
Fidelity of Cloud Emulators: The Imitation Game
of Testing Cloud-based Software

Anna Mazhar§, Saad Sher Alam, William X. Zheng, Yinfang Chen, Suman Nath†, Tianyin Xu
§Cornell University, Ithaca, NY, USA

University of Illinois Urbana-Champaign, Urbana, IL, USA
†Microsoft Research, Redmond, WA, USA

Abstract—Modern software projects have been increasingly
using cloud services as important components. The cloud-based
programming practice greatly simplifies software development by
harvesting cloud benefits (e.g., high availability and elasticity).
However, it imposes new challenges for software testing and
analysis, due to opaqueness of cloud backends and monetary
cost of invoking cloud services for continuous integration and
deployment. As a result, cloud emulators are developed for offline
development and testing, before online testing and deployment.

This paper presents a systematic analysis of cloud emulators
from the perspective of cloud-based software testing. Our goal is
to (1) understand the discrepancies introduced by cloud emula-
tion with regard to software quality assurance and deployment
safety and (2) address inevitable gaps between emulated and real
cloud services. The analysis results are concerning. Among 255
APIs of five cloud services from Azure and Amazon Web Services
(AWS), we detected discrepant behavior between the emulated
and real services in 94 (37%) of the APIs. These discrepancies
lead to inconsistent testing results, threatening deployment safety,
introducing false alarms, and creating debuggability issues. The
root causes are diverse, including accidental implementation
defects and essential emulation challenges. We discuss potential
solutions and develop a practical mitigation technique to address
discrepancies of cloud emulators for software testing.

I. INTRODUCTION

Modern software projects have been increasingly using
cloud services as important components for storage, database,
data processing, etc. Such cloud-based programming practice
greatly simplifies software development by harvesting cloud
benefits (e.g., high availability and elasticity) and software
deployment by reducing the cost of purchasing and manag-
ing large-scale systems and infrastructures. Today, all major
cloud providers offer various services to support cloud-based
software and these cloud services are widely used [1]–[3].

Despite its benefits, cloud-based programming imposes new
challenges for software testing and analysis due to opaqueness
of cloud backends and monetary cost of invoking cloud ser-
vices during continuous integration and deployment (CI/CD).
First, unlike other types of dependencies like libraries, which
are linked as a part of the software program, cloud services
are external to cloud-based software (invoked via REST API
calls), and their backend implementations are opaque. It is
hard to reason about the correctness of cloud-based software
independently, especially its end-to-end behavior. For example,
regressions of cloud backend implementations [4] can directly
affect dependent software that invokes corresponding APIs.

Second, testing cloud-based software with real services can
be costly, especially with CI/CD. Cloud services charge users
based on the number of API invocations, storage, and addi-
tional features like transaction support [5], [6]. So, extensive
testing on the cloud is expensive. For example, the test suite
of Orleans issues 120K+ Azure API calls. Under CI/CD, tests
are continuously invoked [7]–[9]. We expect even higher costs
in the near future as cloud services are increasingly adopted
by software projects and new tests are being added.

Cloud emulators are developed for cloud-based software
development and testing before online testing and deployment.
Nine out of ten projects we studied (§III) use emulators for CI
tests. We are also informed by a major cloud service provider
that emulators are widely used by customers who use their
service APIs. A cloud emulator offers local simulation of
large, complex cloud services. For example, a fault-tolerant,
persistent key-value storage service can be emulated by a
centralized, in-memory hash table [10]. Cloud emulators en-
able developers to conduct prompt, cost-efficient offline testing
and debugging [11]. They are transparent to software under
test—using emulators requires no code change but a simple
setup to connect to emulated services. Cloud emulators are
typically developed or supported by cloud service providers.
For example, Microsoft provides emulators for Azure services,
e.g., Azurite [12] for Azure Storage Services [13].

Ideally, emulators should behave the same as real cloud
services so that software quality assurance, like testing, can
rely on emulators. However, it is prohibitively difficult for em-
ulators to achieve perfect fidelity (considering the complexity,
scale, and distributed nature of cloud services). In practice,
emulators implement specifications of cloud service APIs
(§II). However, as shown in our study (§V-A), specifications of
today’s cloud services and their APIs are often incomplete and
limited. Without formal enforcement of emulator compliance
with real cloud service, it is unclear how much fidelity today’s
emulators could realize. We use the term discrepancies to refer
to emulator behavior that deviates from specified behavior of
cloud services. We observed that discrepancies are constantly
reported to affect testing of cloud-based software [14]–[17].

In this paper, we analyze the discrepancies between cloud
emulators and cloud services to understand the fidelity of cloud
emulation in practice and its impacts on cloud-based software
quality assurance and developer experience. Specifically, we
apply differential testing against two widely used cloud em-

Emulator

Cloud

400

Blob created
successfully

Client

Deployment
Safety Violation

201

BlockBlob_Upload(Source_URL)

“One of the HTTP headers is
not in the correct format”

Emulator

Cloud

200

Incompatible location
constraint

Client

False Alarms
400

PutBucketInventoryConfiguration(Bucket, ID)

Request accepted

Emulator

Cloud

400

Exception while calling
s3.CopyObject

Client

Debuggability
Issues

500

CopyObject(Bucket, CopySource, Key)

“Invalid copy source object
key”

Root Cause: Emulator (Azurite) lacks URL format validation for
this API, resulting in a successful response to an invalid request.

Root Cause: Emulator (LocalStack) inaccurately simulates S3's
regional access rules, causing error response to a valid request.

Root Cause: Emulator (LocalStack) fails to handle exceptions
properly when invalid object keys are encountered.

Azure Blob AWS S3

AWS S3

(a) Deployment safety violation

Emulator

Cloud

400

Blob created
successfully

Client

Deployment
Safety Violation

200

BlockBlob_Upload(Source_URL)

“One of the HTTP headers is
not in the correct format”

Emulator

Cloud

200

Incompatible location
constraint

Client

False Alarms
400

PutBucketInventoryConfiguration(Bucket, ID)

Request accepted

Emulator

Cloud

400

Exception while calling
s3.CopyObject

Client

Debuggability
Issues

500

CopyObject(Bucket, CopySource, Key)

“Invalid copy source object
key”

Root Cause: Emulator (Azurite) lacks URL format validation for
this API, resulting in a successful response to an invalid request.

Root Cause: Emulator (LocalStack) inaccurately simulates S3's
regional access rules, causing error response to a valid request.

Root Cause: Emulator (LocalStack) fails to handle exceptions
properly when invalid object keys are encountered.

Azure Blob AWS S3

AWS S3

(b) False alarm

Emulator

Cloud

400

Blob created
successfully

Client

Deployment
Safety Violation

200

BlockBlob_Upload(Source_URL)

“One of the HTTP headers is
not in the correct format”

Emulator

Cloud

200

Incompatible location
constraint

Client

False Alarms
400

PutBucketInventoryConfiguration(Bucket, ID)

Request accepted

Emulator

Cloud

400

Exception while calling
s3.CopyObject

Client

Debuggability
Issues

500

CopyObject(Bucket, CopySource, Key)

“Invalid copy source object
key”

Root Cause: Emulator (Azurite) lacks URL format validation for
this API, resulting in a successful response to an invalid request.

Root Cause: Emulator (LocalStack) inaccurately simulates S3's
regional access rules, causing error response to a valid request.

Root Cause: Emulator (LocalStack) fails to handle exceptions
properly when invalid object keys are encountered.

Azure Blob AWS S3

AWS S3

(c) Debuggability issue

Fig. 1: Implications of discrepancies between cloud emulators and cloud services with regards to software testing.

ulators, Azurite [12] for Azure Storage services (including
Blob, Table, and Queue) and LocalStack [18] for Amazon Web
Services (including S3 and DynamoDB). We record discrepant
behavior between the cloud emulator and the cloud services,
and analyze the root cause of each discrepancy. We focus on
basic functional correctness, instead of performance or fault
tolerance (e.g., data consistency and crash consistency) which
are beyond the expectation of local emulation.

Our analysis results are concerning. Among 255 APIs of five
cloud services from Azure and Amazon Web Services (AWS),
we detected discrepant behavior between the emulated and real
services in 94 (37%) of the APIs. These discrepancies have
profound implications on deployment safety and developer
experience: (1) code that passes tests with emulators may
fail in production when cloud services are used; (2) test
failures with emulators can be false alarms; and (3) debugging
with emulators can be hard due to discrepant feedback (e.g.,
error code and messages). Figure 1 shows three examples we
discovered in our analysis. We further analyze ten open-source
cloud-based software projects; five of them are affected by
discrepancies—some of their tests have inconsistent results
when running on the cloud emulator versus the cloud services.
In one project (Durabletask [19]), 78% of the tests are affected.

The root causes of discrepancies are diverse but can be
categorized into (1) incompleteness of existing specifications,
(2) unspecified behavior, and (3) implementation defects (such
as bugs and missing features). While these root causes reflect
essential software engineering challenges, we believe that
many discrepancies could be addressed by more comprehen-
sive testing and more systematic specification. We discuss
potential solutions and mitigations, ranging from practical
formal methods to new system-level support (§VI).

We explore hybrid cloud-emulator testing as a short-term
mitigation and develop a simple tool named ET to selectively
run tests on emulators versus cloud services, based on whether
the test invokes discrepant APIs (§VII). ET offers different
policies depending on whether discrepant API information is
known as apriori or being done via in-situ analysis. Through
ET, we show that hybrid testing yields considerable cost
savings compared to running all tests with cloud services.

The paper makes the following main contributions:

• A discussion on the challenges of testing cloud-based
software and the discrepancies introduced by emulators.

• A systematic analysis of discrepancies between cloud ser-

vices and their emulators, including their characteristics,
root causes, and impacts on software testing.

• A discussion on solutions to discrepancies and a mitiga-
tion tool to selectively run tests with emulators.

• We reported bugs that caused the discrepancies; so far,
six have been confirmed and five have been fixed.

• Research artifact: https://github.com/xlab-uiuc/cloudtest.

II. BACKGROUND

A. Cloud Services and Their APIs

Modern cloud services are programmatically accessed via
REST APIs (defined as follows) on top of HTTP(S).
Definition 1 (REST API). In this paper, we defined a REST
API as an HTTP method plus the resource. For example, “GET
/blog/posts/{id}” and “PUT /blog/posts/{id}” are considered
two unique REST APIs of a web blogpost service.1

A service typically exposes several tens of REST APIs. For
example, AWS S3 exposes 97 REST APIs [22], and Azure
Blob service exposes 72 REST APIs [23]. To ease developer
programming, cloud services provide Software Development
Kits (SDKs) with high-level, language-specific library APIs.
Typically, SDK APIs wrap raw REST APIs, and for a service,
more SDK APIs are built on top of the REST APIs. Most
existing cloud-based applications invoke SDK APIs to interact
with the cloud services instead of calling raw REST APIs.

1) API Specification: The REST APIs are commonly de-
scribed using specification languages such as OpenAPI Spec-
ification [24]. The specification describes the API version,
request URI, content type, input parameter, output format,
error code and messages, etc. The API specifications are used
by cloud emulators (§II-B) to develop emulated APIs.

We find that the API specifications are often incomplete. For
example, the OpenAPI specification of Azure Blob services
only specifies value constraints (including data types) for 63
(59%) of 107 parameters across all Azure Blob APIs. Besides,
all the specifications are on data type, value range, and default
value with no behavior semantics (e.g., async or not).

SDKs often include additional checks on parameter values
of API calls over the API specifications—values that satisfy
the API specification could be rejected by the SDK checks.

1We follow the REST API definition used in Azurite [20]. This definition
can be inconsistent with other definitions, e.g., an API in our definition is
referred to as an “API operation” in [21]. We choose this definition because it
resembles SDK APIs faced by developers (e.g., “read a blog post” and “create
a new blog post” are corresponding to two different SDK APIs).

2

https://github.com/xlab-uiuc/cloudtest

2) Pricing: Cloud services are expensive. Despite different
pricing models of cloud services, pricing typically depends on
the amount of data to be stored and the cost of operations. Take
Azure Blob service as an example. The price for 100TB/month
ranges from $91–$1,545, depending on the access tiers [5].
Azure Blob service then charges for read, write, iterative-read,
and iterative-write operations separately [25]. For example,
the price for write operations varies from $0.0228–$0.13 per
10,000 writes, depending on the tier. Other features, such as
redundancy [26]–[28], further increase the cost.

With the current pricing model, testing cloud-based software
incurs non-trivial monetary costs. To demonstrate the cost, we
run the tests of Orleans (a cloud-based software project) for
Azure Storage services with standard configuration. Orleans
has 189 tests that issue 120K+ Azure API calls over 23 unique
APIs. We run these tests 500 times, which costs $74.5 US
dollars (we expect 500 times to be a reasonable time in CI/CD
of large software projects [29], [30]).

B. Cloud Emulator

To reduce cost and get prompt feedback, emulators are
developed to assist developers in offline development and
testing. Emulators can also be used for debugging production
problems. Emulators run as local daemons that simulate cloud
services. Cloud-based software programs transparently interact
with the emulator in the same way they interact with cloud
services. Using an emulator only needs a simple configuration
that switches the connection from a cloud handle to localhost
listened to by the emulator; no code change is needed.

Most cloud services provide developers with official emu-
lators. For example, Microsoft provides emulators for Azure
Storage and CosmosDB, and AWS provides emulators for Dy-
namoDB and Step Functions. Moreover, third-party emulators
are developed. One successful example is LocalStack [18],
which emulates many AWS services such as S3 and Dy-
namoDB. Compared with official emulators, LocalStack pro-
vides a more usable integrated development environment [31].
Our study deliberately selects an official emulator (Azurite)
and a third-party emulator (LocalStack).

For compliance with the target cloud services, cloud emula-
tors are commonly built on top of API specifications. For ex-
ample, Azurite uses AutoRest [32] to generate stub code from
the OpenAPI specification of Azure Storage services [33].
LocalStack employs weekly GitHub Action Checks to detect
any changes of the API specifications of AWS [34].

C. Emulation versus Mocking

Mocking is a common practice used in unit tests to simulate
dependencies of code under test [35], [36]. Unlike emulators,
mocked objects are not required to rigorously satisfy API
specifications, because mock uses “behavior verification [36].”
For this reason, mock cannot help with state verification.

Emulation is fundamentally different from mocking. An em-
ulator is expected to conform to API specifications of the cloud
services (for proprietary services, API specifications are the
contract). The emulator is designed as a drop-in replacement

TABLE I: Emulators and cloud services studied in this paper
(only AWS services studied in this paper are listed).

Emulator Service LOC #Commits Developer

Azurite Blob, Queue, Table 2,591K 1,034 Official
LocalStack S3, DynamoDB 449K 5,527 Third-party

for the actual service so developers can move from testing to
deployment by simply changing a connection string. Emulators
are closer to “fakes” [35], [36] than mocks. An emulator
must maintain states so producer-consumer dependencies are
expected to be the same. The emulator does not have to behave
exactly the same or maintain the same internal states as the
actual service beyond API specifications.

Without high-fidelity emulators, cloud-based software de-
velopers can only run tests with the actual services at certain
time points during CI/CD. However, this creates a difficult
trade-off between cost and effectiveness. Running tests against
actual services frequently may incur high costs. Infrequent
testing with actual services leads to big bundles of commits,
affecting CI/CD effectiveness and reducing developer experi-
ence. Therefore, emulator fidelity is important.

III. METHODOLOGY

We use differential testing to discover discrepancies between
cloud emulators and real cloud services. Basically, we issue
the same REST API calls to the emulated service and the
cloud service independently and check the resulting behavior,
including the return values, error codes or messages (if any),
and states of key data objects such as blobs and containers.
Any inconsistent behavior indicates a discrepancy.

Studied emulators. We select two cloud service providers
with the highest market share, Microsoft Azure and Amazon
Web Services (AWS) [37]. For these two providers, we choose
to study the most commonly used emulators: Azurite [12]
and LocalStack [18]; they represent state-of-the-art. Moreover,
Azurite represents the official emulators provided by cloud
service providers, while LocalStack represents third-party em-
ulators developed by companies of cloud-based integrated
programming environments. Importantly, both emulators are
open-sourced, which enables us to debug discovered discrep-
ancies. Table I lists the information of the two emulators.

Studied services. For the two emulators, we select five widely
used cloud services: Blob, Queue, and Table services from the
Azure Storage services and S3 and DynamoDB from AWS.
Azurite only supports Azure Storage services (Blob, Queue,
and Table); for LocalStack, we pick DynamoDB and S3 as
popular and commonly used AWS services.

Test workloads. We use two complementary test workloads.
First, we leverage API fuzzing to generate sequences of REST
API calls. Each API call sequence is a test workload and
the workloads collectively cover all the REST APIs provided
by the target cloud services. The API fuzzing workloads
help us understand the discrepancies in each REST API and
characterize a broad range of APIs.

3

The fuzzing is done against SDK APIs, not raw REST APIs.
We in fact started from REST API fuzzing using RESTler [21].
However, we found that certain discrepancies are not possible
if the software under test uses SDKs which have additional
checks (§II). In practice, developers do not commonly craft
REST API calls directly but mostly call SDK APIs (§II-A).
Since our goal is to understand discrepancies in the context of
software development, rather than security analysis [21], [38],
we choose to fuzz SDK APIs. Basically, we focus on analyzing
discrepancies faced by cloud-based software developers.

We also use the test suites of existing cloud-based software
projects as the test workloads. Many tests invoke cloud service
APIs. These tests help understand the impact of discrepancies
on testing real-world software projects, which is complemen-
tary to fuzzing from the API perspective.

Fuzzing SDK APIs. We implemented a grammar-aware API
fuzzer to generate diverse SDK API calls as test workloads. We
start from default or predefined parameter values for each SDK
API and the fuzzer mutates parameter values based on value
constraints defined in OpenAPI specifications of REST APIs
(the “grammar”). To do so, we establish the mapping from
the parameters of REST APIs to those of the corresponding
SDK APIs; the mapping process is straightforward because
SDK APIs are mostly wrappers over raw REST APIs. The
grammar-based mutation ensures that generated SDK API calls
are mostly valid and can reach emulated or real cloud services.
Our fuzzer implements the fuzzing approach of RESTler [21]:
(1) inferring producer-consumer dependencies among request
types (e.g., “API Y should be called after API X” because
Y takes as an input a resource-ID produced by X) and (2)
taking dynamic feedback from responses during testing (e.g.,
learning that “a API Y called after a sequence X → Y is
refused” and avoiding this combination in the future).

We monitor the response of each API call. If inconsistent
responses are returned by the emulator and the cloud services
(including both HTTP response status code like 200 and 404,
as well as error code and message if the response returns
an error), we capture and record the discrepancy and abort
the test. Otherwise, we progress to the next API call in
the generated sequence. We also check the key data objects
before and after the API calls (e.g., the number of blobs
for Azure Blob Services) to capture discrepancies with no
immediately observable manifestation, such as resource leaks
(§IV-B). Those checks are service-specific.

Using existing tests. To understand the impact of discrepan-
cies on real-world software projects, we perform differential
testing using test suites of existing projects. We select ten
open-source projects (Table II) that use the studied cloud
services. The ten projects are selected because they are mature
and widely used (based on the total number of commits and
star counts), developed by reliable sources such as companies
like Microsoft (Orleans, DurableTask), NuGet (Insights), and
PetaBridge (Alpakka), and are actively maintained and use
recent versions of the studied cloud service APIs.

In our study, we select tests that interact with the cloud

TABLE II: Cloud-based software projects. “#Tests” refers to
tests that invoke cloud services; “#APIs” refers to unique APIs.

Project Services LOC #Tests #APIs

Alpakka Queue 22.5K 9 6
AttachmentPlugin Blob 1.9K 23 7
DurableTask Blob, Queue, Table 59.0K 101 30
IdentityAzureTable Table 85.7K 51 6
Insights Blob, Queue, Table 144.8K 171 20
IronPigeon Blob 37.8K 7 8
Orleans All services but S3 204.8k 247 35
ServiceStack DynamoDB, S3 756.2K 187 15
Sleet Blob, S3 21.2K 22 21
Streamstone Table 4.6K 75 7

services. The selection is done by monitoring the HTTP traffic
of each test in a reference run using the emulator. We check
whether a test outputs inconsistent results when running with
emulators versus cloud services. Table II shows the number
of tests that invoke cloud services and the number of unique
APIs invoked by the test suite of each project.

Discrepancy analysis process. We inspect every observed
discrepancy during the aforementioned testing. A discrepancy
is recorded if it manifests via inconsistent test results—the
results of a test are different when running with the emulator
versus the real services. For each discrepancy, we verify it by
deterministically reproducing its manifestation and impact, and
debug it to localize the root cause in emulator source code. The
process helped us minimize human errors during the analysis
and subjectiveness in the interpretation and categorization.

IV. DISCREPANCY CHARACTERISTICS

A. Prevalence of Discrepancies

Our analysis shows that discrepancies are prevalent in the
two cloud emulators (Azurite and LocalStack). The five cloud
services we studied expose a total of 255 APIs. Among these
255 APIs, our API fuzzer (§III) discovered discrepancies in
94 (37%). Table III shows the number of discrepant APIs of
each service. We define a discrepant API as follows:

Definition 2 (Discrepant API). An API is discrepant if it can
expose inconsistent behavior, in the scope of its specification,
when invoked on the emulator versus on the real cloud service.

Both Azurite and LocalStack have a considerable percentage
of discrepant APIs among all the APIs they support and across
the services, showing that discrepancies are not specific to one
emulator implementation or specific to APIs of a particular
service. Rather, emulator fidelity is a common challenge.

These discrepancies have different implications as exempli-
fied in Figure 1, including (1) deployment safety violations
(1a), (2) false alarms (1b), and (3) debuggability issues (1c).
Table IV categorizes the implications of the total 98 discrep-
ancies discovered in the 94 discrepant APIs (one discrepancy
can have different implications). The results show diverse
implications of these discrepancies. We measure their impacts
on real-world test cases in §IV-C.

Surprisingly, we find that 37 of the 94 discrepant APIs are
certified by the emulators and considered “fully supported.”

4

https://github.com/akkadotnet/Alpakka
https://github.com/SeanFeldman/ServiceBus.AttachmentPlugin
https://github.com/Azure/durabletask
https://github.com/dlmelendez/identityazuretable
https://github.com/NuGet/Insights
https://github.com/AArnott/IronPigeon
https://github.com/dotnet/orleans
https://github.com/ServiceStack/ServiceStack
https://github.com/emgarten/Sleet
https://github.com/yevhen/Streamstone

TABLE III: Discrepant APIs with respect to the cloud services

Services Emulator Total APIs Discrepant APIs

Azure Blob Azurite 72 31 (43%)
Azure Table Azurite 15 1 (7%)
Azure Queue Azurite 18 2 (11%)
AWS S3 LocalStack 97 33 (34%)
AWS DynamoDB LocalStack 53 27 (51%)
Total 255 94 (37%)

TABLE IV: Impacts of discrepancies across emulators.

Impact Azurite/Azure LocalStack/AWS Total

Deployment safety 13 22 35
False alarms 12 33 45
Debuggability issues 9 9 18
Total 34 64 98

LocalStack adopts five methods to certify emulated APIs [39],
[40], including both internal and external integration tests
(e.g., snapshot tests [41]). Despite extensive efforts, 22 (out
of 60) discrepant APIs from LocalStack are certified by all
five testing methods, while 39 (out of 60) discrepant APIs are
certified with at least one test method. Similarly, 15 (out of 34)
discrepant APIs from Azurite are certified to be fully supported
by Azurite [20]. The results show the challenges faced by
existing testing-based practices in detecting discrepancies.

Finding 1. Discrepancies between modern cloud emulators
and real cloud services are prevalent (discovered in 37% of
APIs on average and even in certified APIs). The implications
of discrepancies are diverse, including unsafe deployment,
false alarms, and debuggability issues.

B. Discrepancy Manifestations

A notable observation is that discrepancies are manifested
through not only inconsistent responses to the API calls, but
also inconsistent remote, cloud-side states. The latter creates
significant challenges to observe and understand discrepancies,
especially with short-running test cases. We implemented
domain-specific checks to compare the remote states main-
tained by the emulators and the corresponding cloud services
(§III). For example, we check the states of each container
(maintained by the emulators and cloud services) before and
after each container-related API call.

Seven discrepancies have the same response to API calls but
create inconsistent remote states. For example, when invoking
an Azure Blob API, “Container_Restore [42]”, to recover
an early deleted container, both Azurite and the Azure Blob
service return the same response; however, the Blob service
faithfully restores the deleted container, while Azurite creates
a new empty container. Such discrepancies may not be easy
to capture without fine-grained checks.

We also find 44 discrepancies that cause inconsistent re-
sponses and inconsistent remote states. For example, when
calling a Blob API “BlockBlob_StageBlockFromURL” [43] with
an invalid URL, Azurite succeeds by creating a new blob,
while the Blob service fails with InvalidHeaderValue.

TABLE V: Software tests that are affected by discrepancies.

Project # Discrepant # Discrepant Impact
Results Tests Safety Vio. False Alarms

Alpakka 9 (100%) 9 9 0
DurableTask 79 (78%) 101 79 0
Orleans 8 (9%) 82 5 3
ServiceStack 3 (2%) 72 2 1
Streamstone 1 (1%) 75 1 0
Total 100 339 96 4

Table_Delete: 286 tests
BlockBlob_Upload: 190 tests

Queue_Delete: 157 tests
Container_Delete: 142 tests
Blob_AcquireLease: 128 tests

62 APIs are not used by any tests

Fig. 2: Popularity of Azure Storage APIs, measured by the
number of tests that use an API across all the studied projects.

Finding 2. Discrepancies that only manifested via inconsistent
remote states are hard to observe; fine-grained state checks are
needed to capture those silent discrepancies.

C. Impact on Real-world Tests

We measure the impacts of discrepancies on real-world test
suites of cloud-based software projects (Table II). The impact
is reflected by inconsistent test results when running the same
test with the emulator versus the cloud service. We define
discrepant tests as follows:

Definition 3 (Discrepant test). A test is a discrepant test if it
invokes any discrepant APIs. Note that a discrepant test may or
may not output discrepant test results, depending on whether
API call statements are executed and whether discrepancy-
inducing parameters are used during the test execution.

Among the ten projects we evaluated (Table II), we discov-
ered discrepant test results in 50% of them (five projects), as
shown in Table V. Different projects are affected at different
levels, ranging from 1% to 100% of tests that invoke cloud
services. The variation is attributed to the usage characteristics
of the cloud service APIs. Specifically, though we discovered
a large number of discrepant APIs (§IV-A), not all these APIs
are equally invoked by the test cases. Figure 2 depicts the
popularity of all Azure Storage APIs (105 in total) invoked
by all the tests of the studied projects, where discrepant APIs
are marked in red. Popularity is measured by the number of
tests that use the API. Among the 105 APIs, only 43 of them
are invoked by at least one test. Only 12 APIs (out of 43)
involved in the tests are discrepant (while 34 discrepant APIs
in total are discovered for Azure; see Table III).

Note that the number of discrepant tests is much larger than
the number of discrepant test results manifested (Table III).

5

The reason is that many discrepant tests are only manifested
when certain parameter values are used.

The results have two important implications. First, address-
ing discrepancies can leverage API usage characteristics in
the field to prioritize widely used APIs. Oftentimes, fixing
discrepancies of a few APIs can eliminate a large number of
discrepant tests or test results. We take all the tests using Azure
services as the example: by resolving the top five discrepant
Azure APIs in Figure 2, discrepant tests drop by 63% (from
267 to 99) and discrepant results drop by 10% (from 89 to
80). The small drop in discrepant results is caused by tests
in DurableTask utilizing multiple discrepant APIs. If the top
seven discrepant Azure APIs are resolved, 75 out of the 79
discrepant results caused by DurableTask will be eliminated.

Second, fine-grained, parameter-level analysis can further
capture discrepancies. Although our analysis stays at the API
level instead of parameters, we build on these implications
when designing mitigation solutions (§VII).

Finding 3. Five out of ten studied software projects reveal
discrepant test results caused by discrepancies between emu-
lators and cloud services. Those discrepant tests are caused
by a small set of discrepant APIs. Not all discrepant APIs
manifest during testing if triggering parameters are not used.

We further categorize the implications of discrepant tests
into (1) deployment safety violations (1a), and (2) false alarms
(1b), as broken down in Table V. Debuggability issues are not
applicable here as the tests all pass in the default setup.

The majority of test discrepancies would lead to deployment
safety violations—the test that passes with the emulator would
fail when running with the cloud service (i.e., passing the test
provides no safety guarantee on the cloud). For example, a
test CreateTaskHub in DurableTask uses the Azure Blob API,
Container_Create, to re-create a previously deleted blob con-
tainer. This test fails when running with the cloud service due
to DurableTaskStorageException—“the specified container is
being deleted; try operation later,” because container deletion
is asynchronous and provides no guarantee for the time to
finish. However, this test always passes when running with
the Azurite emulator, as Azurite always deletes the container
synchronously before the API returns.

False alarms are relatively less common than deployment
safety issues (Table V). Two (out of four) false alarms are
caused by brittle assertions on the error messages returned by
the API calls (which are discrepant between the emulator and
the cloud service). Such discrepancies can be addressed by
enforcing the consistencies of the error messages. One false
alarm is caused by a flaky test [44], [45]; the non-deterministic
flaky behavior only manifests when running with the emulator,
not with the cloud service, due to order differences caused
by discrepant timing of API calls. We fixed the flaky tests
by adding await to enforce the order. The last false alarm is
caused by resource discrepancy—the stress-test in Orleans
exhausted the socket limit of LocalStack (which passes with
the cloud service). Such resource discrepancies are essential,

TABLE VI: Root causes of observed discrepancies.

Service Incomplete Spec. Unspecified Defects in Impl.

Azure Blob 18 (58.1%) 1 (3.2%) 12 (38.7%)
Azure Queue 1 (50.0%) 1 (50.0%) 0 (0.0%)
Azure Table 0 (0.0%) 1 (100.0%) 0 (0.0%)
AWS S3 11 (29.7%) 14 (37.8%) 12 (32.4%)
AWS DynamoDB 2 (7.4%) 4 (14.8%) 21 (77.8%)

and stress tests should not use emulators in the first place.

Finding 4. Deployment safety violations are the major impli-
cations of discrepant tests, while false alarms also appear in
testing results. Tests of cloud-based software projects need to
carefully decide to run on emulators versus cloud services.

V. ROOT CAUSE ANALYSIS

We discuss the discrepancies from the specification perspec-
tive. Conceptually, both the emulator and the cloud services
are implementations of the API specification (in practice, em-
ulators implement the API specifications defined by the cloud
services). So, discrepancies are the result of defects in either
specification or implementation. Based on the existing API
specifications (§II), we categorize the discrepancies into: (1)
incomplete specification, (2) unspecified behavior that is not
considered in existing specifications, and (3) implementation
defects in the emulators or the cloud services. Table VI shows
the three categories of discrepancy root causes.

During the project, we detected ten bugs in the two studied
emulators, of which six have been confirmed (and five fixed).
We also detected two bugs in the cloud backend implementa-
tions, which have been reported to the cloud service providers.

A. Incomplete Specifications

As discussed in §II, existing cloud service API specification
focuses on parameter value constraints and error codes and
messages, from which emulators automatically generate stub
code that adheres to the specifications (e.g., using AutoR-
est [32]). However, we still find that a significant percentage
of discrepancies are caused by inconsistent validity checks
of parameter values as well as inconsistent error code and
messages. The reason is incomplete specifications. Table VI
shows that incomplete specifications can cause up to 58.1%
of the discovered discrepancies in a service.

1) Parameter value constraint: Ideally, the API specifica-
tion should define all the value constraints of every input
parameter. In reality, API specifications are deficient. We
observe discrepant value constraint checks in twelve out of
34 discrepant Azure Storage APIs and ten out of 33 AWS S3
APIs. We observe no such discrepancy in DynamoDB.

Figure 3a shows such an example from Azure Blob, where
the value of the x-ms-proposed-lease-id parameter of the
Blob_ChangeLease API should be in the GUID format [46].
The Blob service implements a format check, while Azurite
does not. As a result, an invalid API call of Blob_ChangeLease
will be returned successfully by the emulator but rejected by

6

InvalidHeaderValue

Emulator

Cloud

OK

Lease ID should be
GUID format

No check for Lease ID

Client

Deployment
Safety Violation

Blob_ChangeLease

400

Emulator

Cloud400
Client

Debuggability
Issues

Bad Request

“The number of Queue msg
should be within 1 to 32”

Empty message

Messages_Peek
OutOfRangeQueryParameterValue

200

400

Azure Blob

Azure Queue (a) Parameter value constraints

InvalidHeaderValue

Emulator

Cloud

OK

Lease ID should be
GUID format

No check for Lease ID

Client

Deployment
Safety Violation

Blob_ChangeLease

400

Emulator

Cloud400
Client

Debuggability
Issues

Bad Request

“The number of Queue msg
should be within 1 to 32”

Empty message

Messages_Peek
OutOfRangeQueryParameterValue

200

400

Azure Blob

Azure Queue

(b) Error response

Fig. 3: Discrepancies caused by deficient specifications

the cloud. However, such value constraint is not specified in
the OpenAPI specification of Azure Blob services.

In another common discrepancy case across Azure and
AWS, cloud service APIs require authorization to private re-
sources or sensitive operations (e.g., security configuration like
PutBucketAcl). In its absence, these requests are denied by the
cloud service. However, our results revealed that emulators
often overlook this constraint, accepting such requests with a
200 OK response, resulting in 8% of discrepancies. We find
that the requirement of authentication is commonly included
in the text descriptions, which is not machine-checkable.
Although this is not a defect as far as OpenAPI is con-
cerned, it is not enforced by auto-generated stub code. From
a codegen/machine-checkability perspective, the specification
is incomplete. Our experience of examining Azure and AWS
OpenAPI specifications shows that text-based API descriptions
often includes constraints that are not machine-checkable.

2) Error response: We also find that specifications can be
incomplete in the expected error code and messages and fail to
associate them with the APIs, leaving emulator developers to
interpret discrepant error messages. Figure 3b shows such an
example. When a request is made with an out-of-range value
for the numofmessages parameter, the Azure Queue service
provides a detailed message pinpointing the error. In contrast,
Azurite only responds with a “Bad Request” error code,
offering no specific guidance and impeding debuggability.

Discrepant error responses were particularly prominent in
Azure Storage APIs, accounting for 21% (7 out of 34) of the
total discrepancies. When we examined the Azure API spec-
ifications, we found that the error codes were not associated
with the APIs but were defined in a separate list. Differently,
we found that AWS specifications have a more structured
approach to error code definitions, which were also part of
the related API definitions. The latter directly translates to the
emulator code. In DynamoDB API specifications, we found
structured definitions of 31 unique error codes, including their
error messages, exception flags, and documentation. Hence,
discrepant error responses are rare in DynamoDB and S3.

Environment Dynamics

409

Cloud
202 Accepted

Emulator

Client

Deployment
Safety Violation

Root causeImpact Manifestation

Delete

Create
“The specified container is being

deleted. Try operation later.”

Container is
deleted instantly.Client

Delete

Create

201 Created

ContainerBeingDeleted

202 Accepted

Azure Blob

Fig. 4: Discrepancies caused by unspecified behavior

Techniques for generating and enforcing machine-checkable
API specifications may potentially close the gaps. Recent work
demonstrates the potential of synthesizing formal specifica-
tions from text [47]–[49]. Techniques that infer specifications
from code [50]–[52] can help differential analysis of API
specifications from emulator and service code to find dis-
crepancies. Certainly, API is a form of abstraction. So, overly
detailed specifications that describe internal behavior could be
considered leaky abstractions. A key challenge is to define the
right level of specifications as an effective API contract.

Finding 5. The completeness of machine-checkable speci-
fications is still a fundamental challenge, even for simple
specifications such as parameter value constraints and error
code. Without an effective way towards comprehensive speci-
fications, we expect such discrepancies to remain prevalent.

B. Unspecified Behavior

A few discrepancies were caused by API behavior out of the
scope of the existing specification and thus is unspecified. We
observed two patterns of unspecified-behavior discrepancies.

We mentioned the first pattern in §IV-C—whether an API
is synchronous or asynchronous. For example, Azure Blob’s
API Container_Delete, which deletes container resources in
cloud services, is an asynchronous API. For efficiency con-
sideration, the deletion is not guaranteed to finish before the
API returns. Instead, the time to finish the deletion depends on
the amount of resources to be deleted. Conversely, emulators
always finish deletions before returning the API calls. Figure 4
depicts such discrepancies. The result is that API sequences
involving creating a container, deleting it, and then attempting
to recreate it with the same name yielded different results:
the cloud service returned 409 ContainerBeingDeleted, while
the emulator allowed immediate container recreation with 201
Created. This pattern also appears in sequences following a
deletion API call: the emulator would return a 404 Not Found

after deletion, while the cloud, busy doing the deletion, would
non-deterministically (depending on timing) issue a success
response or a 409 Conflict message, “The specified container
is being deleted. Try operation later.”

The second pattern is unspecified API behavior on null ref-
erences (e.g., non-existent objects). For example, when using
LocalStack, the emulated S3 APIs for fetching bucket configu-

7

ration (e.g., GetBucketMetricsConfiguration) or policy (e.g.,
GetBucketPolicyStatus) would return a 200 OK response
with an empty policy configuration in the response, when
configurations were never set. In contrast, the real S3 APIs
respond with a 404 error, suggesting that the configuration was
not found. A similar example is APIs responsible for deleting
configurations (e.g., DeleteBucketMetricsConfiguration) or
object tags (e.g., DeleteBucketPolicy). If a configuration was
not created, the emulator responded with a 204 success upon
deletion, while the cloud service returned a 404 error. For S3
on LocalStack, eleven discrepancies were caused by such a
case. Such undefined behavior resembles null pointers as a
common source of undefined behavior [53].

Finding 6. Two patterns of undefined behavior contribute to
discrepancies between emulators and cloud services: (1) the
synchrony of the API and (2) null references. Such behavior
is currently not considered in cloud service API specification
languages and thus not enforced in implementations.

C. Implementation Defects

Lastly, we observe discrepancies caused by implementation
defects, including unimplemented features and implementation
bugs in the emulators and the cloud services.

1) Unimplemented features in emulators: A significant
percentage of discrepancies are due to unimplemented features
in emulators, accounting for 18% in Azure Storage, 16% in
S3, and 74% in AWS DynamoDB. The emulators’ responses
to these unimplemented APIs vary. For example, Azurite
responds with a 500 error and the message “Current API is not
implemented yet,” which leads to four wasted retries by the
SDK. Whereas the AWS emulator issues a 400 error, as shown
in Figure 5a, without triggering retries on the client side. Ac-
cording to the coverage reference of LocalStack [31], there are
16 (30%) unimplemented DynamoDB APIs and seven (7%)
unimplemented S3 APIs. Azurite states that more features will
be supported based on the needs of customers [54].

It is expensive to implement and maintain the large number
of cloud service APIs (with high fidelity) in the emulator.
Hence, existing emulators take a utility-driven approach to
only support commonly used APIs (Figure 2). However, if
a project relies on unimplemented APIs, the limited support
becomes an obstacle for emulator-based testing.

2) Emulator bugs: Bugs were identified as the root causes
of 15% of Azure Storage, 16% of S3, and 4% of DynamoDB
discrepancies. Ten emulator bugs were found across the three
classes of services (three in Storage, six in S3, and one
in DynamoDB). For example, in Figure 5b, during tests
involving AWS S3’s object restoration API, we encountered
different responses to invalid keys. While the cloud service
correctly rejected invalid keys with a 404 NoSuchKey error,
the emulator returned a 500 Internal Error due to a bug that
attempted to access a non-existent “storage class” attribute.

3) Cloud service bugs: We also find two bugs in the cloud
service that resulted in inconsistencies with the emulator. As
shown in Figure 5c, specifying a lease duration for a blob

Emulator

Cloud

404

Client

Debuggability
Issues

500

“The specified key
does not exist”

Invalid key not handled

Restore_Object
AWS S3

InternalError

NoSuchKey

Emulator

CloudClient

False Alarms
400

200

“An unknown operation
was requested”

Backup creation succeeds

AWS DynamoDB
Create_Backup

UnknownOperation
Exception

OK

Emulator

CloudClient
400

500
Illegal Lease Duration

not handled

Azure Blob
Blob_AcquireLease

InvalidHeader
Value

InternalError

“The value for one of
the HTTP headers is not in

the correct format.”
Debuggability

Issues

(a) Unimplemented feature.

Emulator

Cloud

404

Client

Debuggability
Issues

500

“The specified key
does not exist”

Invalid key not handled

Restore_Object
AWS S3

InternalError

NoSuchKey

Emulator

CloudClient

False Positve
400

200

“An unknown operation
was requested”

Backup creation succeeds

AWS DynamoDB
Create_Backup

UnknownOperation
Exception

OK

Emulator

CloudClient
400

500
Illegal Lease Duration

not handled

Azure Blob
Blob_AcquireLease

InvalidHeader
Value

InternalError

“The value for one of
the HTTP headers is not in

the correct format.”
Debuggability

Issues

(b) Bugs in the emulator.

Emulator

Cloud

404

Client

Debuggability
Issues

500

“The specified key
does not exist”

Invalid key not handled

Restore_Object
AWS S3

InternalError

NoSuchKey

Emulator

CloudClient

False Positve
400

200

“An unknown operation
was requested”

Backup creation succeeds

AWS DynamoDB
Create_Backup

UnknownOperation
Exception

OK

Emulator

CloudClient
400

500
Illegal Lease Duration

not handled

Azure Blob
Blob_AcquireLease

InvalidHeader
Value

InternalError

“The value for one of
the HTTP headers is not in

the correct format.”
Debuggability

Issues

(c) Bugs in the cloud service.

Fig. 5: Discrepancies caused by implementation defects.

outside the documented range of 15 to 60 seconds, particu-
larly with an excessively large value, led to a 500 Internal
Server Error in the cloud service. Contrastingly, the emulator
appropriately responded with a 400 InvalidHeaderValue error,
correctly identifying the lease duration as invalid. A similar
bug is found in the API for acquiring a container lease.

Finding 7. With the current development of cloud emulators
as a reactive practice to cloud services, discrepancies due
to unimplemented features and bugs would largely continue,
even with active bug fixing and feature requests. Resolving
discrepancies needs novel mitigation techniques.

D. Interactions with Developers

We contacted developers of two studied projects; the devel-
opers considered service-emulator discrepancies problematic.
Currently, their practice is to always run tests that invoke
discrepant APIs with actual cloud services, which is not ideal.
Unfortunately, from software developers’ perspective, there is
not much they could do as consumers of these services.

Therefore, we interacted with developers of the two emula-
tors (Azurite and LocalStack). The reported discrepancies were
appreciated. Six of them (caused by implementation bugs)
have been confirmed (five fixed) as discussed in §V-C2. None
reported discrepancy was rejected. We also reported bugs of
cloud services; both were confirmed (see §V-C3).

VI. DISCREPANCY MITIGATION: A DISCUSSION

It is easier to ask for more specifications (§V-A and §V-B)
and faster bug fixes (§V-C). However, it is harder to fundamen-
tally eliminate all the aforementioned discrepancies, as many
of them are rooted in the essential complexity of software
engineering as well as today’s common practices. We discuss

8

a few arguably radical ideas or new practices, hopefully to
shed light on viable directions to addressing discrepancies.

A. An Active Role of Cloud Service Providers

Our fuzzing-based differential testing shows the effective-
ness of detecting discrepancies between cloud services and
emulators. Cloud service providers can adopt similar practices;
they can run the differential testing continuously upon code
changes of the emulators or cloud service implementations.
Note that cloud providers already run REST API fuzzing to
find security bugs in cloud backend implementations [4], [21],
[38]. As service providers have more resources and insights
into the implementations, they are in a better position than
researchers or application developers to discover discrepan-
cies and should take an active role in communicating and
documenting them (e.g., as a part of the API specification).
Certainly, maintenance of discrepancy-related documents can
be challenging and the cost cannot be overlooked.

Incentives. Our discussion with the cloud providers show
strong incentives to address discrepancies and improve emu-
lator fidelity. High-fidelity service emulation would improve
developer experience and help promote adoption of cloud
services, which is why providers offer official emulators. Such
benefits make a better strategy than forcing customers to run
all their tests with the cloud services. Certainly, there is no free
lunch and it may take major efforts to enforce conformance
and achieve high fidelity; hence, the incentive structure can be
complicated. We did not hear concerns regarding confidential-
ity when specifying external semantics and behavior of APIs.

B. Formal Models as Emulators

Essentially, discrepancies are introduced through the current
practice of implementing emulators. Our private communi-
cation with a major cloud service provider tells us that the
emulators are often not developed by the same engineering
team that developed the cloud services, and the emulators
are developed reactive to the cloud services; for third-party
emulators like LocalStack, it is unavoidable. So, without com-
prehensive formal specifications, discrepancies are inevitable.

One way to resolve discrepancies is to change how emula-
tors are built today. We envision the use of executable formal
models of cloud services as the emulators. Essentially, the
emulator, as the formal model, defines the specifications of
the cloud service implementations, which are rigorously tested
or verified for compliance. Recent efforts from Amazon [55]
show the promise of developing executable reference models
as specifications to be checked against the implementation of
ShardStore, a key-value storage node of Amazon S3. Similar
efforts have been made for other system domains [10], [56],
[57]. In principle, these models can further be developed into
first-class emulators for application testing.

C. “POSIX” for Cloud Service APIs

One fact that makes cloud emulators particularly prone to
discrepancies is the lack of a standard such as POSIX for
operating system call APIs. Today, cloud service providers

expose APIs with different semantics, constraints, and error
codes, even for the same types of services. Without a stan-
dardized API, cloud and emulator developers must navigate
diverse semantics and error handling for even similar services
within the same or across different platforms. As a result,
implementations of the APIs, whether by the cloud services
or emulators, tend to be error-prone and inconsistent. As a
result, we believe that a unified API standard would effectively
reduce discrepancies in practice. With the incentives from sky
computing [58] and hybrid cloud [59], [60], such a unified
API standard may be possible.

D. Economic Cloud Services for Testing

With the prevalent discrepancies (§IV), testing of cloud-
based software would have to largely rely on cloud services. To
reduce cost, one can minimize the frequency of running tests
with real cloud services (e.g., only do so before deployment,
not for CI). If cost is the main concern (a recent survey [61]
shows that cost is a major barrier to cloud service adoption),
one solution is to provide cheap cloud services for testing.
The high cost of cloud services is often driven by pursuits
for performance using powerful hardware and fault tolerance
using redundancy (§II-A). But, functional and correctness test-
ing may not need either of them. We envision low-cost cloud
services specified for software testing (not for production),
with ideas such as using dated hardware [62] and cheap,
renewable energy for intermittent services [63]. Certainly, low-
cost services do not address other needs of emulators, such as
convenience and hermetic environments [64].

E. Hybrid Cloud-Emulator Testing

One principle to mitigate discrepancies without exclusively
using cloud services for testing is to acknowledge imperfect
emulators and make the best use of them—selectively running
tests on emulators when the emulation is not discrepant and
on cloud services otherwise. We term such an approach hybrid
cloud-emulator testing and explore it in §VII.

VII. HYBRID CLOUD-EMULATOR TESTING

To evaluate the effectiveness of hybrid cloud-emulator
testing as a short-term discrepancy mitigation (§VI-E), we
developed a tool named ET that determines whether a test
should be run with emulators or cloud services. The principle
is to run discrepant tests with cloud services for safety while
running the remaining tests with the emulators for efficiency.
Note that it is hard to selectively use emulators and cloud
services within a test without expensive state synchronization.

A. Policies

ET supports three different but complementary policies:
1) Selection by discrepant APIs (API-based selection):

This policy assumes apriori knowledge of the set of discrepant
APIs for a given service (which requires maintenance of the
discrepant API set; see §VI-A). It first runs all tests on the
emulator and monitors their REST API calls using a local
proxy, as in [65]. If a test invokes a known discrepant API,
its result is discarded, and the test is rerun on cloud service.

9

2) Selection by in-situ API monitoring (Monitoring-based
selection): API-based selection (§VII-A1) assumes having ac-
curate, comprehensive discrepancy information apriori, which
can be costly (§VI-A)) and is often incomplete in practice (as
shown in §IV-A, discrepancies are found in developer-certified
APIs). However, without knowledge of discrepancies, all the
tests have to run with cloud services.

ET supports a new monitoring-based policy that offloads
certain tests from the cloud services to the emulators to reduce
cost. The high-level idea is to maintain a “safe list” database
of API call sequences. Each API call in a sequence consists
of the API ID, the call’s request (with parameters), and the
response. ET starts with an empty safe list. For each test, it
first runs the test on the emulator and monitors the API call
sequences. If the sequence is not present in the safe list, the
test is assumed to be discrepant and is rerun on the cloud
service. The API sequence is added to the safe list if its result
from the emulator matches that from the cloud service.

On the other hand, if the API sequence is found in the safe
list, then ET skips running the test with the cloud services,
with the rationale that the fidelity of interactions has already
been validated by a real cloud-based test run, and thus can be
saved. Figure 6 illustrates the workflow.

Note that the analysis considers the entire API call sequence
instead of individual APIs (Figure 4 shows an example where
the discrepancy only manifests with specific sequence). ET
serializes the API calls at its local proxy. For fast comparison,
each sequence is stored as an ordered list of hashes while each
hash represents an API along with its parameters and response;
collisions are chained upon occurrence. We implement masks
to exclude intrinsically non-deterministic parameters and fields
in the response, such as timestamps.

The monitoring-based selection accounts for nondetermin-
ism of test execution due to multi-threading and event-based
asynchrony. The essence of the policy is to validate external
behavior of API calls issued by the test on the emulator with
real cloud services. ET does not make assumptions on the
internal implementation of test code or system under test.

Despite no apriori discrepancy knowledge, the monitoring-
based selection policy can outperform the API-based policy
in §VII-A1 in certain cases, because it performs a fine-grained,
parameter-level analysis, instead of labeling the entire API
as in §VII-A1. As shown in §IV-C, discrepancies typically
manifest via specific parameter values rather than universally
across the API; a discrepant test can still be run on the
emulator if it only uses the API with “safe” parameters and
does not manifest discrepant results. On the other hand, as
any unseen API call sequence is considered unsafe under
this policy, the effectiveness of the monitoring-based selection
relies on the coverage of the recorded safe sequences.

3) Combined selection policy: ET also supports a combined
policy that integrates the API-based and monitoring-based
selection policies to take the advantages of both policies. It
has the same assumption of an apriori set of discrepant APIs,
as in §VII-A1. Like the API-based selection (§VII-A1), a test
first runs on the emulator; if the test is not a discrepant test,

test
PUT https ://account.blob.core.windows..
PUT https ://account.blob.core.windows..
DELETE https ://account.blob.core.wind..
GET https ://account.blob.core.windows..
DELETE https ://account.blob.core.wind..Emulator

Cloud

Database1
2

3

4

5

Compare newly collected
sequence with stored
sequences.

If no sequence
matches, run on the cloud.

Store the new sequence.

Fig. 6: Workflow of the monitoring-based selection (§VII-A2).

TABLE VII: Savings of cloud service API invocations with
different policies of ET (averaged across five commits)

Project Total
Tests

Total
Requests

Saved Requests
§VII-A1 §VII-A2 §VII-A3

Orleans 189 117,905 29.4% 0.4% 29.6%
Insights 171 5,249 4.3% 47.2% 47.2%
Durabletask 101 79,654 0% 0% 0%
Streamstone 75 590 0% 99.2% 99.2%
IdentityAzureTable 51 9,860 100% 0.4% 100%

then it does not need to rerun on the cloud services. So, non-
discrepant tests are always saved and are not affected by the
coverage limitation of the monitoring-based selection. Only if
a test is a discrepant test, we apply in-situ discrepant analysis
as in §VII-A2 to conduct more fine-grained, parameter-level
policy. Hence, the combined policy is always more effective
than the API- and monitoring-based policies individually.

B. Evaluation

We evaluate the three policies in §VII-A in terms of cost
savings measured by the number of calls to cloud APIs. We
assume a continuous integration (CI) setup as the monitoring-
based selection benefits continuous testing the most (its benefit
is correlated with the comprehensiveness of the safe list).

We select five projects that use Azure APIs (ET currently
only supports .NET applications) and use all the related tests
(Table II). We select the five projects with the most tests that
invoke Azure APIs. We evaluate ET with the most recent five
commits to simulate CI2 and record the cost saving for each
commit (we run only five commits due to the constraint of
our cloud education credits). All the tests will be run for
each commit that changes system code or test code. Note that
regression test selection [66]–[68] does not apply to those tests
which are not unit tests but mostly integration and system tests.

In the evaluation, we use the same versions of the Azurite
emulator and Azure services [4], without considering their
software evolution (which may lead to test regressions).

Results. As shown in Table VII, ET effectively reduces
the amount of invocations to cloud APIs. Interestingly, the
three policies bring different benefits across projects, with the
combined policy (§VII-A3) achieving the most cost savings.

The API-based selection (§VII-A1) achieves substantial
savings for two out of five projects. Specifically, it achieves

2We assume the maintenance of an always updated set of discrepant APIs
apriori for the API-based and the combined policies (§VII-A1 and §VII-A3).

10

a 100% saving for IdentityAzureTable where none of its tests
issues discrepant APIs. However, it achieves no saving for
Streamstone and DurableTask, because all their tests issue at
least one discrepant API.

The monitoring-based selection (§VII-A2) achieves substan-
tial savings for two different projects (Insights and Stream-
stone) but not the others. Our investigation reveals that the
effectiveness of this policy largely depends on the ordering
determinism of API call sequences. Since tests that invoke
cloud APIs are typically large system/integration tests with
large numbers of API calls, the sequences recorded during the
tests on five commits are insufficient. We expect that a longer
continuous testing process may increase the benefit.

Finding 8. ET shows that by selectively running tests on
emulators, it is promising to reduce the cost of cloud-based
software testing, in terms of the cost of calling cloud service
APIs, while achieving high-fidelity testing.

VIII. THREATS TO VALIDITY

Our study is based on the five cloud services (three Azure
services and two AWS services) and two emulators (Azurite
and LocalStack). We believe that the studied cloud services
and emulators are representative, but our results may not gen-
eralize to other cloud services, especially those using different
practices of API design and specification. For example, the
issues could be more severe for smaller providers. It would
be interesting to check the gaps among different providers
from different tiers, which is our future work. We recommend
readers to focus on overall trends and not on precise number.

Similarly, our analysis of discrepancy impacts (§IV-C) and
ET’s evaluation results (§VII-B) are based on existing test
suites of a few cloud-based projects. They may not generalize
to other projects as they depend on API usage characteristics
of projects and their tests (e.g., invoked APIs and frequencies).
In principle, projects that use cloud services more extensively
face higher impacts of discrepancies. With wider adoption of
cloud-based programming, we expect cloud-emulator discrep-
ancies to be common issues for software testing.

The discrepancies analyzed in this paper are limited to the
black-box SDK API fuzzer we developed based on RESTler
(§III), and we do not claim completeness of studied discrepan-
cies. A more powerful fuzzer, especially a white-box one, may
cover more discrepant APIs. As a best effort, we run our fuzzer
for more than ten hours against each studied emulator and stop
the fuzzing when we do not observe any new discrepancies.

Lastly, we are not concerned with faults that occur during
the API invocations, such as timeout due to network delays.
Recent work [65] shows that timeouts on both the request and
response paths of a REST API invocation can reveal different
behaviors, which we would like to study as future work.

IX. RELATED WORK

REST API fuzzing. Recent work has developed advanced
REST API fuzzing techniques to test web and cloud services,
with the goal of finding bugs and vulnerabilities in web service

implementations [4], [21], [38], [69]–[78]. Differently, this
paper focuses on the software projects that use cloud services,
instead of the backend implementations of cloud services. Our
goal is to understand discrepancies between the emulator and
the cloud services and their implications for software testing.

We developed our fuzzer based on the fuzzing approach of
RESTler [21]. As discussed in §III, we did not directly use
RESTler (or other REST API fuzzers) because most projects
only interact with SDK APIs, not REST APIs, and REST API
fuzzers generate API calls that would not be output by SDKs.
Fidelity of emulation. Prior work has studied the fidelity of
emulation environments in other domains, such as honeypots
for security analysis [79]–[81]. The closest related work is the
research on the fidelity of emulated execution environments
such as virtual devices for mobile app testing [82]–[84] and
the efforts of building usable, effective mobile emulators [85],
[86]. The goal is to maximize app testing on emulated devices
and minimize testing on real physical mobile devices (which
are more expensive and hard to manage [82]).

Our work shares similar high-level goals and tradeoffs (cost-
efficiency versus safety). But, we address a different fidelity
problem raised by the emerging cloud-based programming
model. The discrepancies are not due to deficiency or incom-
pleteness of device emulation but are rooted in inconsistent
implementations of weakly specified APIs.
Backward compatibility. The studied discrepancies are dif-
ferent from backward incompatibility studied in prior work [4],
[87]–[90]. We do not study the evolution of emulators or cloud
service APIs in this paper, though certain discrepancies can
be caused by regression [4]. There are also studies on mock
libraries for unit tests [91]–[93]; few of them concern fidelity
of mock objects—unlike emulation, mocking is not expected
to provide fidelity but offers a way to control external APIs.

X. CONCLUSION

With the rise of cloud-based programming models, testing
cloud-based software safely and cost-efficiently becomes a
challenge. This paper analyzes the fidelity of commonly used
cloud emulators for software development and offline testing.
Our results show that discrepancies between the emulator and
the cloud services are prevalent today, affecting the safety
and trustworthiness of testing results of cloud-based software.
We discuss both accidental and essential root causes of these
discrepancies and envision new practices and techniques to
mitigate them, even though fundamentally eliminating them
can be hard. We also show the promise of leveraging imperfect
emulators for cost-efficient testing.

ACKNOWLEDGMENTS

We thank Darko Marinov, Hao Lin, Talha Waheed, and
Owolabi Legunsen for their valuable discussions and feedback.
We thank the LocalStack developers for helping us understand
the implementation. We thank Marina Polishchuk for her help
on RESTler. This work was supported in part by NSF CNS-
2130560, CNS-2145295, and an IIDAI grant.

11

REFERENCES

[1] “Azure products,” https://azure.microsoft.com/en-us/products, 2024.
[2] “Google Cloud products,” https://cloud.google.com/products, 2024.
[3] “AWS Cloud Products,” https://aws.amazon.com/products, 2024.
[4] P. Godefroid, D. Lehmann, and M. Polishchuk, “Differential Regression

Testing for REST APIs,” in ISSTA, 2020.
[5] “Azure Blob Storage Cost,” https://azure.microsoft.com/en-us/pricing/

details/storage/blobs/, 2023.
[6] “AWS Pricing Calculator,” https://calculator.aws/#/?nc2=pr&refid=

f42fef03-b1e6-4841-b001-c44b4eccaf41, 2024.
[7] John Micco, “The State of Continuous Integration Testing @Google,”

in ICST, 2017.
[8] C. Leong, A. Singh, M. Papadakis, Y. L. Traon, and J. Micco, “Assessing

Transition-Based Test Selection Algorithms at Google,” in ICSE-SEIP,
2019.

[9] S. Wang, X. Lian, D. Marinov, and T. Xu, “Test Selection for Unified
Regression Testing,” in ICSE, 2023.

[10] T. Ridge, D. Sheets, T. Tuerk, A. Giugliano, A. Madhavapeddy, and
P. Sewell, “SibylFS: Formal Specification and Oracle-Based Testing for
POSIX and Real-World File Systems,” in SOSP, 2015.

[11] Rick Timmis, “Xiatech accelerates their development workflows
on cloud using LocalStack!” https://localstack.cloud/blog/
2023-07-05-case-study-xiatech/.

[12] Microsoft Docs, “Use the Azurite emulator for local Azure Storage
development,” https://docs.microsoft.com/en-us/azure/storage/common/
storage-use-azurite, 2024.

[13] “Introduction to Azure Storage,” https://learn.microsoft.com/en-us/
azure/storage/common/storage-introduction, 2024.

[14] azurite-1465, “Table storage having wrong constraint,” https://github.
com/Azure/Azurite/issues/1465.

[15] azurite-946, “Missing parameter in API response,” https://github.com/
Azure/Azurite/issues/946.

[16] azurite-5, “Requesting for a feature,” https://github.com/Azure/Azurite/
issues/5.

[17] nuget-insights-30, “List of issues which blocked CI tests for Insights,”
https://github.com/NuGet/Insights/issues/30.

[18] Localstack, “LocalStack – A fully functional local cloud stack,” https:
//localstack.cloud/, 2024.

[19] Azure/durabletask, https://github.com/Azure/durabletask.
[20] “Azurite Support Matrix,” https://github.com/Azure/Azurite?tab=

readme-ov-file#support-matrix.
[21] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful REST

API Fuzzing,” in ICSE, 2019.
[22] “AWS S3 REST APIs,” https://docs.aws.amazon.com/AmazonS3/latest/

API/API Operations.html, 2023.
[23] “Azurite Swagger of Azure Blob Storage,” https://github.com/Azure/

Azurite/blob/main/swagger/blob-storage-2021-10-04.json.
[24] “OpenAPI Specification,” https://www.openapis.org/, 2024.
[25] “Azure Blob Storage Cost Breakdown,” https://azure.github.io/Storage/

docs/application-and-user-data/code-samples/estimate-block-blob/,
2023.

[26] “Azure Locally-redundant storage (LRS),” https://learn.
microsoft.com/en-us/azure/storage/common/storage-redundancy#
locally-redundant-storage, 2024.

[27] “Azure Zone-redundant storage (ZRS),” https://learn.
microsoft.com/en-us/azure/storage/common/storage-redundancy#
zone-redundant-storage, 2024.

[28] “Azure Locally-redundant storage (GRS),” https://learn.
microsoft.com/en-us/azure/storage/common/storage-redundancy#
geo-redundant-storage, 2024.

[29] Brian Harry, “The largest Git repo on the planet,” https://devblogs.
microsoft.com/bharry/the-largest-git-repo-on-the-planet/, 2017.

[30] R. Potvin and J. Levenberg, “Why Google Stores Billions of Lines of
Code in a Single Repository,” Communications of the ACM (CACM),
vol. 59, no. 7, pp. 78–87, Jun. 2016.

[31] “LocalStack Coverage,” https://docs.localstack.cloud/references/
coverage/, 2023.

[32] Azure/autorest, https://github.com/Azure/autorest, 2024.
[33] “Regeneration Protocol Layer from Swagger by Autorest,”

https://github.com/Azure/Azurite/blob/main/CONTRIBUTION.md#
regeneration-protocol-layer-from-swagger-by-autorest, 2024.

[34] “LocalStack Weekly ASF Update Workflow,” https://github.com/
localstack/localstack/blob/master/.github/workflows/asf-updates.yml,
2024.

[35] “Mocking in Unit Tests,” https://microsoft.github.io/
code-with-engineering-playbook/automated-testing/unit-testing/
mocking, 2023.

[36] M. Fowler, “Mocks Aren’t Stubs,” https://martinfowler.com/articles/
mocksArentStubs.html, 2007.

[37] Statista, “Amazon Maintains Cloud Lead as Microsoft
Edges Closer,” https://www.statista.com/chart/18819/
worldwide-market-share-of-leading-cloud-infrastructure-service-providers/,
2024.

[38] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Checking Security
Properties of Cloud Service REST APIs,” in ICST, 2020.

[39] LocalStack, “Coverage S3 - LocalStack Documentation,” https://docs.
localstack.cloud/references/coverage/coverage s3/, 2023.

[40] LocalStack, “Coverage DynamoDB - LocalStack Documentation,” https:
//docs.localstack.cloud/references/coverage/coverage dynamodb/, 2023.

[41] LocalStack, “Parity Testing - LocalStack Documentation,” https://docs.
localstack.cloud/contributing/parity-testing/, 2023.

[42] “Azure Storage API: ContainerRestore,” https://github.com/Azure/
Azurite/blob/d544d16f910e490fdd9db5565459df701895308f/swagger/
blob-storage-2021-10-04.json#L1554, 2024.

[43] “Azure Storage API: BlockBlob-StageBlockFromURL,” https://github.
com/Azure/Azurite/blob/d544d16f910e490fdd9db5565459df701895308f/
swagger/blob-storage-2021-10-04.json#L7069, 2024.

[44] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An Empirical Analysis
of Flaky Tests,” in FSE, 2014.

[45] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “A Survey of
Flaky Tests,” ACM Transactions on Software Engineering and Method-
ology (TOSEM), vol. 31, no. 17, pp. 1–74, Oct. 2021.

[46] “Lease Blob - Microsoft Documentation,” https://learn.microsoft.com/
en-us/rest/api/storageservices/lease-blob?tabs=microsoft-entra-id.

[47] K. Lazar, M. Vetzler, G. Uziel, D. Boaz, E. Goldbraich, D. Amid, and
A. Anaby-Tavor, “SpeCrawler: Generating OpenAPI Specifications from
API Documentation Using Large Language Models,” arXiv:2402.11625,
2024.

[48] M. Endres, S. Fakhoury, S. Chakraborty, and S. K. Lahiri, “Can Large
Language Models Transform Natural Language Intent into Formal
Method Postconditions?” in FSE, 2024.

[49] A. Decrop, G. Perrouin, M. Papadakis, X. Devroey, and P.-Y.
Schobbens, “You Can REST Now: Automated Specification Inference
and Black-Box Testing of RESTful APIs with Large Language Models,”
arXiv:2402.05102, 2024.

[50] L. Ma, S. Liu, Y. Li, X. Xie, and L. Bu, “SpecGen: Automated Gen-
eration of Formal Program Specifications via Large Language Models,”
arXiv:2401.08807, 2024.

[51] R. Yandrapally, S. Sinha, R. Tzoref-Brill, and A. Mesbah, “Carving UI
Tests to Generate API Tests and API Specification,” in ICSE, 2023.

[52] R. Huang, M. Motwani, I. Martinez, and A. Orso, “Generating REST
API Specifications through Static Analysis,” in ICSE, 2024.

[53] C. Hathhorn, C. Ellison, and G. Roşu, “Defining the Undefinedness of
C,” in PLDI, 2015.

[54] “Azurite README,” https://github.com/Azure/Azurite/blob/main/
README.md.

[55] J. Bornholt, A. Kaufmann, J. Li, A. Krishnamurthy, E. Torlak, and
X. Wang, “Specifying and Checking File System Crash-Consistency
Models,” in ASPLOS, 2016.

[56] X. Sun, W. Ma, J. T. Gu, Z. Ma, T. Chajed, J. Howell, A. Lattuada,
O. Padon, L. Suresh, A. Szekeres, and T. Xu, “Anvil: Verifying Liveness
of Cluster Management Controllers,” in OSDI, 2024.

[57] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wans-
brough, “Rigorous Specification and Conformance Testing Techniques
for Network Protocols, as applied to TCP, UDP, and Sockets,” in
SIGCOMM, 2005.

[58] S. Chasins, A. Cheung, N. Crooks, A. Ghodsi, K. Goldberg, J. E.
Gonzalez, J. M. Hellerstein, M. I. Jordan, A. D. Joseph, M. W. Mahoney,
A. Parameswaran, D. Patterson, R. A. Popa, K. Sen, S. Shenker, D. Song,
and I. Stoica, “The Sky Above the Clouds: A Berkeley View on the
Future of Cloud Computing,” arXiv:2205.07147, 2022.

[59] Google Cloud, “What is a Hybrid Cloud?” https://cloud.google.com/
learn/what-is-hybrid-cloud.

[60] IBM Hybrid Cloud, “Hybrid cloud solutions,” https://www.ibm.com/
hybrid-cloud.

12

https://azure.microsoft.com/en-us/products
https://cloud.google.com/products
https://aws.amazon.com/products
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
https://calculator.aws/#/?nc2=pr&refid=f42fef03-b1e6-4841-b001-c44b4eccaf41
https://calculator.aws/#/?nc2=pr&refid=f42fef03-b1e6-4841-b001-c44b4eccaf41
https://localstack.cloud/blog/2023-07-05-case-study-xiatech/
https://localstack.cloud/blog/2023-07-05-case-study-xiatech/
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://learn.microsoft.com/en-us/azure/storage/common/storage-introduction
https://learn.microsoft.com/en-us/azure/storage/common/storage-introduction
https://github.com/Azure/Azurite/issues/1465
https://github.com/Azure/Azurite/issues/1465
https://github.com/Azure/Azurite/issues/946
https://github.com/Azure/Azurite/issues/946
https://github.com/Azure/Azurite/issues/5
https://github.com/Azure/Azurite/issues/5
https://github.com/NuGet/Insights/issues/30
https://localstack.cloud/
https://localstack.cloud/
https://github.com/Azure/durabletask
https://github.com/Azure/Azurite?tab=readme-ov-file#support-matrix
https://github.com/Azure/Azurite?tab=readme-ov-file#support-matrix
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations.html
https://github.com/Azure/Azurite/blob/main/swagger/blob-storage-2021-10-04.json
https://github.com/Azure/Azurite/blob/main/swagger/blob-storage-2021-10-04.json
https://www.openapis.org/
https://azure.github.io/Storage/docs/application-and-user-data/code-samples/estimate-block-blob/
https://azure.github.io/Storage/docs/application-and-user-data/code-samples/estimate-block-blob/
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#locally-redundant-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#locally-redundant-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#locally-redundant-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#zone-redundant-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#zone-redundant-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#zone-redundant-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#geo-redundant-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#geo-redundant-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#geo-redundant-storage
https://devblogs.microsoft.com/bharry/the-largest-git-repo-on-the-planet/
https://devblogs.microsoft.com/bharry/the-largest-git-repo-on-the-planet/
https://docs.localstack.cloud/references/coverage/
https://docs.localstack.cloud/references/coverage/
https://github.com/Azure/autorest
https://github.com/Azure/Azurite/blob/main/CONTRIBUTION.md#regeneration-protocol-layer-from-swagger-by-autorest
https://github.com/Azure/Azurite/blob/main/CONTRIBUTION.md#regeneration-protocol-layer-from-swagger-by-autorest
https://github.com/localstack/localstack/blob/master/.github/workflows/asf-updates.yml
https://github.com/localstack/localstack/blob/master/.github/workflows/asf-updates.yml
https://microsoft.github.io/code-with-engineering-playbook/automated-testing/unit-testing/mocking
https://microsoft.github.io/code-with-engineering-playbook/automated-testing/unit-testing/mocking
https://microsoft.github.io/code-with-engineering-playbook/automated-testing/unit-testing/mocking
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://docs.localstack.cloud/references/coverage/coverage_s3/
https://docs.localstack.cloud/references/coverage/coverage_s3/
https://docs.localstack.cloud/references/coverage/coverage_dynamodb/
https://docs.localstack.cloud/references/coverage/coverage_dynamodb/
https://docs.localstack.cloud/contributing/parity-testing/
https://docs.localstack.cloud/contributing/parity-testing/
https://github.com/Azure/Azurite/blob/d544d16f910e490fdd9db5565459df701895308f/swagger/blob-storage-2021-10-04.json#L1554
https://github.com/Azure/Azurite/blob/d544d16f910e490fdd9db5565459df701895308f/swagger/blob-storage-2021-10-04.json#L1554
https://github.com/Azure/Azurite/blob/d544d16f910e490fdd9db5565459df701895308f/swagger/blob-storage-2021-10-04.json#L1554
https://github.com/Azure/Azurite/blob/d544d16f910e490fdd9db5565459df701895308f/swagger/blob-storage-2021-10-04.json#L7069
https://github.com/Azure/Azurite/blob/d544d16f910e490fdd9db5565459df701895308f/swagger/blob-storage-2021-10-04.json#L7069
https://github.com/Azure/Azurite/blob/d544d16f910e490fdd9db5565459df701895308f/swagger/blob-storage-2021-10-04.json#L7069
https://learn.microsoft.com/en-us/rest/api/storageservices/lease-blob?tabs=microsoft-entra-id
https://learn.microsoft.com/en-us/rest/api/storageservices/lease-blob?tabs=microsoft-entra-id
https://github.com/Azure/Azurite/blob/main/README.md
https://github.com/Azure/Azurite/blob/main/README.md
https://cloud.google.com/learn/what-is-hybrid-cloud
https://cloud.google.com/learn/what-is-hybrid-cloud
https://www.ibm.com/hybrid-cloud
https://www.ibm.com/hybrid-cloud

[61] M. Loukides, “The Cloud in 2021: Adoption Continues,” O’Reilly
Medial, Tech. Rep., 2021.

[62] J. Wang, U. Gupta, and A. Sriraman, “Giving Old Servers New Life at
Hyperscale,” in HotInfra, 2023.

[63] P. Ambati, I. Goiri, F. Frujeri, A. Gun, K. Wang, B. Dolan, B. Corell,
S. Pasupuleti, T. Moscibroda, S. Elnikety, M. Fontoura, and R. Bianchini,
“Providing SLOs for Resource-Harvesting VMs in Cloud Platforms,” in
OSDI, 2020.

[64] C. Narla and D. Salas, “Hermetic Servers,” https://testing.googleblog.
com/2012/10/hermetic-servers.html, Oct. 2012.

[65] Y. Chen, X. Sun, S. Nath, Z. Yang, and T. Xu, “Push-Button Reliability
Testing for Cloud-Backed Applications with Rainmaker,” in NSDI, 2023.

[66] G. Rothermel and M. Harrold, “Analyzing Regression Test Selection
Techniques,” IEEE Transactions on Software Engineering (TSE), vol. 22,
no. 8, pp. 529–551, Aug. 1996.

[67] G. Rothermel and M. Harrold, “A Safe, Efficient Regression Test
Selection Technique,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 6, no. 2, p. 173–210, Apr. 1997.

[68] S. Yoo and M. Harman, “Regression Testing Minimisation, Selection and
Prioritisation: A Survey,” Software Testing, Verification & Reliability,
vol. 22, no. 2, p. 67–120, Mar. 2012.

[69] C. Lyu, J. Xu, S. Ji, X. Zhang, Q. Wang, B. Zhao, G. Pan, W. Cao,
P. Chen, and R. Beyah, “MINER: A Hybrid Data-Driven Approach for
REST API Fuzzing,” in USENIX Security, 2023.

[70] P. Godefroid, B.-Y. Huang, and M. Polishchuk, “Intelligent REST API
Data Fuzzing,” in ESEC/FSE, 2020.

[71] O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing Program
Input Grammars,” in PLDI, 2017.

[72] P. Godefroid, H. Peleg, and R. Singh, “Learn&Fuzz: Machine Learning
for Input Fuzzing,” in ASE, 2017.

[73] H. Wu, L. Xu, X. Niu, and C. Nie, “Combinatorial Testing of RESTful
APIs,” in ICSE, 2022.

[74] J. C. Alonso, “Automated Generation of Realistic Test Inputs for Web
APIs,” in ESEC/FSE, 2021.

[75] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “RESTest: Automated
Black-Box Testing of RESTful Web APIs,” in ISSTA, 2021.

[76] A. Arcuri, “RESTful API Automated Test Case Generation with Evo-
Master,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 28, no. 1, pp. 1–37, Jan. 2019.

[77] E. Viglianisi, M. Dallago, and M. Ceccato, “RESTTESTGEN: Auto-
mated Black-Box Testing of RESTful APIs,” in ICST, 2020.

[78] Y. Liu, Y. Li, G. Deng, Y. Liu, R. Wan, R. Wu, D. Ji, S. Xu, and M. Bao,
“Morest: Model-based RESTful API Testing with Execution Feedback,”
in ICSE, 2022.

[79] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen, and

J. Yang, “Understanding Fileless Attacks on Linux-based IoT Devices
with HoneyCloud,” in MobiSys, 2019.

[80] C. Kreibich and J. Crowcroft, “Honeycomb – Creating Intrusion Detec-
tion Signatures Using Honeypots,” in SIGCOMM-CCR, 2004.

[81] M. D. Vrable, J. T. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren,
G. M. Voelker, and S. Savage, “Scalability, Fidelity, and Containment
in the Potemkin Virtual Honeyfarm,” in SOSP, 2005.

[82] H. Lin, J. Qiu, H. Wang, Z. Li, L. Gong, D. Gao, Y. Liu, F. Qian,
Z. Zhang, P. Yang, and T. Xu, “Virtual Device Farms for Mobile App
Testing at Scale: A Pursuit for Fidelity, Efficiency, and Accessibility,”
in MobiCom, 2023.

[83] H. Lin, J. Qiu, H. Wang, Z. Li, L. Gong, D. Gao, Y. Liu, F. Qian,
Z. Zhang, P. Yang, and T. Xu, “Take the Blue Pill: Pursuing Mobile
App Testing Fidelity, Efficiency, and Accessibility with Virtual Device
Farms,” SIGMOBILE Mobile Computing and Communications (GetMo-
bile), vol. 28, no. 1, pp. 5–9, Mar. 2024.

[84] H. Cai, Z. Zhang, L. Li, and X. Fu., “A Large-Scale Study of Application
Incompatibilities in Android,” in ISSTA, 2019.

[85] J. Qiu, Z. Zhou, Y. Li, Z. Li, F. Qian, H. Lin, D. Gao, H. Su,
X. Miao, Y. Liu, and T. Xu, “vSoC: Efficient Virtual System-on-Chip
on Heterogeneous Hardware,” in SOSP, 2024.

[86] D. Gao, H. Lin, Z. Li, C. Huang, L. Gong, F. Qian, Y. Liu, and
T. Xu, “Trinity: High-Performance Mobile Emulation through Graphics
Projection,” in OSDI, 2022.

[87] L. Chen, F. Hassan, X. Wang, and L. Zhang, “Taming Behavioral
Backward Incompatibilities via Cross-Project Testing and Analysis,” in
ICSE, 2020.

[88] Y. Zhang, J. Yang, Z. Jin, U. Sethi, K. Rodrigues, S. Lu, and D. Yuan,
“Understanding and Detecting Software Upgrade Failures in Distributed
Systems,” in SOSP, 2021.

[89] C. Zhu, M. Zhang, X. Wu, X. Xu, and Y. Li, “Client-Specific Upgrade
Compatibility Checking via Knowledge-Guided Discovery,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 32,
no. 4, pp. 1–31, May 2023.

[90] Y. Zhao, L. Li, K. Liu, and J. C. Grundy, “Towards Automatically
Repairing Compatibility Issues in Published Android Apps,” in ICSE,
2022.

[91] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, “Automatic Test
Factoring for Java,” in ASE, 2005.

[92] X. Wang, L. Xiao, T. Yu, A. Woepse, and S. Wong, “An Automatic
Refactoring Framework For Replacing Test-Production Inheritance by
Mocking Mechanism,” in ESEC/FSE, 2021.

[93] A. Arcuri, G. Fraser, and J. P. Galeotti, “Automated Unit Test Generation
for Classes with Environment Dependencies,” in ASE, 2014.

13

https://testing.googleblog.com/2012/10/hermetic-servers.html
https://testing.googleblog.com/2012/10/hermetic-servers.html

	Introduction
	Background
	Cloud Services and Their APIs
	API Specification
	Pricing

	Cloud Emulator
	Emulation versus Mocking

	Methodology
	Discrepancy Characteristics
	Prevalence of Discrepancies
	Discrepancy Manifestations
	Impact on Real-world Tests

	Root Cause Analysis
	blackIncomplete Specifications
	Parameter value constraint
	Error response

	Unspecified Behavior
	Implementation Defects
	Unimplemented features in emulators
	Emulator bugs
	Cloud service bugs

	Interactions with Developers

	Discrepancy Mitigation: A Discussion
	An Active Role of Cloud Service Providers
	Formal Models as Emulators
	``POSIX'' for Cloud Service APIs
	Economic Cloud Services for Testing
	Hybrid Cloud-Emulator Testing

	Hybrid Cloud-Emulator Testing
	Policies
	blackSelection by discrepant APIs (API-based selection)
	blackSelection by in-situ API monitoring (Monitoring-based selection)
	Combined selection policy

	Evaluation

	Threats to Validity
	Related Work
	Conclusion
	References

