugs that affect
branch coverage and MC/DC; note that some bugs affect
multiple metrics, e.g., LLVM#101241 and GCC#120319.
Interestingly, we find no bug for the mcdc val inconsistency.

• The fifth column of Table II shows how many of the
41 Debian packages manifest a specific bug, listing in the
parentheses the package(s) with the most occurrences. We
observe both high numbers of packages (up to 9), which
suggest the wide impact of some bugs, and low numbers (1
package), with bugs originating only from package-unique
code patterns. In particular, lzma and mawk expose most
bugs. One probable reason for lzma is its mixture of C and
C++ code, which leads to a greater diversity of language
features, e.g., object-oriented programming, C++ standard
libraries, or function calling between C and C++ code.
2) Known Bugs: DEBCOVDIFF also finds bugs that are

not new but duplicates of bugs already reported but not yet
fixed. For Gcov, we found multiple occurrences of wrong
line coverage for multiline logical expressions, similar as
reported in GCC#97923 [48]; this report has a pending
patch. For LLVM-cov, we found multiple occurrences of a
bug that is acknowledged in the LLVM-cov documentation
since 2016 [49] and hard to resolve due to unpredictable

control-flow changes (we call it LLVM#UCF and believe
it to be the same cause for Listing 3). We do not count
these known bugs among our new bugs. To our knowledge,
all 34 bugs that we reported to Gcov and LLVM-cov de-
velopers are unique and not duplicates of previous reports.

C2V
DebCovDiff

68 182

Fig. 5. Line coverage bugs found
by C2V [20] and DEBCOVDIFF.

We also compare the bugs
we found with the bugs from
C2V [20]. Figure 5 shows
the Venn diagram of the line
coverage bugs found by C2V
and DEBCOVDIFF for simple
commands. (DEBCOVDIFF also
finds 10 more line coverage bugs

for existing tests from Debian packages and 4 more non-line
bugs.) For the 18 line coverage bugs that DEBCOVDIFF finds,
we check their existence in the tool versions targeted by C2V,
i.e., GCC 8.0 and LLVM 7.0. 12 of 18 existed in the old
releases but were not found by C2V (to our ability to check).

Moreover, programs generated by Csmith would miss at
least 14 out of 18 bugs even now. To count, we summarize
the language constructs that trigger bugs and check whether
Csmith generates these language constructs. For each bug,
we implement a checker that over-approximates the triggering
language constructs. We used Csmith to generate 300,000
programs (100,000 each for the default Csmith configuration,
--lang-cpp, and --inline-function). Only 4 of the 18
combinations of constructs are in at least one of the 300,000
Csmith programs. The language constructs for the remaining
14 bugs are not in any of the 300,000 Csmith programs.

C. Case Study of New Bugs

1) LLVM coverage mapping: LLVM-cov maintains a ded-
icated coverage mapping [50] that helps it map coverage
counters to source code fairly precisely, but it is also hard
to implement correctly, especially with macros and headers.
In Listing 6, for example, the statement at line 5 should
have been measured with a dedicated “code region” [50].
However, LLVM-cov fails to do so because of a macro from
system header. The line coverage for line 5 falls back to a
less exactly matched block, the entire function, thus the value
1. LLVM#131505 shown in Listings 1 and 2 is similar but
triggered by a different set of language constructs.

2) Coding style: In real-world projects, coding style may
vary. Long statements are often split into multiple lines (“mul-

TABLE II
BUGS FOUND BY DEBCOVDIFF; L: LINE VAL, BN: BRANCH NUM, BV: BRANCH VAL, MN: MCDC NUM, MV: MCDC VAL; N/A: NOT RUN.

Bug ID Tool Incons. Type Affected Package(s) Occur. Triggering Condition(s)
1 120321 Gcov L 9 (lzo2) 6 + 11 constant, loop, no code, variable scope
2 120478 Gcov L 2 (lzo2) 3 + 2 inline function, multistmt
3 117412 Gcov L 3 (lz4) 3 + 1 dereference, function, multiline, type conversion
4 120482 Gcov L 1 (lz4) 3 + n/a const keyword, inline function
5 120490 Gcov L 1 (lz4) 3 + n/a inline function, switch-case
6 117415 Gcov L 1 (apache2) 1 + n/a dereference, function, if, loop, multiline
7 120348 Gcov L 1 (lzma) 1 + n/a C++, extern "C", function, loop, return, variable scope
8 120484 Gcov L 1 (curl) 1 + n/a if, loop, variable scope
9 120489 Gcov L 1 (lz4) 1 + n/a continue, dereference, loop, variable scope
10 120491 Gcov L 1 (lzma) 1 + n/a C++, constructor, multiline
11 120492 Gcov L 1 (lzma) 1 + n/a C++ standard library, type conversion
12 120486 Gcov L/BN 5 (distro-info) 6 + 19 multiline, ternary
13 120319 Gcov L/BN 1 (lzma) 3 + n/a C++, function, multiline, variable scope
14 120332 Gcov L/BN/BV 5 (lzo2) 4 + 16 if, loop, no code, switch-case
15 120485 Gcov BV 1 (mawk) 23 + 0 preprocessor directive, header
16 140427 LLVM-cov L 3 (mawk) 2 + 2 goto, if, loop, macro, return
17 114622 LLVM-cov L 1 (sl) 1 + n/a break, header, macro
18 116884 LLVM-cov L 1 (grep) 1 + n/a break, constant, loop
19 105341 LLVM-cov L/BV 1 (hostname) 1 + n/a concurrency
20 116902 LLVM-cov BN 1 (lzma) 3 + n/a C++ standard library, function
21 101241 LLVM-cov BN/MN 1 (net-tools) 2 + n/a comma, constant, tautological compare, type conversion
22 131505 LLVM-cov BN/BV/MN 1 (hostname) 1 + n/a dereference, header, macro, type conversion
23 121914 Gcov L 1 (lzo2) 0 + 4 inline function
24 121897 Gcov L 2 (ifupdown) 0 + 3 function, variable scope
25 121901 Gcov L 1 (bzip2) 0 + 3 dereference, loop, malloc, multiline
26 121896 Gcov L 1 (mawk) 0 + 2 function, if, pointer
27 121902 Gcov L 1 (ifupdown) 0 + 1 continue
28 158003 LLVM-cov L 1 (mawk) 0 + 4 macro, switch-case
29 158080 LLVM-cov L 2 (distro-info, mawk) 0 + 4 break, if, switch-case
30 157959 LLVM-cov L 2 (lzo2, procps) 0 + 2 goto, if
31 157946 LLVM-cov L 1 (distro-info) 0 + 1 preprocessor directive, header, macro
32 157981 LLVM-cov L 1 (psmisc) 0 + 1 loop, multiline

// test.h
1 | #define FOO (void) 0
// main.c

1 | #include <test.h>
2 1 | int main(int argc, char **argv) {
3 1 | if (argc == 1)
4 1 | return 1;
5 1 | FOO;
6 0 | return 0;
7 1 | }

Listing 6. Input program for LLVM#114622 reduced from sl package. The
invariant of Ctotal = Cthen+Celse is violated for the if statement; lines 5
and 6 forming the same basic block also wrongly have different line coverage.

tiline” in Table II). In rarer cases, multiple statements are put
in one line (“multistmt” in Table II). Gcov’s instrumentation
makes it hard to precisely associate a basic block to source
line(s). Figures 2 and 3 (Section III-D) show two confusing
examples, which we do not even count as bugs because we
managed to interpret them. However, in worse cases, such as
line 6 in Listing 7, Gcov results are definite bugs, as line
coverage for the same expression separated at line 6 and 7
differs when there is no change of control flow.

3) C++: Multiple aspects of C++ can trigger coverage
bugs, such as object-oriented code, routines from the C++
standard library, or mixture of C and C++ code. Listing 8
shows a case where changing the extension of the input file and
switching from gcc to g++ introduces bogus branch outcomes
in Gcov. With the C version, the if predicate is reported
to have 4 outcomes—true and false for g and foo()

respectively. With the C++ version, 2 extra outcomes show

1 | int g;
2 1 | int *foo() { return &g; }
3 1 | int main(void) {
4 1 | int *a = &g;
5 | &a;
6 2 | *foo() =
7 1 | *a;
8 | }

Listing 7. Input program for GCC#117415 reduced from apache2 package.
The whole snippet has a linear control flow and is executed exactly once, but
line 6 is wrongly reported to be executed twice.

// Compiled with "g++ --coverage"
1 0 | int foo(void) { return 1; }
2 | int g;
3 1 | int main() {
4 1 | if (g && foo()) { return 1; }

Branch (6 outcomes): [0,1,0,0,0,1]

5 1 | return 0;
6 | }

Listing 8. Input program for GCC#120319 reduced from lzma package. The
if predicate has two atomic conditions g and foo() but GCC wrongly reports
6 outcomes. With the exact same program but renamed with an extension name
*.c and compiled with gcc, the report correctly presents 4 outcomes.

up. Listing 9 shows another C++-related bug where the use of
std::string in function parameters introduces bogus branch
outcomes in LLVM-cov.

4) “No code”: Gcov struggles to associate coverage infor-
mation to source code elements that do not result in object
code, e.g., (void) 0 as a result of macro fallback expansion
(GCC#120321), goto labels, case labels, or deliberate empty

TABLE III
CONVENTION DIFFERENCES BETWEEN GCOV AND LLVM-COV REVEALED BY DEBCOVDIFF.

Short Description Incons. Type Affected Package(s) Occur. Triggering Condition(s)
1 Complex control flow in macros L 4 (inetutils, lzma) 9 goto, if, loop, macro
2 do-while statements L 5 (hostname) 6 if, loop
3 else if L 2 (gzip) 3 if
4 Multiline statements L/BN/BV 19 (iproute2) 283 multiline, ternary
5 switch-case statements L/BN/BV 12 (mawk) 142 no code, switch-case
6 Macros in decisions BN 11 (apache2) 150 macro
7 Decisions in macros BN 12 (lz4) 141 macro
8 Branches in inline functions BN 1 (lz4) 118 inline function
9 Branches for assertions BN 6 (lz4) 52 assertion

10 System header files BN 7 (iproute2) 44 header
11 Constant condition BN/MN 11 (iproute2) 58 constant
12 MC/DC ternary MN 8 (inetutils) 12 ternary
13 MC/DC empty “then” clause MN 3 (gzip) 6 if, no code
14 MC/DC inline function MN 1 (lz4) 1 const keyword, inline function
15 Masking vs. unique-cause MC/DC MV 1 (distro-info) 1 mixed conjunctive and disjunctive

1 | #include <string>
2 | int g = 1;
3 | std::string s = "hello";
4 1 | int foo(std::string s) { return 0; }
5 1 | int main() {
6 1 | if (g &&

Branch (4 outcomes): [0,1,1,0]

7 1 | foo(s))

Branch (2 outcomes): [0,1]

8 0 | return 1;
9 1 | }

Listing 9. Input program for LLVM#116902 reduced from lzma package. A
single atomic condition g is wrongly reported to have 4 outcomes.

1 1 | int main(void) {
2 1 | int i = 0;
3 | while (1) {
4 6 | 0;
5 7 | if (++i >= 7)
6 1 | break;
7 | }
8 | }

Listing 10. Input program for GCC#120321 reduced from lzo2 package.
The nop statement “0;” that is typically reported as “no code” by Gcov is
reported with an actual value 6 that contradicts other counters that follow it.

statements (GCC#120332). In Listing 10, Gcov reports for
line 4 wrong coverage that seems to refer to the implicit “else”
of the following if statement, conceptually the empty part
between lines 6 and 7. Similarly, Gcov can give case labels
wrong coverage values based on a different line or even scope.

5) Constants: Because LLVM-cov instruments the source
code before most compiler passes, it cannot recognize many
constant expressions. We label most inconsistencies stemming
from constants as convention differences (§IV-D), but one is
a definite bug, LLVM#101241. For the example in Listing 11,
the Clang frontend already warns that one condition is a
constant: “result of comparison [...] is always true”. However,
LLVM-cov fails to mark the condition as constant, reporting a
missed outcome that can never be covered for branch coverage
or MC/DC. The reason is that LLVM-cov implements its own
constant analysis rather than reusing the one from Clang.

1 | unsigned char g, h;
2 1 | int main(void) {
3 1 | if (g < 256 && h)

Branch (4 outcomes): [1,0,0,1]
MC/DC (2 conditions): [F,F]

4 0 | return 1;
5 1 | }

Listing 11. Input program for LLVM#101241 reduced from net-tools.
Expression g < 256 is always true for unsigned char g. LLVM-cov
marks most such conditions as “constant folded” but not this one.

1 switch (c) {
2 case 0:
3 case 1:
4 case 2:
5 <statement>;

LLLVM-cov LGcov
C0 C0 + C1 + C2

C0 + C1 None
C0 + C1 + C2 None
C0 + C1 + C2 C0 + C1 + C2

Fig. 6. A convention difference for line coverage in switch-case.

D. Convention Differences

Some inconsistencies are not bugs in any tool but arguably
different, potentially correct choices for measuring coverage.
We label 954 inspected inconsistencies as such convention
differences between the tools, with 15 categories listed in Ta-
ble III, where one inconsistency may be in several categories.

Of 15 convention differences, 5, 8, and 5 affect line cover-
age, branch coverage, and MC/DC, respectively. One conven-
tion difference can affect multiple metrics. E.g., Section III-D
briefly mentioned how tools treat switch-case statements
differently for branch coverage; more subtlety exists. (1) If a
switch has no explicit default case, LLVM-cov puts the
binary outcome for the implicit default case at the line of
switch, which often contradicts with Gcov that puts there
the multiple-outcome branch for the whole statement. (2) If
multiple case labels immediately fall through to the next,
Gcov presents the summed number of matches as line coverage
for the first label, but “no code” for the rest; LLVM-cov, in
contrast, differentiates all labels and presents line coverage in
an accumulated way, as shown in Figure 6.

Another noteworthy difference is #15 in Table III: Gcov
implements masking MC/DC, while LLVM-cov implements

1 2 | int foo(int a, int b, int c) {
2 2 | return (a && b) || c;

MC/DC by LLVM-cov (3 conditions): [F,F,F]
MC/DC by Gcov (3 conditions): [F,F,T]

3 2 | }
4 1 | int main(void) {
5 1 | foo(0, 0, 0);
6 1 | foo(1, 0, 1);
7 1 | }

Listing 12. Difference between unique-cause MC/DC (reported by LLVM-
cov) and masking MC/DC (reported by Gcov).

lo
op if

m
ul

ti
lin

e
m

ac
ro

fu
nc

ti
on

va
ri
ab

le
sc

op
e

in
lin

e
fu

nc
ti
on

de
re

fe
re

nc
e

he
ad

er

sw
it
ch

-c
as
e

ty
pe

co
nv

er
si
on

co
ns

ta
nt

no
co

de
br
ea
k

C
+

+
go
to

te
rn

ar
y

pr
ep

ro
ce

ss
or

di
re

ct
iv

e
re
tu
rn

co
nt
in
ue

C
+

+
st

an
da

rd
lib

ra
ry

co
ns
t

ke
yw

or
d

0

2

4

6

8

10

12

N
u

m
b

er
o
f

B
u

g
s

or
C

o
n
ve

n
ti

on
D

iff
er

en
ce

s Convention Differences

LLVM-cov Bugs

Gcov Bugs

Fig. 7. Programming language constructs that trigger inconsistencies.

unique-cause MC/DC [30], [31]. Listing 12 shows an example
where Gcov reports a condition as covered while LLVM-cov
reports the opposite; it manifests only for specific test vectors
to logical expressions that combine && and || operators [51].

E. Causes of Inconsistencies

Putting bugs and convention differences together, we seek
to understand the language constructs that trigger the incon-
sistencies. Figure 7 reveals Gcov (IR-based instrumentation)
and LLVM-cov (frontend instrumentation) have fundamental
differences, but neither is superior to the other, e.g.:
• “multiline” (6 of 7 bugs are in Gcov) and “no code” (both

bugs are in Gcov) show Gcov’s difficulty in mapping basic
blocks to accurate source lines;

• “macro” (all 5 bugs are in LLVM-cov) and “header” (3 of
4 bugs are in LLVM-cov) show LLVM-cov’s difficulty in
handling preprocessing: the coverage component may need
to perform analysis by itself (instead of piggybacking on
the later, widely-used stages of the compilation pipeline).
Certain analyses are even impossible, such as LLVM#UCF.
Control-flow constructs, such as “loop”, “if”, or “ternary”,

recur, suggesting they are especially hard to make correct.
Figure 8 shows the distribution of bugs and conventions

across packages. About half of them appear in multiple pack-
ages, with occurrence outliers such as convention #8 exhibiting
strong clustering pattern. This pattern suggests that package-
specific idioms may help stress test coverage tools.

F. Other Build Failures

Besides tool crashes (§IV-A), other factors prevent differen-
tial testing for 20 packages. Of these 20, Gcov did not work
for 18 and LLVM-cov for 13 (neither worked for 11). We
inspected the failures and summarize their root causes below.
Marcozzi et al. [28] report similar problems in their study

C
on

v#
4

C
on

v#
5

C
on

v#
7

C
on

v#
6

C
on

v#
11

G
C
C
#

12
03

21
C
on

v#
12

C
on

v#
10

C
on

v#
9

G
C
C
#

12
04

86

G
C
C
#

12
03

32
C
on

v#
2

C
on

v#
1

C
on

v#
13

LL
V

M
#

14
04

27

G
C
C
#

11
74

12

G
C
C
#

12
04

78

LL
V

M
#

15
80

80

G
C
C
#

12
18

97
C
on

v#
3

LL
V

M
#

15
79

59
C
on

v#
8

G
C
C
#

12
04

85

LL
V

M
#

15
80

03

G
C
C
#

12
19

14

LL
V

M
#

11
69

02

G
C
C
#

12
19

01

G
C
C
#

12
04

90

G
C
C
#

12
04

82

G
C
C
#

12
03

19

LL
V

M
#

10
12

41

G
C
C
#

12
18

96

0

30

60

90

120

150

180

210

240

270

N
u

m
b

er
of

O
cc

u
rr

en
ce

s

Occurrences

Affected Package(s)

0

2

4

6

8

10

12

14

16

18

N
u

m
b

er
of

A
ff

ec
te

d
P

a
ck

a
ge

(s
)

Fig. 8. Impacts of bugs and convention differences (only those with more
than 1 occurrences are shown).

where they also used Debian packages as test inputs (to test
compilers). Our success rate of generating coverage reports
for 41 out of 67 packages (using both Gcov and LLVM-cov)
is higher than their success rate [28] of generating coverage
reports for 39 out of 309 packages (using only Gcov), presum-
ably because the Debian build system and the reliability of
coverage tools improved. These issues do not show functional
bugs in the coverage tools but do show potential usability
issues as sophisticated configuration is needed to apply these
tools to real-world projects. As a baseline, we confirm that all
26 packages successfully build using the default GCC version
from sbuild without our flags.

The causes of build failures are in three categories. (1)
9 packages cannot build when we replace the default GCC
version with our GCC under test (newer than the default)
or LLVM/Clang and add coverage-related compiler flags,
e.g., one package (logrotate) enforces -Werror, and the
Clang warning for LLVM-cov MC/DC limit [35] becomes
a compilation error that breaks the build. (2) 4 packages
built but either generated no *.gcda files or had empty
*.profraw files: 2 packages use custom exit functions;
1 package (iputils) has special capability issues; and 1
package (glibc) hardcodes the compiler version and flags
(thus not using ours). (3) 7 packages had postprocessing
failures for Gcov, reporting either Cannot open source

file or stamp mismatch with notes file.

G. Impact of Existing Tests from Debian Packages

The aforementioned results are obtained from running sim-
ple commands as tests (see §III-C). To evaluate how more
thorough tests affect our results, we also experiment with
the test suites shipped with the Debian packages, namely
dh_auto_test (which is run during package builds). Of the
41 packages we evaluate, only 15 support the dh_auto_test

command. Among these 15, we could run differential testing
for nine, Gcov has postprocessing failures (the third case in
§IV-F) in five, and LLVM-cov reports mismatched data

with corrupted coverage reports in one (util-linux).
Table IV compares the numbers of coverage inconsistencies

that DEBCOVDIFF reports for the simple commands (SC) and
existing tests (ET) from dh_auto_test for the nine evaluated
packages. Overall, 238 of inconsistencies are found for both
SC and ET. Only 20 inconsistencies (2, 17, and 1 for line,

TABLE IV
INCONSISTENCIES REPORTED FOR SIMPLE COMMANDS (SC) AND

EXISTING TESTS (ET) IN 9 DEBIAN PACKAGES.

Inconsistencies Lines Branches Decisions
Only for SC 2 17 1
Common for SC and ET 28 208 2
Only for ET 409 134 12

branch, and MC/DC, respectively) are found for SC but not
for ET. Among them, 9 are due to ET not covering the source
file covered by SC. Eight are due to LLVM#UCF (§IV-B2)—
a function that does not return for SC does return for ET.
Two cases involve merging coverage when the same header
file is included multiple times. As a result, (1) convention
#4 in Table III no longer appears when the same function
has different bodies due to different #ifdefs; or (2) one line
is reported to have multiple MC/DC decisions and no longer
compared by our algorithm (§III). In one case, both tests reach
the same logical expression but take different branches; for
ET, the expression takes no short-circuit path, so a convention
(#4) gets masked, and the two tools agree by accident. The 20
inconsistencies missed by ET find one bug, but ET misses no
bug as its other inconsistencies find the same bug.

Most inconsistencies found for ET, 555 of 793 (70%), are
not found for SC. Of these 555, at least 227 are due to
convention differences and 300 due to bugs. We identify 18
bugs, of which 8 were also found for SC (6 in Table II and
2 in Section IV-B2), and 10 are new. Their occurrences in
ET-only inconsistencies are shown after ‘+’ in Table II (“n/a”
means the bug did not appear in any of 9 packages evaluated
with ET). We analyze why the 10 bugs found only for ET are
missed for SC. Unsurprisingly, ET covers more code than SC.
The bugs stem from 25 code locations, all of which have zero
coverage for at least one tool (23 for both tools) in coverage
reports for SC, and thus are not compared by our algorithm.

V. RELATED WORK

Testing C/C++ Toolchains. Prior work like Csmith [25]
has extensively tested C/C++ compiler toolchains. Notably,
Equivalence Modulo Inputs (EMI) [8] revealed lots of bugs;
Orion generates test variants by randomly deleting unexe-
cuted statements in seed programs to expose miscompilations.
Athena [52] improves upon Orion by introducing guided
mutations. It inserts new statements into unexecuted regions
and explores variants that differ significantly in control- and
data-flow from the original, thereby stressing compiler op-
timizations more thoroughly. Hermes [53] extends the EMI
approach by enabling mutations in “live” (executed) code,
not just dead code, which substantially broadens the mutation
space. Proteus [54] targets a different dimension of the com-
piler pipeline: link-time optimization (LTO). It splits single
translation units into multiple compilation units and tests the
optimizer by assigning randomized optimization flags per unit.

A recent extension to EMI is Creal [26], which intro-
duces a novel angle: enriching seed programs by injecting
real functions extracted from large codebases. Prior work by

Marcozzi et al. [28] uses real code, i.e., Debian packages, to
evaluate compiler bugs. Similarly, we use real code to test
coverage tools, complementary to the existing approaches that
use synthetic test inputs. Thorough testing should ideally use
both real code and synthetic tests.
Testing Coverage Tools. Prior work has also explored tech-
niques to reveal bugs in coverage tools. C2V [20] leverages
randomized differential testing to compare coverage results
between Gcov and LLVM-cov. Using Csmith-generated pro-
grams and selected programs from the tool’s test suites, C2V
identifies discrepancies in line coverage. Cod [21] improves
upon C2V by applying metamorphic testing to a single tool.
This approach eliminates the need for multiple coverage tools
and achieves zero false positive. Decov [22] further broadens
validation capabilities by introducing heterogeneous testing,
cross-checking coverage results against debugger-reported hit
counts using both breakpoints and single-stepping. Comple-
menting these approaches, DOG [23] formulates the vali-
dation as a constraint-solving problem, extracts control-flow
and control-dependence graphs from programs, and defines
control-flow constraints that capture expected relationships
among coverage statistics. Violations of these constraints are
encoded as SMT problems [55], enabling bug detection with-
out a second tool or program variants.

Our study uses differential testing as C2V [20]. However, no
prior work captured all complex patterns from real software,
due to the limitations of small test inputs. Moreover, no prior
work considered coverage metrics beyond line coverage.

VI. CONCLUSION

Reliability of code coverage tools is important because
coverage is used widely in software engineering, including
for safety-critical software. Prior work found many bugs in
Gcov and LLVM-cov, but (1) using only small, often synthetic,
input programs; and (2) only for line coverage. We present our
DEBCOVDIFF framework for testing Gcov and LLVM-cov on
real code from Debian packages. We identify 34 new bugs,
including 2 crashing bugs (in LLVM-cov) and 32 deeper bugs
(in LLVM-cov and Gcov) that produce wrong coverage reports
for line coverage, branch coverage, or MC/DC.

Our aspiring goal is to qualify open-source coverage mea-
surement tools, such as Gcov or LLVM-cov, per DO-330 [56]
to be usable for certifying software to DO-178C [12] as
required by the US Federal Aviation Administration, Euro-
pean Union Aviation Safety Agency, and Transport Canada
for approving all commercial aerospace software. DO-178C
requires measurement of branch coverage and MC/DC.

ACKNOWLEDGMENTS

We thank Lanea Rohan, Leslie He, Manvik Nanda, and
Tingxu Ren for their help in the project, and Yibiao Yang
for answering our technical questions about [20]. The work
was supported in part by Boeing 2023-BRT-PA-064 and NSF
grants CNS-1956007, CCF-1956374, and CNS-2145295.

REFERENCES

[1] J. C. Miller and C. J. Maloney, “Systematic mistake analysis of digital
computer programs,” Commun. ACM, 1963.

[2] Y. T. Chen, R. Gopinath, A. Tadakamalla, M. D. Ernst, R. Holmes,
G. Fraser, P. Ammann, and R. Just, “Revisiting the relationship between
fault detection, test adequacy criteria, and test set size,” in ASE, 2020.

[3] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage
and adequacy,” ACM Comput. Surv., 1997.

[4] P. Ammann, J. Offutt, and H. Huang, “Coverage criteria for logical
expressions,” in ISSRE, 2003.

[5] J. J. Chilenski and S. P. Miller, “Applicability of modified condition/deci-
sion coverage to software testing,” Software Engineering Journal, 1994.

[6] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE TSE, 2016.

[7] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
differential testing of JVM implementations,” in PLDI, 2016.

[8] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in PLDI, 2014.

[9] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“DEFLAKER: Automatically detecting flaky tests,” in ICSE, 2018.

[10] M. Ivanković, G. Petrović, R. Just, and G. Fraser, “Code coverage at
Google,” in ESEC/FSE, 2019.

[11] M. Ivanković, G. Petrović, Y. Kulizhskaya, M. Lewko, L. Kalinovčić,
R. Just, and G. Fraser, “Productive coverage: Improving the actionability
of code coverage,” in ICSE-SEIP, 2024.

[12] RTCA/DO-178C, “Software considerations in airborne systems and
equipment certification,” Dec. 2011.

[13] ISO 26262:2018, “Road vehicles — functional safety,” Dec. 2018.
[14] gcov, https://gcc.gnu.org/onlinedocs/gcc/Gcov.html, accessed on Oct.

1, 2025.
[15] llvm-cov, https://llvm.org/docs/CommandGuide/llvm-cov.html, ac-

cessed on Oct. 1, 2025.
[16] VectorCAST, https://www.vector.com/us/en/products/products-a-z/

software/vectorcast/, accessed on Oct. 1, 2025.
[17] Parasoft C/C++test, https://www.parasoft.com/products/

parasoft-c-ctest/, accessed on Oct. 1, 2025.
[18] JaCoCo, https://www.jacoco.org/jacoco/, accessed on Oct. 1, 2025.
[19] Coverage.py, https://coverage.readthedocs.io/, accessed on Oct. 1, 2025.
[20] Y. Yang, Y. Zhou, H. Sun, Z. Su, Z. Zuo, L. Xu, and B. Xu, “Hunting

for bugs in code coverage tools via randomized differential testing,” in
ICSE, 2019.

[21] Y. Yang, Y. Jiang, Z. Zuo, Y. Wang, H. Sun, H. Lu, Y. Zhou, and B. Xu,
“Automatic self-validation for code coverage profilers,” in ASE, 2019.

[22] Y. Yang, M. Sun, Y. Wang, Q. Li, M. Wen, and Y. Zhou, “Heterogeneous
testing for coverage profilers empowered with debugging support,” in
ESEC/FSE, 2023.

[23] Y. Wang, P. Zhang, M. Sun, Z. Lu, Y. Yang, Y. Tang, J. Qian, Z. Li,
and Y. Zhou, “Uncovering bugs in code coverage profilers via control
flow constraint solving,” IEEE TSE, 2023.

[24] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, 1998.

[25] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in PLDI, 2011.

[26] S. Li, T. Theodoridis, and Z. Su, “Boosting compiler testing by injecting
real-world code,” in PLDI, 2024.

[27] X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama, “To-
wards optimization-safe systems: Analyzing the impact of undefined
behavior,” in SOSP, 2013.

[28] M. Marcozzi, Q. Tang, A. F. Donaldson, and C. Cadar, “Compiler
fuzzing: How much does it matter?” in OOPSLA, 2019.

[29] A. Phipps, “Branch Coverage: Squeezing more out of LLVM Source-
based Code Coverage,” in 2020 LLVM Developers’ Meeting.

[30] ——, “MC/DC: Enabling easy-to-use safety-critical code coverage anal-
ysis with LLVM,” in 2022 LLVM Developers’ Meeting.

[31] J. Kvalsvik, “Modified Condition/Decision Coverage in the GNU Com-
piler Collection,” arXiv:2501.02133, 2025.

[32] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed., 2008.
[33] AFL, https://lcamtuf.coredump.cx/afl/, accessed on Oct. 1, 2025.
[34] libFuzzer, https://llvm.org/docs/LibFuzzer.html, accessed on Oct. 1,

2025.
[35] “Source-based Code Coverage,” https://clang.llvm.org/docs/

SourceBasedCodeCoverage.html, accessed on Oct. 1, 2025.
[36] “Clang compiler user’s manual,” https://clang.llvm.org/docs/

UsersManual.html, accessed on Oct. 1, 2025.
[37] “sbuild - build Debian packages from source,” https://manpages.

debian.org/bookworm/sbuild/sbuild.1.en.html, accessed on Oct. 1, 2025.
[38] Debian Wiki, “Reproducible builds,” https://wiki.debian.org/

ReproducibleBuilds/About, accessed on Oct. 1, 2025.
[39] Z. Ren, H. Jiang, J. Xuan, and Z. Yang, “Automated localization for

unreproducible builds,” in ICSE, 2018.
[40] Z. Ren, S. Sun, J. Xuan, X. Li, Z. Zhou, and H. Jiang, “Automated

patching for unreproducible builds,” in ICSE, 2022.
[41] Debian Wiki, “SourcesList,” https://wiki.debian.org/SourcesList, ac-

cessed on Oct. 1, 2025.
[42] Debian Policy Manual, “The Debian Archive,” https://www.debian.org/

doc/debian-policy/ch-archive.html, accessed on Oct. 1, 2025.
[43] S. Ledru, “Build of the Debian archive with Clang,” https://clang.debian.

net/, accessed on Oct. 1, 2025.
[44] “dh_auto_test - automatically runs a package’s test suites,” https:

//manpages.debian.org/bookworm/debhelper/dh auto test.1.en.html, ac-
cessed on Oct. 1, 2025.

[45] LCOV, https://github.com/linux-test-project/lcov, accessed on Oct. 1,
2025.

[46] ISO/IEC 9899:2024, “Information technology — programming lan-
guages — C,” Oct. 2024.

[47] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case
reduction for C compiler bugs,” in PLDI, 2012.

[48] GCC Bugzilla, “[GCOV] Wrong code coverage for multiple expressions
with Logical OR Operator at multiple lines,” https://gcc.gnu.org/bugzilla/
show bug.cgi?id=97923, accessed on Oct. 1, 2025.

[49] LLVM Mailing Lists, “r271544 - [docs] Add a limitations sec-
tion to SourceBasedCodeCoverage.rst,” https://lists.llvm.org/pipermail/
cfe-commits/Week-of-Mon-20160530/161069.html, accessed on Oct. 1,
2025.

[50] “LLVM Code Coverage Mapping Format,” https://llvm.org/docs/
CoverageMappingFormat.html, accessed on Oct. 1, 2025.

[51] J. J. Chilenski, “An investigation of three forms of the modified condition
decision coverage (MCDC) criterion,” Federal Aviation Administration,
Tech. Rep., 2001.

[52] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” in OOPSLA, 2015.

[53] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code mutation,”
in OOPSLA, 2016.

[54] V. Le, C. Sun, and Z. Su, “Randomized stress-testing of link-time
optimizers,” in ISSTA, 2015.

[55] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS,
2008.

[56] RTCA/DO-330, “Software tool qualification considerations,” Dec. 2011.

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://llvm.org/docs/CommandGuide/llvm-cov.html
https://www.vector.com/us/en/products/products-a-z/software/vectorcast/
https://www.vector.com/us/en/products/products-a-z/software/vectorcast/
https://www.parasoft.com/products/parasoft-c-ctest/
https://www.parasoft.com/products/parasoft-c-ctest/
https://www.jacoco.org/jacoco/
https://coverage.readthedocs.io/
https://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/docs/UsersManual.html
https://manpages.debian.org/bookworm/sbuild/sbuild.1.en.html
https://manpages.debian.org/bookworm/sbuild/sbuild.1.en.html
https://wiki.debian.org/ReproducibleBuilds/About
https://wiki.debian.org/ReproducibleBuilds/About
https://wiki.debian.org/SourcesList
https://www.debian.org/doc/debian-policy/ch-archive.html
https://www.debian.org/doc/debian-policy/ch-archive.html
https://clang.debian.net/
https://clang.debian.net/
https://manpages.debian.org/bookworm/debhelper/dh_auto_test.1.en.html
https://manpages.debian.org/bookworm/debhelper/dh_auto_test.1.en.html
https://github.com/linux-test-project/lcov
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97923
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97923
https://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20160530/161069.html
https://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20160530/161069.html
https://llvm.org/docs/CoverageMappingFormat.html
https://llvm.org/docs/CoverageMappingFormat.html

	Introduction
	Background and Scope
	Methodology
	Study Subjects
	Test Inputs
	Coverage Measurement
	Coverage Definitions
	Line coverage
	Branch coverage
	MC/DC

	Nondeterminism in Coverage Measurement
	Differential Testing Oracles
	Inspection and Deduplication

	Analysis
	Tool Crashes
	Coverage Report Inconsistencies for Simple Commands
	New Bugs
	Known Bugs

	Case Study of New Bugs
	LLVM coverage mapping
	Coding style
	C++
	``No code''
	Constants

	Convention Differences
	Causes of Inconsistencies
	Other Build Failures
	Impact of Existing Tests from Debian Packages

	Related Work
	Conclusion
	References

