
Anvil: Verifying Liveness of Cluster Management Controllers

Xudong Sun†, Wenjie Ma†, Jiawei Tyler Gu†, Zicheng Ma†, Tej Chajed‡,
Jon Howell⇧, Andrea Lattuada⇧, Oded Padon⇧, Lalith Suresh?, Adriana Szekeres⇧, Tianyin Xu†

†University of Illinois Urbana-Champaign ‡University of Wisconsin-Madison
⇧VMware Research ?Feldera

Abstract

Modern clouds depend crucially on an extensible ecosystem
of thousands of controllers, each managing critical systems
(e.g., a ZooKeeper cluster). A controller continuously recon-
ciles the current state of the system to a desired state accord-
ing to a declarative description. However, controllers have
bugs that make them never achieve the desired state, due to
concurrency, asynchrony, and failures; there are cases where
after an inopportune failure, a controller can make no further
progress. Formal verification is promising for avoiding bugs
in distributed systems, but most work so far focused on safety,
whereas reconciliation is fundamentally not a safety property.

This paper develops the first tool to apply formal verifica-
tion to the problem of controller correctness, with a general
specification we call eventually stable reconciliation, writ-
ten as a concise temporal logic liveness property. We present
Anvil, a framework for developing controller implementations
in Rust and verifying that the controllers correctly implement
eventually stable reconciliation. We use Anvil to verify three
Kubernetes controllers for managing ZooKeeper, RabbitMQ,
and FluentBit, which can readily be deployed in Kubernetes
platforms and are comparable in terms of features and perfor-
mance to widely used unverified controllers.

1 Introduction

Modern clouds are powered by cluster managers such as Ku-
bernetes [12], Borg [89], ECS [73] and Twine [87]. These
systems manage large-scale cluster resources and all appli-
cations running atop them. Architecturally, these systems
comprise a collection of controllers that implement all the
cluster-management logic based on the state reconciliation
principle [4, 30]. Controllers are loosely coupled microser-
vices, each monitoring the cluster state and continuously rec-
onciling the current cluster state to match a desired state. In
Kubernetes for example, controllers manage everything from
system resources (e.g., pods, data volumes, networking, and
stateful services) to application lifecycles (e.g., provision-
ing, upgrades, and scaling). There is a thriving ecosystem of
thousands of domain-specific controllers that extend Kuber-
netes [46, 47, 60, 81, 84]. All these controllers perform critical
operations, making their correctness paramount.

Implementing correct controllers is immensely challenging,

due to the enormity of cluster state space and the complexity
of failure events (e.g., node crashes, network interruptions,
and asynchrony issues). Recent automated controller testing
tools [44,85] found many bugs with severe consequences such
as system outages, data loss, and resource leaks in popular
Kubernetes controllers. Buggy controllers have caused many
production incidents [45, 57, 71, 74].

This paper addresses the controller correctness challenge
with two major contributions: (1) eventually stable reconcili-
ation, a general specification for controller correctness which
we develop as a liveness property, and (2) Anvil, a framework
for implementing practical controllers and formally verifying
that a controller implements eventually stable reconciliation.
We have developed and verified practical Kubernetes con-
trollers for managing critical systems using Anvil.

Challenges and contributions. Addressing controller cor-
rectness with formal verification poses several challenges.
The first challenge is to define a correctness specification that
is generally applicable to diverse controllers, powerful enough
to preclude a broad range of bugs, and concise enough for
manual inspection, together with appropriate assumptions that
make it possible to implement the specification. The second
challenge lies in proving that the controller implements this
specification: controllers are complex, feature-rich real-world
systems that do not have pen-and-paper proofs that we can
reference. This problem is exacerbated by the fact that con-
trollers run in a complex and dynamic environment, where
the controller must handle unexpected faults, asynchrony, and
conflicts when interacting with other controllers.

We present Eventually Stable Reconciliation (ESR) as a
general specification of controller correctness (§3). ESR is a
liveness property, which states that a controller should even-
tually reconcile the cluster to a desired state, and then always
keep the cluster in the desired state. ESR captures the es-
sential functionality that controllers should provide in a pre-
cise language, and it precludes a broad range of bugs caused
by factors like inopportune failures and conflicts with other
controllers. ESR is also realistic and captures the necessary
premise to reach the desired state. We formalize ESR as a
concise Temporal Logic of Actions (TLA) [58] formula.

A common challenge in proving liveness is that the proof
depends on subtle fairness assumptions, including assump-

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 649

tions about possible faults. Overly strong assumptions (e.g.,
the controller can crash at most once) lead to weak correctness
guarantees, and overly weak assumptions (e.g., the controller
can keep crashing forever) make liveness verification unten-
able. Anvil employs an assumption that covers a broad range
of fault scenarios—an arbitrary number of faults can hap-
pen, but eventually faults stop happening. This assumption is
similar in spirit to partial synchrony [40] but for faults.

To prove that a controller satisfies ESR, one must consider
the controller’s interactions with the environment in which
it runs. Anvil models this environment, including the shared
cluster state, asynchronous network, other controllers, and
a realistic fault model (§4.3). The environment model also
encodes assumptions on fair scheduling and faults. Anvil ab-
stracts general liveness reasoning patterns in the environment
into reusable lemmas to reduce proof effort (§4.4).

With the reusable models and lemmas provided by Anvil,
developers can prove that the controller makes progress from
any cluster state towards potential desired states in the pres-
ence of asynchrony, faults, and conflicts with other controllers.
We present a proof strategy to disentangle the challenges of
proving ESR (§5), which divides the proof into two lemmas:
(1) starting from any possible state resulting from potential
interleaving of previous execution and faults, the controller
progresses towards the desired state in a stable environment,
and (2) the environment eventually becomes stable. Both lem-
mas can be proven using the temporal proof rules that Anvil
provides (under the fairness assumptions). We have applied
this proof strategy to verify three controllers using Anvil.
Implementation. We implemented Anvil for verifying Ku-
bernetes controllers on top of Verus [61], an SMT-based de-
ductive verification tool for Rust. With Verus, developers can
implement controllers in Rust and formally verify their imple-
mentations. Verus does not support temporal logic reasoning,
so Anvil provides a TLA embedding on top of first-order logic
(§4.2) to enable TLA-style temporal reasoning.

We used Anvil to implement three practical Kubernetes con-
trollers for managing ZooKeeper, RabbitMQ, and FluentBit
(§6). These controllers can readily be deployed in real-world
Kubernetes platforms; they provide feature parity and com-
petitive performance w.r.t. existing mature, widely used (but
unverified) controllers. The verification effort is manageable,
with the proof-to-code ratio ranging from 4.5 to 7.4 across
the controllers. The verification process exposed deep bugs
in both our early implementations and unverified reference
controllers. Although Anvil is primarily designed for live-
ness verification, it also supports safety verification; we prove
a safety property specific to the RabbitMQ controller: the
controller never performs unsafe scaling operations.
Summary. This paper makes the following contributions:

• Eventually stable reconciliation (ESR), a general specifica-
tion for controller correctness as a liveness property;

• Anvil, a framework for developing practical controllers

and formally verifying that the controller implementations
satisfy correctness properties such as ESR;

• three representative and practical Kubernetes controllers
verified using Anvil; and

• an evaluation of the end-to-end correctness and perfor-
mance of the three verified controllers.

Anvil and the verified controllers are available at https://
github.com/vmware-research/verifiable-controllers.

2 Implementing Controllers

Controllers follow the state reconciliation principle: each con-
troller runs a control loop that continuously reconciles the
cluster’s current state to the desired state [4, 8]. At each loop
iteration, a reconciliation procedure checks whether the cur-
rent cluster state matches the desired state; if not, it performs
corrective operations to move the cluster towards the desired
state (e.g., launching new replicas in an ensemble of servers
when existing replicas fail). The operations query or update
the cluster state, represented by shared data objects. These
state objects are exposed by REST-based API servers and are
stored in a logically centralized data store like etcd [1]. The
desired cluster state is described declaratively and can be dy-
namically updated during the lifecycle of a running controller.
The reconciliation procedure is typically implemented in a
reconcile() function, which is invoked whenever the desired
state description (or its relevant cluster states) is changed.

Figure 1 exemplifies the reconciliation process of a Ku-
bernetes controller for managing ZooKeeper. To create a
ZooKeeper cluster, the controller takes three steps to create:
1 a networked service (a Kubernetes service object [17]), 2
a ZooKeeper configuration (a config map object [14]), and
3 a stateful application (a stateful set object [18]) with three
replicas. Each step is performed by creating a new state object
of the corresponding resources via the Kubernetes API, which
then triggers Kubernetes built-in controllers, e.g., the State-
fulSet controller will create three sets of pods and volumes
to run containerized ZooKeeper nodes. In the end, the clus-
ter state matches the desired state. Later, if the desired state
changes (e.g., its replicas is increased), the ZooKeeper con-
troller will start a new iteration of reconciliation that updates
the stateful set object to scale up the ZooKeeper cluster.
Correctness challenges. A bug in a controller’s reconcili-
ation can result in the controller never being able to match
the desired state, even when reconcile() is called repeat-
edly. Controllers are expected to be level-triggered [53]:
reconcile() can be called from any current cluster state
to match any given desired state, with no guarantee that
the controller has seen the entire history of cluster state
changes [86]. In addition, controllers must tolerate unex-
pected failures and asynchrony while running reconcile(),
which leads to a state-space explosion that makes testing con-
trollers difficult. Figure 1 shows one of many bug patterns

650 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/vmware-research/verifiable-controllers
https://github.com/vmware-research/verifiable-controllers

Desired State
service: {port: 2181}
configMap: {...}
replicas: 3
...

1 2 3

1 3

if !server_service_exists() {
create_service();
create_configMap();

}
create_statefulset();

1
2
3

Liveness violation:
ConfigMap never created!

Su
cc
es
s

Fa
ilu
re

// Code snippet of reconcile()

Figure 1: An example of state reconciliation of an unverified

ZooKeeper controller. A liveness bug is triggered by a crash during
reconciliation. The bug pattern is common in real-world Kubernetes
controllers (known as intermediate-state bugs [85]).

1 pub trait Controller {
2 type D; // desired cluster state description
3 type S; // local state in the state machine
4

5 /// Returns the initial local state (in the state
6 /// machine) of every reconcile()
7 fn initial_state() -> S;
8

9 /// Returns S: next local state in state machine
10 /// Req: external request (e.g. to Kubernetes)
11 /// # Arguments
12 /// * d: the desired cluster-state description
13 /// * r: response to the request from last step
14 /// * s: current local state in state machine
15 fn step(d: &D, r: Resp, s: S) -> (S, Req);
16

17 /// Returns true if all steps are done
18 fn done(s: &S) -> bool;
19

20 /// Returns true for error states
21 fn error(s: &S) -> bool;
22 } // other advanced APIs are omitted

Figure 2: Anvil’s basic Controller API. To implement a controller,
developers implement the Controller trait.

of controllers [35, 44, 54, 64, 85]. If the controller crashes be-
tween steps 1 and 2 during an execution of reconcile(),
Kubernetes will reboot the controller. The freshly invoked
reconcile() call now faces the intermediate state created by
the previous failed execution (1). However, in this case, the
controller would never perform 2 due to a buggy predicate,
which only checks whether the networked service exists, but
not whether the config map also exists. As a result, the cluster
state would never match the desired state—a liveness viola-
tion. Such liveness violations are notoriously hard to detect
by testing or model checking [55].

Implementing controllers with Anvil. In Anvil, developers
implement a controller using a state machine; this style is
common practice in unverified controllers as well [2, 6], and
in Anvil it enables TLA-style verification. Figure 2 shows a
snippet of the Anvil Controller API specified using a Rust
trait: it involves defining the initial state and the transitions of
a state machine. Anvil’s reconcile() uses the state machine
as shown in Figure 3: it starts from the initial state and in-
vokes step() iteratively until all steps are done or if any step
encounters an error. Each iteration of step() returns the next

1 pub fn reconcile <C>(d: C::D) -> Result<Action, Error>
2 where C: Controller {
3 let mut s = C::initial_state();
4 let mut resp = None;
5 loop { // exercise the state machine
6 if C::error(&s) {
7 return Err(ErrorNeedsRequeue);
8 } else if C::done(&s) {
9 return Ok(requeue(timeout));

10 }
11 let (next_s, req) = C::step(&d, resp, s);
12 resp = send_external_request::<C>(req);
13 s = next_s;
14 }
15 } // details like validity checks are omitted

Figure 3: Anvil code that assembles reconcile() using the

Controller API in Figure 2.

1 fn step(d: &ZKD, r: Resp, s: ZKS) -> (ZKS, Req) {
2 match s {
3 CheckService => { // if the service exists
4 let service_get_req = KubeGet { ... }
5 return (ReconcileService , service_get_req);
6 }
7 ReconcileService => {
8 /// create/update the service based on response r
9 if r.is_ok() {

10 let service_update_req = ...;
11 return (CheckConfigMap , service_update_req);
12 } else if r.is_not_found() {
13 let service_create_req = ...;
14 return (CheckConfigMap , service_create_req);
15 } else {
16 return (Error, Noop); // restart reconcile()
17 }
18 }
19 CheckConfigMap => { ... }
20 ReconcileConfigMap => { ... }
21 CheckStatefulSet => { ... }
22 ReconcileStatefulSet => { ... }
23 ...
24 } // more step branches are omitted
25 }

Figure 4: A simplified implementation of step() using Anvil

for creating a ZooKeeper cluster. Proof-related code is omitted.

state in the state machine, together with an external request.
The external request is typically a REST call to Kubernetes
APIs, but can also be extended to non-Kubernetes APIs (§6.1).
The response to the external request is passed as an argument
to the next iteration of step(). Note that the API enforces
no more than one external request per step(), making the
state-machine transition atomic with respect to cluster-state
changes. Anvil’s reconcile() interfaces a trusted Kubernetes
client library (kube-rs [11]) which invokes reconcile() upon
changes, handles its output, and requeues the next invocation.

Figure 4 shows the step() implementation of a ZooKeeper
controller (Figure 1). The step() function takes the desired
state description of the ZooKeeper cluster (d), the response
(r) to the request from last step (if any), and the current lo-
cal state (s), and deterministically returns the next local state
and the external request. The state machine starts from the
CheckService state, where it returns a request to read the ser-
vice object [17] from the Kubernetes API (service_get_req)
and the next state to transition to ReconcileService. The
reconcile method (Figure 3) fetches the service object us-
ing the Kubernetes API, and moves on to the next iteration

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 651

of step(), bringing the state machine to ReconcileService
branch. The controller proceeds to create or update the service
based on the response of service_get_req. In this way, the
controller progressively reconciles each cluster-state object
and eventually matches the desired state declared by ZKD.

Next, we present a general controller correctness specifica-
tion, termed eventually stable reconciliation, in §3, and then
explain how to verify it using Anvil in §4 and §5.

3 Eventually Stable Reconciliation (ESR)

Controllers reconcile the cluster state to match the desired
state. While the details vary between controllers, and some
controllers may have additional correctness guarantees, we
formalize a general property called eventually stable reconcil-
iation (ESR) that captures this ubiquitous pattern.

ESR captures two key properties of any controller’s state
reconciliation behavior: (1) progress: given a desired state de-
scription, the controller must eventually make the cluster state
match that desired state (unless the desired state changes),
and (2) stability: if the controller successfully brought the
cluster to the desired state, it must keep the cluster in that
state (unless the desired state changes).

To make our specification general, we do not wish to com-
mit to any particular bound on the time or number of opera-
tions the controller takes to bring the cluster to the desired
state. So, we want to talk about guaranteed eventualities. Such
unbounded eventualities are naturally described using tempo-
ral logics [80]. We use TLA (temporal logic of actions) [58],
a linear-time temporal logic well-suited to our needs. TLA
is designed for reasoning about a system described as a state
machine. The behavior of the state machine is captured by
its set of traces, infinite sequences of system states where the
first state is a valid initial state and each subsequent state is
obtained via a valid transition from the previous state.

We formalize ESR as a TLA formula that should hold for
all traces of the system’s execution, where the system includes
both the controller and its environment, under all possibili-
ties for asynchrony, concurrency, and faults (e.g., controller
crashes). We use d to denote a state description, desire(d)
to denote whether d is the current description of the desired
state, match(d) to denote whether the current cluster state
matches the description d. Our definition of ESR is given by
the following formula:

8d.2
�
2desire(d))32match(d)

�
. (1)

Informally, ESR asserts that if at some point the desired state
stops changing, then the cluster will eventually reach a state
that matches it, and stay that way forever. The temporal op-
erators 3 (eventually) and 2 (always) are used in temporal
logics to reason about the future of an execution trace. If a
predicate P talks about the current state, then 2P says that
P holds in the current state and all future states, while 3P
says that P holds in the current or some future state. Temporal

desire('!)
desire('")

match('")
Satisfied

desire(')

!match(')
Violated

! match(')match(')
Violated

desire('!) desire('") desire('#) desire('$)
Vacuously
satisfied

The desired-state description keeps changing

(a)

(b)

(c)

(d)

desire(')

∞

∞

∞

∞
! → ∞

Figure 5: Executions that violate or satisfy ESR.

logics such as TLA also allow nesting of temporal operators;
for example, 32P means that eventually we get to a point
such that from that point onwards, P always holds.

The formalization of ESR is a key contribution of this paper
in that it captures the key correctness properties shared by
virtually all controllers: progress and stability. We elaborate
on this with a detailed dissection of eq. (1).

The innermost conclusion of the formula is 32match(d),
which states that eventually (3) the controller matches the
desired state (progress), and from then on, it always (2) keeps
the cluster state at the desired state (stability). In front of this
expression, 2desire(d) is a realistic and necessary premise
for the controller to match the desired state—if the desired
state description keeps changing forever, the controller will
keep chasing a moving target forever, and nothing can be
guaranteed as we do not wish to assume a bound on how long
state reconciliation takes. The outer 2 in eq. (1) says that
2desire(d))32match(d) always holds, meaning that the
controller continuously reconciles the cluster state regardless
of its past execution. Finally, the 8d states that the controller
reconciles all desired state descriptions.

Figure 5 illustrates the ESR definition in some examples,
some that satisfy the definition and others that do not: (a)
violates progress because the cluster state never matches d,
(b) violates stability because the cluster state first matches
d but then deviates from d, (c) satisfies ESR because the
cluster state eventually matches and always matches d2, and
(d) vacuously satisfies ESR because the desired state never
stops changing, so 2desire(d) does not hold for any fixed d.

The verification goal for each controller is to prove that
the controller satisfies ESR—all possible executions of the
controller satisfy ESR. We use model to describe all possible
executions of the controller that runs in an environment with
asynchrony, concurrency and faults. We use ; (leads-to)
notation to simplify the presentation of the ESR property,
where P ; Q means 2(P) 3Q). Then the statement that
the controller satisfies ESR is formalized as:

model |= 8d.2desire(d);2match(d). (2)

652 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The power of ESR. Strictly speaking, ESR (eq. (1)) only
guarantees one successful state reconciliation—the one that
happens after the desired state stops changing forever. How-
ever, in practice the controller has no way of knowing if the
desired state will change in the future or not. Therefore, we
can expect that a controller that satisfies ESR will bring the
cluster to match the desired state (and keep it like that) for any
desired state that remains unchanged for long enough. ESR
achieves this without getting into the gory details of defining
exactly how long is long enough. Note further that because of
the outermost 2 in eq. (1), a controller that satisfies ESR will
deliver multiple successful state reconciliations, assuming that
the desired state goes through a series of slow changes.

Our analysis shows that ESR can ensure the absence of
a broad range of controller bugs [44, 64, 85]. For example,
recent testing tools [44,85] detected 70 bugs across 16 popular
controllers that the controller never matches the desired state
due to improper handling of corner-case state descriptions,
inopportune failures and concurrency issues, which consist of
69% of all the detected bugs. All such bugs are precluded by
ESR. Prior work [64] also reported failure patterns where the
cluster state, after matching a desired state, then deviates due
to conflicting interactions with other controllers. Such bugs,
as stability violations, are also precluded by ESR.

4 Anvil

Anvil is a framework for developing controllers and mechani-
cally proving that they implement correctness specifications
like ESR. Anvil is built on top of Verus [61], an SMT-based
deductive verification tool for Rust backed by Z3 [39], in simi-
lar spirit to Dafny [62]; it offers a Hoare-logic [52] framework
for reasoning modularly about imperative code in Rust.

Figure 6 shows the workflow of using Anvil to verify a
controller. The developer first provides A a controller model
(an abstract state machine) and then proves two theorems: B
the Controller trait implementation (Figure 4) conforms to the
controller model and C the controller model, together with a
model of the environment (e.g., the network, other controllers,
faults), satisfies specifications like ESR (eq. (2)).

Writing the controller model and verifying the implementa-
tion conforms to the model are straightforward. The controller
model is an abstract state machine with the same structure
as the implementation state machine. To prove conformance,
developers prove that each step in the implementation corre-
sponds to exactly one step in the model using standard Floyd-
Hoare style reasoning (§4.1). Note: the controller model is
written in Verus’ specification language to enable verification.

Verifying the model entails ESR is more challenging: de-
velopers need to apply temporal logic reasoning on the inter-
action between the controller and its environment (including
faults) at the model level to prove ESR. To reduce developers’
burden on specification and proof, Anvil provides (1) a TLA
embedding (§4.2) that defines temporal logic operators on top

Reconciliation
implementation

Shim layer

Environment
model (§4.3)Controller model

Liveness/safety
specification

Controller implementation

Rust
compiler

Reusable
lemmas (§4.4)

TLA
embedding (§4.2)

Verus
verifier

kube-rs
Controller
executable

written by developer
provided by Anvil

theorem
external

Proof
(conformance)

B

Proof
(liveness/safety)

C

Fail

Pass

verified executable

A

Figure 6: An overview of Anvil’s workflow.

of first-order logic to enable specification and proof in tempo-
ral logic (Verus does not support temporal logic), (2) a model
of the controller environment (§4.3), including components
that a controller interacts with, faults that a controller must
tolerate, and reasonable assumptions on fair scheduling and
faults that controller liveness depends on, and (3) reusable
lemmas (§4.4) that encode temporal proof rules and liveness
and safety properties of the interactions between a controller
and the environment; these lemmas can be directly assembled
into developers’ ESR proofs.

In this section, we explain how Anvil supports the veri-
fication of controllers and then present a general, effective
strategy for developing proofs to verify ESR in §5.

Assumptions. Anvil relies on the following assumptions: (1)
The TLA embedding correctly defines TLA concepts [58].
(2) The controller environment model correctly describes the
interactions between the controller and its environment. (3)
The specification of the unverified APIs for querying and
updating the cluster state correctly describes the behavior of
these APIs. (4) The verifier (Verus and Z3), the Rust compiler,
and the underlying operating system are correct.

4.1 Controller Model

To verify controller correctness, developers first write a con-
troller model and prove the controller implementation con-
forms to this model, similar to prior work [49, 51]. The con-
troller model is a mathematical, state-machine representation
of the imperative controller implementation, which abstracts
the data types in the implementation and enables TLA-style
verification. Given the proof of implementation-model con-
formance, the model is not assumed to be correct in Anvil’s
overall verification guarantee.

Anvil provides an API for developers to write the controller
model, shown in Figure 7. This API defines a state machine
and is similar to the Controller API in Figure 2, except that all
the methods and variables are written in ghost code [61, 62].
Ghost code is auxiliary code that describes properties of pro-
grams and is used for verification only—the code is erased
before compilation and thus poses no runtime overhead. Con-

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 653

cretely, in the controller model, all the methods are Verus’
spec functions which are purely functional, and all the vari-
ables are ghost types that represent an abstract view of the
variables in the implementation, e.g., a heap-allocated Rust
Vec is represented as a mathematical sequence (Verus’ Seq).

1 pub trait ControllerModel {
2 type DV; // view of the desired state description
3 type SV; // view of local state in the state machine
4 spec fn m_initial_state() -> SV;
5 spec fn m_step(d: DV, r: RespV, s: SV) -> (SV, ReqV);
6 spec fn m_done(s: SV) -> bool;
7 spec fn m_error(s: SV) -> bool;
8 } // other advanced APIs are omitted

Figure 7: Anvil’s ControllerModel API. Developers use the API
to write the controller model (an abstract state machine). It mirrors
the implementation trait (Figure 2) but is written in ghost code.

Given a controller implementation, writing the controller
model is straightforward. Given a step() implementation in
the Controller API (Figure 2), developers write a correspond-
ing m_step() using the ControllerModel API (Figure 7). If the
implementation’s step() returns a Kubernetes-API request,
the model’s m_step() correspondingly returns a ghost-type
request (ReqV) that queries the Kubernetes API model (§4.3.1).
The other trait methods are largely identical to their counter-
parts in the implementation except for the data types.

For each implementation data type defined by developers,
such as the types for the desired state description and the state
machine’s local state (e.g., D and S in Figure 2), developers
need to define a corresponding ghost type (e.g., DV and SV),
typically by replacing implementation data types with corre-
sponding ghost types. For example, if D has a field of Rust
Vec type, DV will have a field of Verus Seq type. Developers
also need to define a view() function that converts an imple-
mentation object to the corresponding ghost-type object.

Implementation-model conformance. Developers need to
prove that the implementation state machine has the same ini-
tial state, transitions and termination conditions as the model
state machine through view(). Figure 8 shows the theorem
to prove conformance for the ZooKeeper controller’s step()
in Figure 4. This theorem states that the model’s m_step()
produces the same output (in ghost types), given the same
input (in ghost types) of the implementation’s step().

1 fn step(d: &ZKD, r: Resp, s: ZKS) -> (res: (ZKS, Req))
2 ensures res@ == ZKControllerModel::m_step(d@, r@, s@)
3 { ... } // implementation body is omitted

Figure 8: The conformance theorem written as a postcondition

of step. The step function is executable (part of the controller
implementation). The symbol @ is a shorthand for .view() in Verus,
which converts an implementation type into a ghost type.

The key challenge in enabling and automating the confor-
mance proof is to reason about data types defined in external,
unverified libraries. For example, the controller implemen-
tation needs to use data types that define Kubernetes state
objects from the kube-rs [11] library, but Verus cannot di-

rectly reason about definitions from unverified libraries. So,
Anvil defines wrappers that translate every Kubernetes state-
object type to its corresponding ghost type. These wrappers
are straightforward to implement and are trusted; Anvil in-
cludes unit tests that cover all the trusted wrapper methods.

The controller implementation uses the wrapper types in-
stead of raw types from kube-rs, and the model uses the cor-
responding ghost types. For verification, Verus automatically
tracks the wrapper’s view (view()) through the postconditions
of the wrapper methods used in the controller implementation.
Verus compares the object’s view to the ghost object used in
the controller model to check the conformance proof; e.g., to
prove the theorem in Figure 8, Verus compares the returned
request’s view and its counterpart in the model.

With this design, the conformance proof is done by standard
Floyd-Hoare style reasoning [52] and is largely automated by
Verus. Most of the manual proof effort is the requirement to
ask Verus to prove two objects are equal if they have the same
properties, e.g., to prove a Vec’s view (in the implementation)
and the corresponding Seq (in the model) are equal.

4.2 TLA Embedding

To enable liveness reasoning on top of Verus, Anvil develops
a TLA embedding that models important concepts in TLA.
Anvil follows IronFleet [51] and models three major concepts
as follows: (1) an execution is an infinite sequence of system
states encoded as a mapping from natural numbers to states,
(2) a temporal predicate is a boolean predicate on executions,
and (3) a temporal operator (e.g., 3, 2 and ;) is a function
that transforms one temporal predicate into another. Every
temporal operator is defined using only first-order quantifiers
on executions. Suppose P is a temporal predicate and ex is
an execution, eventually(P) (resp. always(P)) is a temporal
predicate that holds true of ex if P is true on some (resp. all)
suffixes of ex, that is, at some (resp. all) future time.

With the TLA embedding, developers can specify the theo-
rem that the controller satisfies ESR (eq. (2)) as in Figure 9.
The definition of desire is typically reused among controllers
but can also be extended if more premises are required for live-
ness. The definition of match varies across controllers; e.g.,
the match(d) for the ZooKeeper controller in Figure 4 checks
if the service, config map and stateful set exist in the data
store and match the desired state description d (Figure 10).

1 // model |= 8d.2desire(d);2match(d)
2 model.entails(
3 forall(|d: DV|
4 always(desire(d)).leads_to(always(match(d)))
5))

Figure 9: The ESR theorem specified using the TLA embedding.

In the style of specifying systems [59], Anvil diligently
abstracts away executions: developers model components at
the levels of state and action (transition between states), then
complete liveness proofs with temporal operators. Essentially,
Anvil encourages developers to express concepts as state

654 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 spec fn match(d: ZKDV) -> TemporalPredicate {
2 lift(|s: ClusterState| { // lift a state predicate
3 let store = s.state_object_data_store;
4 store.contains(service_name(d))
5 && store.contains(config_map_name(d))
6 && store.contains(stateful_set_name(d))
7 && store[stateful_set_name(d)].replicas == d.size
8 && ... // more statements are omitted
9 })

10 }

Figure 10: The definition of the ZooKeeper controller’s match.
The temporal predicate, when applied to an execution, checks the
first state to see if the state objects exist in store and match d. ZKDV
is the view of the ZooKeeper desired state description (ZKD).

predicates over individual states or action predicates over in-
dividual transitions. Developers can convert a state predicate
to a temporal predicate using a lift function [59]: an execu-
tion satisfies the lifted predicate if its first state satisfies the
state predicate; lifting an action predicate likewise applies the
predicate to the first two states of an execution. For example,
the temporal predicate match(d) is defined by lifting a state
predicate as shown in Figure 10. In this way, developers focus
on reasoning about individual states and actions when proving
invariants and lift them to temporal predicates when apply-
ing temporal proof rules (§4.4.1). This differs from IronFleet
which interacts directly with instantiated executions through-
out the liveness proof. We present Anvil’s temporal reasoning
style in detail in §5.2.

4.3 Modeling Controller Environment

To reason about interactions between a controller and its envi-
ronment, Anvil models the controller environment. The goal
is to describe the external behavior of different components
in the environment and capture the factors that affect a con-
troller’s correctness, including asynchrony, concurrency and
faults. To this end, Anvil models the environment as a com-
pound state machine, consisting of individual state machines
that depict the behavior of different components, such as the
network and the API server, as well as faults. The environ-
ment model also comes with reasonable assumptions on fair
scheduling and faults that liveness depends on.

4.3.1 Modeling Environment Components

Anvil models the environment as a compound state machine
with each inner individual state machine modeling one com-
ponent that a controller interacts with, including:

• an asynchronous network that delivers messages among
components with no ordering guarantees;

• the cluster-state data store and the API server; the cluster
state is stored in the logically centralized data store (e.g.,
etcd [1]) and exposed by the API server which handles the
controller’s query or update requests;

• other controllers in the environment that might interact with
the to-be-verified controller; and

• clients that request desired cluster states; clients can update
the desired cluster state at any time.

Anvil embeds the controller model in the compound state ma-
chine to reason through the interaction between the controller
and its environment. The compound state machine, in each
step, chooses one individual state machine and invokes one
step of that state machine. All the steps are atomic regard-
ing how the cluster state advances (e.g., the API server only
handles one request to update the cluster state in each step).

The compound state machine model naturally captures
asynchrony and concurrency challenges for controllers. For
example, time-of-check to time-of-use (TOCTOU) issues can
happen when the cluster state has changed since the last time
the controller queried it, but the controller issues an update
based on its stale view of the cluster state.

A model of Kubernetes environment. Anvil models the
Kubernetes cluster-state data store as a map that stores state
objects. Anvil models Kubernetes API servers’ mechanisms
for validating and coordinating controller requests, including
its multi-version concurrency control mechanism wherein
each object is versioned. Requests from the controllers must
be validated with a version check to take effect.

Anvil models Kubernetes built-in controllers that interact
with other controllers, including (1) the garbage collector [16]
which deletes a state object if all of its listed owners have been
deleted, (2) the StatefulSet controller [18] which manages
stateful applications, and (3) the DaemonSet controller [15]
which manages daemons (e.g., for monitoring) on every node.

4.3.2 Modeling Faults

Anvil models common faults that happen in modern clusters
as actions in the compound state machine; the compound state
machine in each step chooses to either let one component take
one step or let one fault happen. Anvil models two types
of faults: (1) controller crash: the controller can crash and
reboot an arbitrary number of times. Each crash makes the
controller stay offline for an arbitrary number of steps before
it is rebooted. After a crash, the controller loses its internal
(in-memory) state and has to start over from the beginning of
its reconciliation procedure. (2) request failures: any request
sent by the controller can fail at any point due to network
timeouts or the API server being busy.

4.3.3 Specifying Liveness Assumptions

Liveness verification needs careful assumptions. In a concur-
rent, asynchronous system, fairness assumptions are needed
to prove that something eventually happens as it relies on
the system and its environment getting a chance to take cer-
tain actions—a property that is expected to hold in practice
but must be nonetheless explicitly incorporated in our formal
assumptions. This problem is especially pronounced for con-
troller liveness: a controller’s reconciliation (1) relies on other
components’ actions to complete, and (2) can be interrupted
by faults or conflicting actions from other controllers. Anvil
makes assumptions that the environment eventually allows
the controller to make progress.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 655

Weak fairness assumptions on actions. Applying the weak
fairness [58] assumption is effective to make the liveness
property hold, without assuming any specific fair scheduling.
A weak fairness assumption states that if an action A remains
“enabled” (i.e., the action can possibly occur), the action even-
tually occurs: 2enabled(A); A. The predicate enabled(A)
is true, if for S (the first state of the execution), there exists a
next state S0 such that A(S,S0) is true; that is, it is possible for
A to occur and transition to S0.

We include fairness assumptions in the model by assum-
ing weak fairness on the actions of the controller and other
components in the environment.
Assumptions on faults. Controller liveness also needs as-
sumptions on faults. If the compound state machine chooses
to reboot the controller in every step, the controller will never
get a chance to finish reconciliation. However, overly strong
assumptions like “the controller crashes only once” lead to
weak correctness guarantees. To strike a balance, we assume
that faults can happen an arbitrary number of times but even-
tually stop happening, in the spirit of partial synchrony [40].

To incorporate this assumption, we add a “disable-fault”
action for each type of fault to the compound state machine.
We then add the weak fairness assumption to disable-fault
actions. That is, the disable-fault action eventually happens,
after which the corresponding type of fault no longer happens.
Assumptions on other controllers. Controllers share the
cluster state and thus can conflict with each other. A con-
troller’s liveness relies on conflicts being eventually resolved,
which mandates assumptions on other controllers. In Kuber-
netes as an example, the built-in StatefulSet controller can
compete with the target controller forever. Suppose the con-
troller uses a stateful set to manage a stateful application and
updates the stateful set to match the desired state descrip-
tion. At the same time, the StatefulSet controller continuously
updates the stateful set to publish the current status of each
running node. When the two controllers are updating the same
object concurrently, only one can succeed [13]. Thus, the en-
vironment model can adversarially keep letting the target
controller lose the race and never reach the desired state.

Anvil assumes that the StatefulSet controller eventually
stops updating the stateful set until the target controller up-
dates the stateful set again. Similar to the fault assumption, we
add to our model an action (with weak fairness) that disables
the built-in StatefulSet controller’s updates on a stateful set;
the target controller’s successful update to this stateful set
will enable the StatefulSet controller again. Anvil makes the
same assumption on how the built-in DaemonSet controller
updates daemon sets.

4.4 Reusable Lemmas

Proving ESR requires applying temporal proof rules to reason
about the controller’s interaction with the environment. This
is challenging in two ways: (1) temporal reasoning does not
have good automation because SMT solvers like Z3 lack deci-

1 proof fn leads_to_transitive(
2 model, P, Q, R: TemporalPredicate
3)
4 requires
5 model.entails(P.leads_to(Q)),
6 model.entails(Q.leads_to(R))
7 ensures model.entails(P.leads_to(R))
8 { ... } // proof body is omitted

Figure 11: The leads-to transitivity lemma.

sion procedures for temporal operators, and (2) the interaction
between the controller and the environment is complex and is
subject to asynchrony and faults. To reduce developers’ proof
effort, Anvil provides a library of reusable lemmas that en-
code (1) commonly used temporal proof rules and (2) generic
reasoning patterns in the controller environment.

4.4.1 Temporal Reasoning Lemmas

Anvil provides temporal reasoning lemmas that encode com-
monly used proof rules to improve temporal reasoning au-
tomation. These lemmas are useful for proving liveness for
any controller. One example is the leads-to transitivity lemma
(Figure 11). It shows that if P;Q and Q;R, then P;R, all
under the same assumption model. The proof of this lemma
involves using the temporal logic definitions, reasoning about
an arbitrary time in an execution where P holds, and showing
there exists a corresponding time where R eventually holds
(using an intermediate time when Q holds, as guaranteed by
the preconditions). In return, the developer can easily invoke
the lemma without reference to execution or specific indices
(these are hidden in the temporal logic lemmas). The leads-to
transitivity lemma is frequently used for chaining leads-to for-
mulas to deduce ESR: in our controllers used as case studies,
the lemma is used over 50 times. So far, Anvil includes state-
ments and proofs of 70+ such temporal reasoning lemmas,
representing a broad range of temporal reasoning patterns.

4.4.2 Environment Reasoning Lemmas

Environment reasoning lemmas prove liveness and safety
properties of the interaction between a controller and the envi-
ronment. We have developed 60 such lemmas. These lemmas
are generic to all controllers, and developers can assemble the
lemmas into their proofs. We present a representative lemma
derived from Anvil’s Kubernetes environment model.
Example lemma on the garbage collector (GC). Develop-
ers need to reason about their controller’s interaction with the
built-in GC (§4.3.1). The GC’s job is to delete orphan objects
whose owner [21] no longer exists: e.g., a stateful set owns a
set of pods, thus deleting the stateful set orphans these pods.
The GC can conflict with the controller: (1) after the con-
troller updates the owner of an orphan object, the GC deletes
the object due to its stale view [86], and (2) the controller
attempts to update an object that was deleted by the GC.

To prove ESR, developers need to prove that eventually
the GC stops racing with the controller on the object. To
help developers prove that eventually the GC stops trying to
delete an object x (as x has an existing owner), Anvil provides

656 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

a lemma with the precondition that any request from the
controller that tries to (re)create or update x sets x’s owner
to an existing object, and the postcondition that eventually
if x exists, it has an existing owner (Figure 12). This lemma
saves developers the trouble of reasoning about a long chain
of the GC execution, including that the GC eventually sends a
request to delete x (if it is an orphan), the network eventually
delivers the request, and the API server eventually handles
the deletion. This lemma takes 200+ lines of proof code and
is used in verifying all of the controllers in §6.

1 proof fn eventually_always_has_an_existing_owner(
2 model: TemporalPredicate , x: ObjectKey
3)
4 requires model.entails(
5 always(each_req_sets_an_existing_owner(x))),
6 ... // some preconditions on fairness are omitted
7 ensures model.entails(
8 eventually(always(has_an_existing_owner(x))))
9 { ... } // proof body is omitted

Figure 12: The garbage collector lemma. If each request that
tries to create or update x sets x’s owner to an existing object, then
eventually it is always true that if x exists, it has an existing owner.

5 Proving the ESR Theorem

Proving the ESR theorem requires developers to reason about
how the controller makes progress starting from any cluster
state towards any desired state. We leverage the opportunity
that all controllers follow the state-reconciliation principle
and develop a proof strategy for ESR. The proof strategy is
realized by temporal reasoning using Anvil’s TLA embed-
ding and lemmas. We present the proof strategy for ESR and
temporal reasoning with Anvil in detail.

5.1 Proof Strategy for ESR

The key idea of our proof strategy is to divide the proof into
two main lemmas by separation of concerns: (1) proving
that the environment eventually gets stable, and (2) proving
that the controller, starting from any state (any_state()) re-
sulted from arbitrary previous executions and faults, eventu-
ally achieves the desired state in this stable environment. Here
an environment is stable if (1) the controller does not conflict
with the other controllers, (2) faults do not happen, and (3)
the desired state description remains unchanged. The ESR
theorem is finally proved by combining the two lemmas using
temporal proof rules (e.g., leads-to transitivity). Figure 13
shows the high-level proof structure.

5.1.1 Environment is Eventually Stable

Proving that the environment is eventually stable is straight-
forward and is largely automated by Anvil’s lemmas. For ex-
ample, developers can directly invoke Anvil’s lemma which
proves that faults eventually stop happening based on Anvil’s
assumption of faults (§4.3.3). However, proving that the con-
troller eventually stops conflicting with the other controllers
still requires certain controller-specific reasoning. Take the
garbage collector (GC) as an example, developers can use

1 proof fn ESR_proof()
2 ensures model.entails(forall(|d: DV|
3 always(desire(d)).leads_to(always(match(d)))
4)) /* the ESR theorem */ {
5 // (1) prove 8d.model |=2desire(d); stable_model(d)
6 env_is_eventually_stable();
7 // (2) prove 8d.stable_model(d) |= any_state();2match(d)
8 liveness_in_stable_env();
9 // (3) prove model |= 8d.2desire(d);2match(d)

10 ...
11 leads_to_transitive(...);
12 }
13

14 proof fn env_is_eventually_stable() // lemma 1
15 ensures forall |d| model.entails(
16 always(desire(d)).leads_to(stable_model(d))) {...}
17

18 proof fn liveness_in_stable_env() // lemma 2
19 ensures forall |d| stable_model(d).entails(
20 any_state().leads_to(always(match(d)))) {...}

Figure 13: High-level structure of the ESR proof. model de-
scribes the original environment in §4.3. stable_model(d) de-
scribes the stable environment: faults and conflicts stop, and the
desired state d is stable.

Anvil’s lemma on the GC (Figure 12) to prove that the GC
eventually stops racing with the controller on any object, after
they prove that the controller correctly sets the owner of the
target objects (required by the GC lemma).

A notable corner case emerges due to asynchrony: even
if the desired state description remains unchanged, the con-
troller could still be affected by an older version of the desired
state. Consider an execution where the controller crashes right
after sending a request to match d1, then the desired state de-
scription is updated to d2 and remains unchanged from then,
but the old request for d1 is still pending in the network. After
the restarted controller sends a new request to match d2, the
two requests will conflict with each other—the two requests
try to make the cluster state match two different versions of
the desired state. To address this problem, we prove that after
the desired state description eventually stabilizes, any con-
troller request for any previous version of the desired state
will eventually leave the network.

5.1.2 Liveness in a Stable Environment

Within the stable environment, developers focus on proving
that the controller reaches the desired state through each rec-
onciliation step, without considering faults or conflicts.

The main challenge is to prove liveness starting from any
possible state. The state here includes both the shared cluster
state and the controller’s internal state: the cluster state can
result from any possible interleaving between the controller’s
previous execution and arbitrary faults, and the controller
internally can be running any reconciliation step.

It is tedious to reason about different executions starting
from every internal state. For the ZooKeeper controller in Fig-
ure 4, it would require reasoning about controller executions
starting from CheckService, ReconcileService and all other
branches in step(), respectively. To reduce proof burden,
we organize the proof in three stages (Figure 14). First, we

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 657

Reconciliation terminates

Reconciliation restarts

Query service

Create service Update service

Query config map

① The current reconciliation
eventually terminates.

②A new reconciliation
eventually restarts.

③ From the initial internal
state, the controller eventually
realizes the desired state.

…

…

Figure 14: Proving liveness in a stable environment.

prove a termination property: the controller’s current recon-
ciliation (the current invocation of reconcile() in Figure 3)
eventually terminates regardless of its current internal state.
This is done by reasoning about internal states backward, e.g.,
CheckService leads to termination if all its successor states
lead to termination. Second, we prove that a new reconcilia-
tion eventually starts after the previous one terminates. This
holds as Anvil requeues the next invocation of reconcile()
when the current terminates (Figure 3). Lastly, we only need
to reason about the controller execution starting from its initial
internal state in the new reconciliation (e.g., CheckService in
Figure 4) to prove that the controller eventually creates and
updates all the state objects to match the desired state.

To reason about the controller execution starting from its
initial internal state, we need to reason about how the con-
troller manages each state object. We observe that controllers
often employ similar workflow for managing different objects,
which can be leveraged to develop general lemmas to further
reduce proof burden. For example, the ZooKeeper controller
in Figure 4 manages its service, config map and stateful set
with a similar pattern: (1) querying the object and (2) cre-
ating or updating the object depending on the query result.
We develop a lemma parameterized by state objects which
proves that, from the step that the controller queries the object,
eventually the object always exists and matches the desired
state. The lemma internally reasons about how the controller
creates or updates the object to match the desired state.

5.2 Temporal Reasoning with Anvil

The proof strategy for ESR is realized by temporal reason-
ing. With Anvil, developers perform temporal reasoning by
focusing on reasoning about state and action predicates using
Anvil’s TLA embedding and lemmas. We use the example in
Figure 15 to demonstrate temporal reasoning with Anvil.

Developers perform temporal reasoning to prove that all
possible executions allowed by a model satisfy a property
Prop (model |= Prop). A model is defined as the initial state

1 // model, init^2next^fairness(...)
2 let model = lift(init).and(always(lift(next))
3 .and(fairness(...)));
4

5 // (1) prove model |= P; Q
6 // if P holds, P or Q will hold in the next state
7 assert forall |s, s’| P(s) && next(s, s’)
8 implies P(s’) || Q(s’) by { ... }
9 // if P holds, running A makes Q hold in the next state

10 assert forall |s, s’| P(s) && next(s, s’) && A(s, s’)
11 implies Q(s’) by { ... }
12 // if P holds, A is enabled (A can possibly occur)
13 assert forall |s| P(s) implies enabled(A)(s) by { ... }
14 wf1(model, next, A, P, Q);
15

16 // (2) prove model |= Q; R
17 ...
18 wf1(model, next, A, Q, R);
19

20 // (3) prove model |= P; R
21 leads_to_transitive(model, lift(P), lift(Q), lift(R));
22

23 // (4) prove model |= P;2R
24 assert forall |s, s’| R(s) && next(s, s’)
25 implies R(s’) by { ... }
26 leads_to_stable(model, lift(next), lift(P), lift(R));
27

28 // (5) prove model |=2Inv
29 assert forall |s| init(s) implies Inv(s) by { ... }
30 assert forall |s, s’| Inv(s) && next(s, s’)
31 implies Inv(s’) by { ... }
32 invariant_by_induction(model, init, next, Inv);

Figure 15: Temporal reasoning with Anvil. Developers focus on
reasoning about states and actions and applying TLA proof rules.

(init), all possible next-state actions (next), and fairness as-
sumptions (line 2-3). Fairness assumptions are only used for
proving liveness properties such as ESR.

Proving ESR often involves proving that if condition P
holds then eventually Q holds (i.e., P ; Q). For example, if
the controller sends a request, then eventually the request is
received and handled by the API server. Proving P ; Q is
typically done by applying the WF1 rule [58]. WF1 states
that “Action A makes P lead to Q” with four requirements (1)
running any action in a state satisfying P makes either P or
Q hold in the next state, (2) running A in a state satisfying P
makes Q hold in the next state, (3) P implies that A is enabled
(i.e., A can possibly occur) and (4) A has the weak fairness
assumption. To apply Anvil’s wf1 lemma (line 14), developers
focus on proving (1)-(3) by reasoning about P, Q, A and all
other actions allowed by the model (line 7-13), and (4) is
automatically proved by the definition of the model.

Proving ESR requires reasoning about a sequence of ac-
tions. For example, the controller sends a request, the API
server handles the request, and the controller receives the
response and continues to send the next request. To prove
that the controller makes progress through multiple actions,
developers apply the leads_to_transitive lemma (line 21)
to combine multiple leads-to properties into one (P ; R).

To reason about stability (if P ; R, then P ;2R), devel-
opers need to demonstrate that R is preserved by all possible
actions (if R holds, then it will hold in the next state) and
apply the leads_to_stable lemma (line 24-26).

Proving ESR (or other properties) often requires invariant
reasoning by induction (line 29-31). For example, to prove

658 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

that a state object x always exists, developers need to prove an
invariant that the controller never deletes x. Such invariants
are often required when applying wf1 and leads_to_stable.

6 Case Studies

We use Anvil to build three verified Kubernetes controllers
for managing different applications and services (ZooKeeper,
RabbitMQ, and FluentBit). For each controller, we use a ma-
ture, widely used controller as a reference (either the official
Kubernetes controller of the applications or from companies
that offer related products). We verify ESR for all three con-
trollers, and a safety property of the RabbitMQ controller.
Feature parity. We aim to implement verified controllers that
are feature rich with production quality. For the ZooKeeper
and RabbitMQ controllers, we implement key features of-
fered by the reference controllers [20, 23] including scaling,
version upgrading, resource allocation, pod placement, and
configurations, as well as network and storage management.
For the FluentBit controller, we implement all the features
offered by the reference controller [19]. We also implement
important features missing in the reference controllers. For
the ZooKeeper controller, we implement a feature that the
controller automatically restarts each ZooKeeper server to
load the new configuration once the configuration changes.
For the FluentBit controller, we implement a feature that the
controller allows users to customize how a load balancer dis-
covers FluentBit daemons. All the verified controllers can
readily be deployed in real-world Kubernetes platforms and
manage their respective applications.
Experience. Anvil’s Controller API (Figure 2) is expressive
to implement all the features of the controllers. For verifica-
tion, we spent around two person-months on verifying ESR
for the ZooKeeper controller, during which we developed
the proof strategy (§5). We took much less time (around two
person-weeks) to verify the other two controllers using the
same proof strategy and similar invariants. We find Anvil’s
ability to formally verify a controller’s implementation invalu-
able. We discovered deep bugs via verification. Some of them
also exist in the reference controllers but were not detected
by testing [44, 85].

6.1 ZooKeeper Controller

We implement and verify a full-fledged ZooKeeper controller,
using the controller [23] from Pravega [22] as the reference.
Figure 4 is a simplified version of our ZooKeeper controller.
We discuss two challenges of verifying the controller.
Supporting non-Kubernetes APIs. We extended Anvil
to support non-Kubernetes APIs to implement features like
scaling. To scale a ZooKeeper cluster, the controller needs
to change ZooKeeper membership by invoking ZooKeeper
APIs. We implement procedures to invoke ZooKeeper APIs as
callbacks invoked by reconcile() (Figure 3); Anvil decides
whether to invoke Kubernetes APIs or ZooKeeper APIs based

on the request object returned by the controller step().
Invoking ZooKeeper APIs needs new specifications beyond

what Anvil supplies. Hence, we write a trusted model (an
abstract state machine) of the ZooKeeper APIs used by our
controller and register it with the extensible compound state
machine. To prove liveness, we assume weak fairness on the
ZooKeeper API model: if the controller sends a request to a
deployed ZooKeeper cluster, it eventually receives a response.

Reasoning about dependencies between state objects. To
prove ESR, we need to reason about dependencies between
state objects—the desired state of one object depends on
the current state of another object. For example, to support
reconfiguration, our controller attaches the version number
of the config map to the stateful set as an annotation [7].
To ensure the ZooKeeper servers managed by the stateful
set use the updated configuration, the desired state of the
stateful set should contain the current version number of the
config map as an annotation. To verify the correctness of
reconfiguration, in ESR, match asserts that each state object
matches the desired state description (as in Figure 10), and
the annotation in the stateful set matches the current version
of the config map. We prove that the config map’s version
eventually becomes stable and thus the annotation eventually
matches the version.

Bugs precluded. We found and fixed two liveness bugs when
verifying our ZooKeeper controller. The first bug occurs when
the controller crashes between the steps of scaling ZooKeeper
and cannot continue reconciliation after restart, similar to
Figure 1. This led us to find a similar bug in the reference con-
troller we reported in [26]. Recent work [85] applied extensive
fault-injection testing on this controller but failed to find this
bug, because the bug only manifests in specific timing under
specific workloads (not covered by tests).

The second bug was caused by the controller trying to up-
date immutable fields in a stateful set. Kubernetes always
rejects the update, so the controller never finishes its recon-
ciliation. Our environment model captures how Kubernetes
validates each request (§4.3), which helped us find this bug.

6.2 RabbitMQ Controller

We implement and verify a full-fledged controller for Rab-
bitMQ, a widely used message broker [24]. We use the official
RabbitMQ controller as the reference [20].

Verifying safety. Besides ESR, we verify a safety property
for our controller. The official RabbitMQ controller disallows
scaling down a RabbitMQ cluster by reducing the stateful set’s
replicas due to data loss concerns [25]. The recommended
practice is to export the data, redeploy RabbitMQ with fewer
replicas, and import the data back. So, our controller prevents
reducing replicas count. We prove a safety property stating
that the replica count never decreases using Anvil. The safety
proof is done by standard inductive proof. For example, we
first prove invariants like “no request in the network reduces

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 659

replicas,” and conclude the replicas in the data store never
decreases using the invariants.

Bugs precluded. We found a safety bug and a liveness bug
via verification. The safety bug was caused by a concurrency
issue involving the RabbitMQ controller and the Kubernetes
garbage collector (GC). Initially, we restricted that replicas
never decreases in desired state descriptions using Kubernetes’
validation rule [5]. However, safety can still be violated, be-
cause the GC may not immediately remove orphan stateful
sets. If the stateful set updated by the controller was created
by an old (already deleted) desired state description that set a
larger replicas (r1) than the current one (r2), the controller
would in fact decrease the stateful set’s replicas (r1 ! r2).
We fixed the bug by enforcing the controller to wait for the
GC to delete orphan stateful sets.

The liveness bug was caused by a naming rule we inherited
from the reference controller. The bug causes the controller
to assign the same name for service objects from different
RabbitMQ clusters. In this case, the desired state descriptions
of two RabbitMQ clusters drive the controller to change each
other’s service object back and forth, thus neither can reach
desired states stably. We caught this bug because the oscil-
lation behavior prevented us from proving the cluster state
eventually always matches the desired state description in the
presence of another conflicting description. We fixed the bug
by changing the naming schema. The same bug also exists in
the reference controller.

6.3 FluentBit Controller

We implement and verify a controller for FluentBit, a popular
logging and metrics service [9]. FluentBit is deployed as a
group of daemons collecting and processing data on different
nodes in a cluster. We use the official FluentBit controller as
the reference [19] and implement all its features.

Incremental verification. To evaluate the efforts of maintain-
ing an evolving controller, we first implemented and verified a
basic version of the controller that deploys FluentBit daemons,
and then added new features incrementally, including version
upgrading, daemon placement, reconfiguration. We repaired
the proof every time when a new feature was added. We find
the efforts of evolving a verified controller manageable (§7.1).

7 Evaluation

We evaluate Anvil along the dimensions of verification effort
(§7.1), controller correctness (§7.2) and performance (§7.3).
Our evaluation shows that it is pragmatic to implement, verify
and evolve practical Kubernetes controllers with Anvil.

7.1 Verification Effort

Table 1 shows the details of each verified controller we built
using Anvil. Verifying each controller takes under 3 minutes
in real time on a 6-core 16 GB laptop with 11 parallel threads.

Trusted Exec Proof Time to Verify

(lines of source code) (seconds)

ZooKeeper controller §6.1

Liveness (ESR) 94 – 7245 511
Conformance 5 – 172 9
Controller model – – 935 –
Controller implementation – 1134 – –
Trusted wrapper 514 – – –
Trusted ZooKeeper API 318 – – –
Trusted entry point 19 – – –
Total 950 1134 8352 520 (154)

RabbitMQ controller §6.2

Liveness (ESR) 144 – 5211 278
Safety 22 – 358 45
Conformance 5 – 290 18
Controller model – – 1369 –
Controller implementation – 1598 – –
Trusted wrapper 358 – – –
Trusted entry point 19 – – –
Total 548 1598 7228 341 (151)

FluentBit controller §6.3

Liveness (ESR) 115 – 7079 337
Conformance 10 – 201 10
Controller model – – 1115 –
Controller implementation – 1208 – –
Trusted wrapper 679 – – –
Trusted entry point 24 – – –
Total 828 1208 8395 347 (96)

Total (all) 2326 3940 23975 1208 (401)

Table 1: Code sizes and verification time of the controllers veri-

fied using Anvil. Trusted includes the (verified) theorems, trusted
assumptions and unverified implementation. Time in brackets is ob-
tained by running the verifier in parallel (11 threads on 6 cores).

87% of proof functions verify in under ten CPU seconds, and
the slowest of them takes 120 CPU seconds.

Implementing and verifying each controller takes around
2.5 person-months. The proof-to-code ratio ranges from 4.5
to 7.4 across three controllers. We attribute the relatively low
ratio to Anvil’s reusable lemmas (§4.4) and our proof strategy
(§5). For example, the ESR proof of the RabbitMQ controller
uses the same set of leads-to reasoning lemmas to prove nine
different state objects eventually match the desired state.

The ESR proof mainly consists of proving invariants and
applying temporal proof rules. Proving invariants takes about
40% of the proof, which can potentially benefit from research
on inductive invariant inference [42, 48, 68, 69, 78, 79, 91, 93].
All our temporal logic reasoning is done by applying Anvil’s
temporal logic lemmas without unfolding the definition of
executions and temporal logic operators.

The verified controllers have a large portion of unverified
(trusted) components: 67% of the trusted code is for defin-
ing wrapper types of Kubernetes custom objects (used for
describing desired states) to integrate kube-rs, and their views
to enable verification (§4.1). The ZooKeeper controller also
relies on the trusted ZooKeeper API: 180 lines for specifying
the ZooKeeper API and 138 lines for implementing the call-
backs for Anvil to invoke the ZooKeeper API during runtime.

660 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Controller
Functional testing Crash testing

Tests # Bugs # Tests # Bugs

ZooKeeper 239 1 212 0
RabbitMQ 197 0 158 0
FluentBit 557 0 484 0

Table 2: Testing results of the three verified controllers. The tests
cover all the features of the controller under test.

Evolving controllers with Anvil. We measure the efforts to
evolve the FluentBit controller with Anvil by incrementally
adding features and updating its proof. We first implemented
and verified a basic FluentBit controller for deploying Fluent-
Bit daemons, then added 28 new features including version
upgrading, daemon placement, and various configurations. On
average, implementing a feature took less than a day and 47
lines of changes, including 19 lines in the proof. Among them,
implementing metrics_port required the most changes (403
lines in total and 211 in the proof); it added a new service
that routes traffic to the metrics port of each daemon, and we
proved the service eventually matches the desired state.
Effort to build Anvil. As a reference, the Anvil framework
consists of 5353 lines of reusable lemmas and 7817 lines
of trusted code, including the TLA embedding (85 lines),
the environment model (1846 lines) and the integration with
Kubernetes (5886 lines); 89% of the integration is for defining
wrapper types and views of Kubernetes built-in objects (§4.1).
All the lemmas are verified in under one minute.

7.2 Controller Correctness

We run extensive end-to-end functional tests on the verified
controllers using Acto [44]. Acto generates different desired
state descriptions to exercise controller reconciliation under
various scenarios. We also run extensive crash tests to check
if the verified controllers can recover from random crashes
during their reconciliation. The crashes are injected using an
implementation of Sieve [85] for Rust controllers.

Table 2 shows the testing results. The crash tests did not
find any bug—the verified controllers correctly recovered
from all the injected crashes and successfully reconciled the
cluster to the desired state. The functional tests found a bug in
the ZooKeeper controller (no bug found in other controllers).

The bug is caused by an incomplete specification of a
trusted ZooKeeper API that did not cover ZooKeeper mis-
configurations. If a misconfiguration results in partial fail-
ures (ZooKeeper is still running but cannot serve write re-
quests [67]), the controller fails to update the membership
and thus blocks the subsequent reconciliation steps. We fixed
this bug by adding configuration validation in the implemen-
tation, enhancing the specification, and updating the proofs.

7.3 Controller Performance

The verified controllers have comparable performance to the
reference controllers. We use Acto [44] to generate many
different desired state descriptions, triggering a sequence of

Controller
Verified (Anvil) Reference (unverified)

Mean (ms) Max (ms) Mean (ms) Max (ms)

ZooKeeper 439 696 212 413
RabbitMQ 439 725 690 1531
FluentBit 195 303 221 464

Table 3: Comparison of reconcile() execution time (in mil-

liseconds) between the verified controllers and their references.

reconciliations. For each desired state, we measure (1) exe-
cution times for the target controllers’ reconcile() methods
(Figure 1), and (2) the time it takes for the system to be fully
reconciled (e.g., after the controller issues a rolling update).
The experiments are run on CloudLab Clemson c6420 ma-
chines with dual Intel Xeon Gold 6142 processors, 384GB
DRAM, and a 6Gb/s HDD running Ubuntu 20.04 LTS.

Table 3 shows that the verified and reference controllers
have comparable execution times. The verified ZooKeeper
controller’s execution time is about twice that of the reference
which implements optimizations to conditionally skip state
updates. None of the controllers are latency critical. On aver-
age, reconcile()’s execution time takes less than 1% of the
overall system reconciliation time, most of which is out of the
control of the controller (e.g., container restart time).

We also evaluate if the verified controllers introduce more
load on the data store which is often the bottleneck for Ku-
bernetes scalability [28, 87]. We measure the disk I/O of etcd
and the verified controllers do not cause noticeably more
loads—the verified FluentBit controller causes only 0.44%
load increase compared to the reference; the other two verified
controllers do not cause load increase.

8 Related Work

Anvil is the first effort for building formally verified cluster
management controllers. We discuss related work in controller
correctness, systems verification and liveness verification.

Controller correctness. Liu et al. [65] use model checking to
find if controllers in a specific deployment have conflicting in-
teractions that violate user-supplied policies at the model level
(not executables). In contrast, Anvil verifies controller imple-
mentations against ESR, a general controller-correctness spec-
ification. Automated testing techniques [44, 85] have found
bugs in controller implementations. Anvil precludes such bugs
by verifying that the controller implementation satisfies ESR
for all executions. It has also revealed bugs that were missed
by these automated testing techniques (§6).

Systems verification. Despite the rich literature, most sys-
tems verification efforts so far focus on safety rather than
liveness [31–34, 36, 37, 49, 50, 56, 63, 66, 75, 82, 83, 88, 90, 94].
A notable exception is IronFleet [51], which also verifies
liveness of system implementations.

Anvil differs from IronFleet in the objective and proof tech-
nique. Regarding objective, IronFleet verifies a Paxos-based
replicated state machine and a sharded key-value store, with

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 661

system-specific specification (e.g., “if the network is fair then
the reliable-transmission component eventually delivers each
message”). Differently, Anvil formalizes ESR as a general
specification that captures the essence of state reconciliation
and verifies multiple controllers against ESR. Anvil shares
IronFleet’s methodology of using TLA embedding on first-
order logic. Different from many IronFleet’s liveness proof
statements that interact directly with instantiated executions
by indexing (Figure 16), Anvil abstracts away executions to
let developers model components, at the level of state and ac-
tion, and complete liveness proofs exclusively with temporal
operators (Figure 15).

1 lemma Lemma_PacketSentEventuallyReceivedAndNotDiscarded
2 (b:Behavior <LSHT_State >, send_step:int, ...)
3 returns (received_step:int, ...)
4 requires 0 <= send_step;
5 requires SendSingleValid(b[send_step], ...);
6 requires ... // other preconditions are omitted
7 ensures send_step <= received_step;
8 ensures b[received_step].hosts[dst_idx].host.
9 receivedPacket == Some(Packet(msg, ...));

10 { ... } // proof body is omitted

Figure 16: A representative liveness lemma example from Iron-

Fleet (written in Dafny) [10]. The lemma counts steps in one
instantiated execution (Behavior) to prove that if the packet is sent
at b[send_step], it will be received at b[received_step]. This
lemma, if written in Anvil, will have a postcondition in the form of
model.entails(sent.leads_to(received))without taking or
returning any execution instances or indices.

Liveness verification. Ivy [72, 78] incorporates a technique
for proving liveness of distributed protocols using first-order
logic [76,77]. Compared to Anvil, Ivy obtains a higher degree
of proof automation at the expense of a more restricted mod-
eling logic; we are exploring the potential to leverage some
of Ivy’s techniques in Anvil. LVR [92] proves liveness of
distributed protocols by automatically synthesizing ranking
functions with limited manual guidance. LVR is complemen-
tary to Anvil and might be able to synthesize ESR proofs for
controller implementations. The Alloy analyzer has recently
been extended to support linear temporal logic [3, 29, 70],
which enables modeling liveness properties of protocols and
system abstractions; but only finite instances can be checked
and the analyzed abstractions are not formally linked to ex-
ecutable code. More broadly, the rich literature on liveness
verification includes program termination [38] and liveness
of concurrent programs [27, 41, 43]. These techniques tar-
get other systems and their liveness specifications, whereas
Anvil’s contribution specifically targets controller correctness
and connects liveness proofs to an executable implementation.

9 Discussion and Future Work

The correctness of controllers verified by Anvil is not absolute.
Anvil relies on trusted components, including the model of
the environment, the shim layer, trusted external APIs, and the
verifier, compiler, and OS. We indeed found a bug caused by
an incomplete trusted assumption (§7.2). We believe that the

bug does not diminish the value of Anvil. Anvil formally veri-
fies reconciliation – the core of a controller – and reduces the
code one needs to look for bugs in to the trusted assumptions.

Note that ESR does not preclude all possible controller
bugs. For example, ESR may not rule out all potential safety
violations. Unlike ESR as a general correctness specification,
safety properties are often controller-specific; e.g., the safety
property we verified in §6.2 that the replicas number never
decreases is specific to the RabbitMQ controller.

We choose to focus on verifying ESR because ESR is a
general, reusable property that precludes a broad range of
bugs, and it is straightforward for developers to specify ESR.
Some bugs precluded by ESR may be precluded by some
safety properties as well, but these safety properties may be
more difficult for developers to specify. For example, the bug
in Figure 1 could be precluded by a safety property saying
“irrecoverable intermediate states never happen.” However,
specifying such safety properties requires knowledge of the
nature of the bugs (e.g., what kind of intermediate states the
controller cannot recover from?) [55]. In contrast, specifying
ESR only requires knowledge of desired states.

We expect verified controllers to be deployed on real-
world Kubernetes platforms, running alongside unverified
controllers. If the unverified controllers are custom controllers
not modeled in Anvil (§4.3.1), Anvil cannot reason about their
interactions with verified controllers, and hence cannot rule
out bugs caused by conflicting interactions.

In future work, we aim to gradually replace existing (unver-
ified) controllers with verified controllers using Anvil, includ-
ing both custom and built-in ones. We plan to extend Anvil
to admit multiple verified controllers and verify the interac-
tions among them in a modular way. We also plan to ensure
the quality of the trusted model of the environment, the shim
layer, and external APIs using lightweight formal methods.

10 Concluding Remarks

This paper presents Anvil, a framework for developing and
verifying cluster-management controllers, and ESR, a general
specification for controller correctness. We have implemented
and verified three Kubernetes controllers using Anvil. Our
work shows that it is not only feasible but also pragmatic
to implement, verify, and maintain practical Kubernetes con-
trollers. We hope that Anvil and ESR lead to a practical path
towards provably correct cloud infrastructures.

Acknowledgement

We thank the anonymous reviewers for their insightful com-
ments on the paper. We thank Jay Lorch, Owolabi Legunsen,
Ramnatthan Alagappan, and Yongle Zhang for their valu-
able feedback and discussions that helped shape this work.
This work was funded in part by NSF CNS-2145295 and a
VMware Research Gift.

662 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] etcd. https://etcd.io/.
[2] Flink controller state machine. https://github.com/
lyft/flinkk8soperator/blob/master/docs/state_
machine.md, 2020.

[3] Alloy 6. https://alloytools.org/alloy6.html, 2021.
[4] Controllers and Reconciliation. https://cluster-api.
sigs.k8s.io/developer/providers/implementers-
guide/controllers_and_reconciliation.html, 2021.

[5] CustomResourceDefinition Validation Rules. https:
//kubernetes.io/blog/2022/09/23/crd-validation-
rules-beta/, 2022.

[6] Spark controller state machine. https://github.com/
GoogleCloudPlatform/spark-on-k8s-operator/
blob/master/pkg/controller/sparkapplication/
controller.go#L485-L520, 2022.

[7] Annotations. https://kubernetes.io/docs/concepts/
overview/working-with-objects/annotations/,
2023.

[8] Controllers. https://kubernetes.io/docs/concepts/
architecture/controller/, 2023.

[9] FluentBit. https://fluentbit.io/, 2023.
[10] Ironfleet liveness lemma. https://

github.com/microsoft/Ironclad/blob/
2fe4dcdc323b92e93f759cc3e373521366b7f691/
ironfleet/src/Dafny/Distributed/Protocol/
LiveSHT/LivenessProof/LivenessProof.i.dfy#L31,
2023.

[11] kube-rs/kube: Rust Kubernetes client and controller runtime.
https://github.com/kube-rs/kube, 2023.

[12] Kubernetes. https://kubernetes.io/, 2023.
[13] Kubernetes API Concepts: Updates to existing resources.

https://kubernetes.io/docs/reference/using-
api/api-concepts/#patch-and-apply, 2023.

[14] Kubernetes ConfigMaps. https://kubernetes.io/docs/
concepts/configuration/configmap/, 2023.

[15] Kubernetes DaemonSet. https://kubernetes.io/docs/
concepts/workloads/controllers/daemonset/, 2023.

[16] Kubernetes Garbage Collection. https://kubernetes.io/
docs/concepts/architecture/garbage-collection/,
2023.

[17] Kubernetes Service. https://kubernetes.io/docs/
concepts/services-networking/service/, 2023.

[18] Kubernetes StatefulSet. https://kubernetes.io/docs/
concepts/workloads/controllers/statefulset/,
2023.

[19] Official FluentBit controller. https://github.com/
fluent/fluent-operator, 2023.

[20] Official RabbitMQ controller. https://github.com/
rabbitmq/cluster-operator, 2023.

[21] Owners and Dependents. https://kubernetes.io/docs/
concepts/overview/working-with-objects/owners-
dependents/, 2023.

[22] Pravega. https://cncf.pravega.io/, 2023.

[23] Pravega ZooKeeper controller. https://github.com/
pravega/zookeeper-operator, 2023.

[24] RabbitMQ. https://www.rabbitmq.com/, 2023.

[25] RabbitMQ: Scale down. https://github.com/rabbitmq/
cluster-operator/issues/223, 2023.

[26] Stateful set never gets updated because zk node is
missing. https://github.com/pravega/zookeeper-
operator/issues/569, 2023.

[27] BAUMANN, P., MAJUMDAR, R., THINNIYAM, R. S., AND
ZETZSCHE, G. Context-Bounded Verification of Liveness
Properties for Multithreaded Shared-Memory Programs. In
Proceedings of the 48th ACM SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL’21) (Jan. 2021).

[28] BERNER, C. Scaling kubernetes to 2,500 nodes.
https://openai.com/research/scaling-kubernetes-
to-2500-nodes, Jan. 2023.

[29] BRUNEL, J., CHEMOUIL, D., CUNHA, A., AND MACEDO,
N. The Electrum Analyzer: Model Checking Relational First-
Order Temporal Specifications. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software
Engineering (ASE’18) (Sept. 2018).

[30] BURNS, B., GRANT, B., OPPENHEIMER, D., BREWER, E.,
AND WILKES, J. Borg, Omega, and Kubernetes. Communica-
tions of the ACM 59, 5 (May 2016), 50–57.

[31] CHAJED, T., TASSAROTTI, J., KAASHOEK, M. F., AND ZEL-
DOVICH, N. Verifying concurrent, crash-safe systems with
Perennial. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP’19) (Oct. 2019).

[32] CHAJED, T., TASSAROTTI, J., THENG, M., JUNG, R.,
KAASHOEK, M. F., AND ZELDOVICH, N. GoJournal: a veri-
fied, concurrent, crash-safe journaling system. In Proceedings
of the 15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’21) (July 2021).

[33] CHAJED, T., TASSAROTTI, J., THENG, M., KAASHOEK,
M. F., AND ZELDOVICH, N. Verifying the DaisyNFS con-
current and crash-safe file system with sequential reasoning.
In Proceedings of the 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’22) (July 2022).

[34] CHANG, Y.-S., JUNG, R., SHARMA, U., TASSAROTTI, J.,
KAASHOEK, M. F., AND ZELDOVICH, N. Verifying vMVCC,
a high-performance transaction library using multi-version
concurrency control. In Proceedings of the 17th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’23) (July 2023).

[35] CHEKRYGIN, I. Keep the Space Shuttle Flying: Writing
Robust Operators. https://youtu.be/uf97lOApOv8?t=
1457, May 2019.

[36] CHEN, H., CHAJED, T., KONRADI, A., WANG, S., ILERI,
A., CHLIPALA, A., KAASHOEK, M. F., AND ZELDOVICH,
N. Verifying a High-Performance Crash-Safe File System
Using a Tree Specification. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP’17) (Oct.
2017).

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 663

https://etcd.io/
https://github.com/lyft/flinkk8soperator/blob/master/docs/state_machine.md
https://github.com/lyft/flinkk8soperator/blob/master/docs/state_machine.md
https://github.com/lyft/flinkk8soperator/blob/master/docs/state_machine.md
https://alloytools.org/alloy6.html
https://cluster-api.sigs.k8s.io/developer/providers/implementers-guide/controllers_and_reconciliation.html
https://cluster-api.sigs.k8s.io/developer/providers/implementers-guide/controllers_and_reconciliation.html
https://cluster-api.sigs.k8s.io/developer/providers/implementers-guide/controllers_and_reconciliation.html
https://kubernetes.io/blog/2022/09/23/crd-validation-rules-beta/
https://kubernetes.io/blog/2022/09/23/crd-validation-rules-beta/
https://kubernetes.io/blog/2022/09/23/crd-validation-rules-beta/
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/master/pkg/controller/sparkapplication/controller.go#L485-L520
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/master/pkg/controller/sparkapplication/controller.go#L485-L520
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/master/pkg/controller/sparkapplication/controller.go#L485-L520
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/master/pkg/controller/sparkapplication/controller.go#L485-L520
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/architecture/controller/
https://fluentbit.io/
https://github.com/microsoft/Ironclad/blob/2fe4dcdc323b92e93f759cc3e373521366b7f691/ironfleet/src/Dafny/Distributed/Protocol/LiveSHT/LivenessProof/LivenessProof.i.dfy#L31
https://github.com/microsoft/Ironclad/blob/2fe4dcdc323b92e93f759cc3e373521366b7f691/ironfleet/src/Dafny/Distributed/Protocol/LiveSHT/LivenessProof/LivenessProof.i.dfy#L31
https://github.com/microsoft/Ironclad/blob/2fe4dcdc323b92e93f759cc3e373521366b7f691/ironfleet/src/Dafny/Distributed/Protocol/LiveSHT/LivenessProof/LivenessProof.i.dfy#L31
https://github.com/microsoft/Ironclad/blob/2fe4dcdc323b92e93f759cc3e373521366b7f691/ironfleet/src/Dafny/Distributed/Protocol/LiveSHT/LivenessProof/LivenessProof.i.dfy#L31
https://github.com/microsoft/Ironclad/blob/2fe4dcdc323b92e93f759cc3e373521366b7f691/ironfleet/src/Dafny/Distributed/Protocol/LiveSHT/LivenessProof/LivenessProof.i.dfy#L31
https://github.com/kube-rs/kube
https://kubernetes.io/
https://kubernetes.io/docs/reference/using-api/api-concepts/#patch-and-apply
https://kubernetes.io/docs/reference/using-api/api-concepts/#patch-and-apply
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/architecture/garbage-collection/
https://kubernetes.io/docs/concepts/architecture/garbage-collection/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://github.com/fluent/fluent-operator
https://github.com/fluent/fluent-operator
https://github.com/rabbitmq/cluster-operator
https://github.com/rabbitmq/cluster-operator
https://kubernetes.io/docs/concepts/overview/working-with-objects/owners-dependents/
https://kubernetes.io/docs/concepts/overview/working-with-objects/owners-dependents/
https://kubernetes.io/docs/concepts/overview/working-with-objects/owners-dependents/
https://cncf.pravega.io/
https://github.com/pravega/zookeeper-operator
https://github.com/pravega/zookeeper-operator
https://www.rabbitmq.com/
https://github.com/rabbitmq/cluster-operator/issues/223
https://github.com/rabbitmq/cluster-operator/issues/223
https://github.com/pravega/zookeeper-operator/issues/569
https://github.com/pravega/zookeeper-operator/issues/569
https://openai.com/research/scaling-kubernetes-to-2500-nodes
https://openai.com/research/scaling-kubernetes-to-2500-nodes
https://youtu.be/uf97lOApOv8?t=1457
https://youtu.be/uf97lOApOv8?t=1457

[37] CHEN, H., ZIEGLER, D., CHAJED, T., CHLIPALA, A.,
KAASHOEK, M. F., AND ZELDOVICH, N. Using Crash Hoare
Logic for Certifying the FSCQ File System. In Proceedings
of the 25th ACM Symposium on Operating Systems Principles
(SOSP’15) (Oct. 2015).

[38] COOK, B., PODELSKI, A., AND RYBALCHENKO, A. Proving
Program Termination. Communications of the ACM 54, 5 (May
2011), 88–98.

[39] DE MOURA, L., AND BJØRNER, N. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software,
14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’08/ETAPS’08)
(Mar. 2008).

[40] DWORK, C., LYNCH, N., AND STOCKMEYER, L. Consensus
in the Presence of Partial Synchrony. Journal of the ACM 35,
2 (Apr. 1988), 288–323.

[41] FARZAN, A., KINCAID, Z., AND PODELSKI, A. Proving
Liveness of Parameterized Programs. In Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS’16) (July 2016).

[42] GOEL, A., AND SAKALLAH, K. On Symmetry and Quantifi-
cation: A New Approach to Verify Distributed Protocols. In
Proceedings of the 13th NASA Formal Methods Symposium
(NFM’21) (May 2021).

[43] GOTSMAN, A., COOK, B., PARKINSON, M., AND
VAFEIADIS, V. Proving That Non-Blocking Algorithms Don’t
Block. In Proceedings of the 36th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL’09) (Jan.
2009).

[44] GU, J. T., SUN, X., ZHANG, W., JIANG, Y., WANG, C.,
VAZIRI, M., LEGUNSEN, O., AND XU, T. Acto: Automatic
End-to-End Testing for Operation Correctness of Cloud Sys-
tem Management. In Proceedings of the 29th ACM Symposium
on Operating Systems Principles (SOSP’23) (Oct. 2023).

[45] GUILLOUX, S. Writing a Kubernetes Operator: the Hard Parts.
https://youtu.be/wMqzAOp15wo?t=411, Nov. 2019.

[46] HAASE, S. How an Operator Becomes the Hero of the Edge.
In OperatorCon (May 2019).

[47] HALL, C. AWS, Google, Microsoft, Red Hat’s New Registry
to Act as Clearing House for Kubernetes Operators. https:
//www.datacenterknowledge.com/open-source/aws-
google-microsoft-red-hats-new-registry-act-
clearing-house-kubernetes-operators, Mar. 2019.

[48] HANCE, T., HEULE, M., MARTINS, R., AND PARNO, B. Find-
ing Invariants of Distributed Systems: It’s a Small (Enough)
World After All. In Proceedings of the 18th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI’21) (Apr. 2021).

[49] HANCE, T., LATTUADA, A., HAWBLITZEL, C., HOWELL,
J., JOHNSON, R., AND PARNO, B. Storage Systems are Dis-
tributed Systems (So Verify Them That Way!). In Proceedings
of the 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’20) (Nov. 2020).

[50] HANCE, T., ZHOU, Y., LATTUADA, A., ACHERMANN, R.,
CONWAY, A., STUTSMAN, R., ZELLWEGER, G., HAW-
BLITZEL, C., HOWELL, J., AND PARNO, B. Sharding the
State Machine: Automated Modular Reasoning for Complex
Concurrent Systems. In Proceedings of the 17th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’23) (July 2023).

[51] HAWBLITZEL, C., HOWELL, J., KAPRITSOS, M., LORCH,
J. R., PARNO, B., ROBERTS, M. L., SETTY, S., AND ZILL,
B. IronFleet: Proving Practical Distributed Systems Correct.
In Proceedings of the 25th ACM Symposium on Operating
Systems Principles (SOSP’15) (Oct. 2015).

[52] HOARE, C. A. R. An axiomatic basis for computer program-
ming. Communications of the ACM 12 (1969).

[53] HOCKIN, T. Kubernetes: Edge vs. Level Triggered
Logic. https://speakerdeck.com/thockin/edge-vs-
level-triggered-logic, June 2017.

[54] HOWARD, J. Building Better Controllers. https://
www.youtube.com/watch?v=GKPBQDJ2Hjk&t=160s, Nov.
2023.

[55] KILLIAN, C., ANDERSON, J. W., JHALA, R., AND VAHDAT,
A. Life, Death, and the Critical Transition: Finding Liveness
Bugs in Systems Code. In Proceedings of the 4th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI’07) (Apr. 2007).

[56] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J.,
COCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K.,
KOLANSKI, R., NORRISH, M., SEWELL, T., TUCH, H., AND
WINWOOD, S. SeL4: Formal Verification of an OS Kernel.
In Proceedings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP’09) (Oct. 2009).

[57] LAGRESLE, M. Moving to Kubernetes: the Bad and the Ugly.
https://youtu.be/MoIdU0J0f0E?t=263, June 2019.

[58] LAMPORT, L. The Temporal Logic of Actions. ACM Trans-
actions on Programming Languages and Systems 16, 3 (May
1994), 872–923.

[59] LAMPORT, L. Specifying Systems: The TLA+ Languange and
Tools for Hardware and Software Engineers. Addison-Wesley,
2002.

[60] LANDER, R. Kubernetes Operators: Should You Use
Them? https://tanzu.vmware.com/developer/blog/
kubernetes-operators-should-you-use-them/, July
2021.

[61] LATTUADA, A., HANCE, T., CHO, C., BRUN, M., SUBAS-
INGHE, I., ZHOU, Y., HOWELL, J., PARNO, B., AND HAW-
BLITZEL, C. Verus: Verifying Rust Programs Using Linear
Ghost Types. In Proceedings of 2023 ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’23) (Apr. 2023).

[62] LEINO, K. R. M. Dafny: An Automatic Program Verifier
for Functional Correctness. In Proceedings of the 17th In-
ternational Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’10) (Oct. 2010).

[63] LEROY, X. Formal Verification of a Realistic Compiler. Com-
munications of the ACM 52, 7 (July 2009), 107–115.

664 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://youtu.be/wMqzAOp15wo?t=411
https://www.datacenterknowledge.com/open-source/aws-google-microsoft-red-hats-new-registry-act-clearing-house-kubernetes-operators
https://www.datacenterknowledge.com/open-source/aws-google-microsoft-red-hats-new-registry-act-clearing-house-kubernetes-operators
https://www.datacenterknowledge.com/open-source/aws-google-microsoft-red-hats-new-registry-act-clearing-house-kubernetes-operators
https://www.datacenterknowledge.com/open-source/aws-google-microsoft-red-hats-new-registry-act-clearing-house-kubernetes-operators
https://speakerdeck.com/thockin/edge-vs-level-triggered-logic
https://speakerdeck.com/thockin/edge-vs-level-triggered-logic
https://www.youtube.com/watch?v=GKPBQDJ2Hjk&t=160s
https://www.youtube.com/watch?v=GKPBQDJ2Hjk&t=160s
https://youtu.be/MoIdU0J0f0E?t=263
https://tanzu.vmware.com/developer/blog/kubernetes-operators-should-you-use-them/
https://tanzu.vmware.com/developer/blog/kubernetes-operators-should-you-use-them/

[64] LIU, B., KHERADMAND, A., CAESAR, M., AND GODFREY,
P. B. Towards Verified Self-Driving Infrastructure. In Proceed-
ings of the 19th ACM Workshop on Hot Topics in Networks
(HotNets’20) (Nov. 2020).

[65] LIU, B., LIM, G., BECKETT, R., AND GODFREY, P. B. Kivi:
Verification for Cluster Management. In Proceedings of the
2024 USENIX Annual Technical Conference (ATC’24) (July
2024).

[66] LORCH, J. R., CHEN, Y., KAPRITSOS, M., PARNO, B.,
QADEER, S., SHARMA, U., WILCOX, J. R., AND ZHAO, X.
Armada: Low-Effort Verification of High-Performance Con-
current Programs. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation (PLDI’20) (June 2020).

[67] LOU, C., HUANG, P., AND SMITH, S. Understanding, Detect-
ing and Localizing Partial Failures in Large System Software.
In Proceedings of the 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’20) (Feb. 2020).

[68] MA, H., AHMAD, H., GOEL, A., GOLDWEBER, E., JEAN-
NIN, J.-B., KAPRITSOS, M., AND KASIKCI, B. Sift: Using
Refinement-guided Automation to Verify Complex Distributed
Systems. In Proceedings of the 2022 USENIX Annual Techni-
cal Conference (ATC’22) (July 2022).

[69] MA, H., GOEL, A., JEANNIN, J.-B., KAPRITSOS, M.,
KASIKCI, B., AND SAKALLAH, K. A. I4: Incremental In-
ference of Inductive Invariants for Verification of Distributed
Protocols. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP’19) (Oct. 2019).

[70] MACEDO, N., BRUNEL, J., CHEMOUIL, D., AND CUNHA,
A. Pardinus: A temporal relational model finder. J. Autom.
Reason. 66, 4 (2022), 861–904.

[71] MADHU, C. Preventing Controller Sprawl From Taking Down
Your Cluster. https://youtu.be/fu5GXo7jmV0?t=732,
Oct. 2022.

[72] MCMILLAN, K. L., AND PADON, O. Ivy: A Multi-Modal Ver-
ification Tool for Distributed Algorithms. In Proceedings of the
32nd International Conference on Computer Aided Verification
(CAV’20) (July 2020).

[73] MELISSARIS, T., NABAR, K., RADUT, R., REHMTULLA, S.,
SHI, A., CHANDRASHEKAR, S., AND PAPAPANAGIOTOU, I.
Elastic Cloud Services: Scaling Snowflake’s Control Plane. In
Proceedings of the 13th ACM Symposium on Cloud Computing
(SOCC’22) (Nov. 2022).

[74] MOTWANI, S., AND MAHESHWARI, A. Deep Dive Into
Writing a Kubernetes Operator: Let’s Avoid Data Loss
and Down Times. https://www.youtube.com/watch?v=
2NjMHLACvc0&t=737s, Nov. 2023.

[75] NELSON, L., SIGURBJARNARSON, H., ZHANG, K., JOHN-
SON, D., BORNHOLT, J., TORLAK, E., AND WANG, X. Hy-
perkernel: Push-Button Verification of an OS Kernel. In Pro-
ceedings of the 26th ACM Symposium on Operating Systems
Principles (SOSP’17) (Oct. 2017).

[76] PADON, O., HOENICKE, J., LOSA, G., PODELSKI, A., SA-
GIV, M., AND SHOHAM, S. Reducing Liveness to Safety

in First-Order Logic. In Proceedings of the 45th ACM SIG-
PLAN Symposium on Principles of Programming Languages
(POPL’18) (Jan. 2018).

[77] PADON, O., HOENICKE, J., MCMILLAN, K. L., PODELSKI,
A., SAGIV, M., AND SHOHAM, S. Temporal Prophecy for
Proving Temporal Properties of Infinite-State Systems. In
Proceedings of the 18th Conference on Formal Methods in
Computer-Aided Design (FMCAD’18) (Oct. 2018).

[78] PADON, O., MCMILLAN, K. L., PANDA, A., SAGIV, M., AND
SHOHAM, S. Ivy: Safety Verification by Interactive General-
ization. In Proceedings of the 37th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(PLDI’16) (June 2016).

[79] PADON, O., WILCOX, J. R., KOENIG, J. R., MCMILLAN,
K. L., AND AIKEN, A. Induction Duality: Primal-Dual Search
for Invariants. In Proceedings of the 49th ACM SIGPLAN Sym-
posium on Principles of Programming Languages (POPL’22)
(Jan. 2022).

[80] PNUELI, A. The Temporal Logic of Programs. In Proceedings
of the 18th Annual Symposium on Foundations of Computer
Science (Oct. 1977).

[81] RATIS, P. Lessons Learned using the Operator Pattern to build
a Kubernetes Platform. In USENIX SREcon (Oct. 2021).

[82] SHARMA, U., JUNG, R., TASSAROTTI, J., KAASHOEK, F.,
AND ZELDOVICH, N. Grove: A Separation-Logic Library for
Verifying Distributed Systems. In Proceedings of the 29th
ACM Symposium on Operating Systems Principles (SOSP’23)
(Oct. 2023).

[83] SIGURBJARNARSON, H., BORNHOLT, J., TORLAK, E., AND
WANG, X. Push-Button Verification of File Systems via Crash
Refinement. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’16)
(Nov. 2016).

[84] SOSA, C., AND BHATIA, P. Application management
made easier with Kubernetes Operators on GCP Market-
place. https://cloud.google.com/blog/products/
containers-kubernetes/application-management-
made-easier-with-kubernete-operators-on-gcp-
marketplace, May 2019.

[85] SUN, X., LUO, W., GU, J. T., GANESAN, A., ALAGAPPAN,
R., GASCH, M., SURESH, L., AND XU, T. Automatic Relia-
bility Testing for Cluster Management Controllers. In Proceed-
ings of the 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’22) (July 2022).

[86] SUN, X., SURESH, L., GANESAN, A., ALAGAPPAN, R.,
GASCH, M., TANG, L., AND XU, T. Reasoning about modern
datacenter infrastructures using partial histories. In Proceed-
ings of the 18th Workshop on Hot Topics in Operating Systems
(HotOS-XVIII) (May 2021).

[87] TANG, C., YU, K., VEERARAGHAVAN, K., KALDOR, J.,
MICHELSON, S., KOOBURAT, T., ANBUDURAI, A., CLARK,
M., GOGIA, K., CHENG, L., CHRISTENSEN, B., GARTRELL,
A., KHUTORNENKO, M., KULKARNI, S., PAWLOWSKI, M.,
PELKONEN, T., RODRIGUES, A., TIBREWAL, R., VENKATE-
SAN, V., AND ZHANG, P. Twine: A Unified Cluster Manage-
ment System for Shared Infrastructure. In Proceedings of the

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 665

https://youtu.be/fu5GXo7jmV0?t=732
https://www.youtube.com/watch?v=2NjMHLACvc0&t=737s
https://www.youtube.com/watch?v=2NjMHLACvc0&t=737s
https://cloud.google.com/blog/products/containers-kubernetes/application-management-made-easier-with-kubernete-operators-on-gcp-marketplace
https://cloud.google.com/blog/products/containers-kubernetes/application-management-made-easier-with-kubernete-operators-on-gcp-marketplace
https://cloud.google.com/blog/products/containers-kubernetes/application-management-made-easier-with-kubernete-operators-on-gcp-marketplace
https://cloud.google.com/blog/products/containers-kubernetes/application-management-made-easier-with-kubernete-operators-on-gcp-marketplace

14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’20) (Nov. 2020).

[88] TAUBE, M., LOSA, G., MCMILLAN, K. L., PADON, O., SA-
GIV, M., SHOHAM, S., WILCOX, J. R., AND WOOS, D. Mod-
ularity for Decidability of Deductive Verification with Applica-
tions to Distributed Systems. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’18) (June 2018).

[89] VERMA, A., PEDROSA, L., KORUPOLU, M., OPPENHEIMER,
D., TUNE, E., AND WILKES, J. Large-Scale Cluster Man-
agement at Google with Borg. In Proceedings of the 10th Eu-
ropean Conference on Computer Systems (EuroSys’15) (Apr.
2015).

[90] WILCOX, J. R., WOOS, D., PANCHEKHA, P., TATLOCK, Z.,
WANG, X., ERNST, M. D., AND ANDERSON, T. Verdi: A
Framework for Implementing and Formally Verifying Dis-
tributed Systems. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation (PLDI’15) (June 2015).

[91] YAO, J., TAO, R., GU, R., AND NIEH, J. DuoAI: Fast, Au-
tomated Inference of Inductive Invariants for Verifying Dis-

tributed Protocols. In Proceedings of the 16th USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI’22) (July 2022).

[92] YAO, J., TAO, R., GU, R., AND NIEH, J. Mostly Automated
Verification of Liveness Properties for Distributed Protocols
with Ranking Functions. In Proceedings of the 51st ACM SIG-
PLAN Symposium on Principles of Programming Languages
(POPL’24) (Jan. 2024).

[93] YAO, J., TAO, R., GU, R., NIEH, J., JANA, S., AND RYAN,
G. DistAI: Data-Driven Automated Invariant Learning for
Distributed Protocols. In Proceedings of the 15th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’21) (July 2021).

[94] ZOU, M., DING, H., DU, D., FU, M., GU, R., AND CHEN, H.
Using Concurrent Relational Logic with Helpers for Verifying
the AtomFS File System. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP’19) (Oct.
2019).

666 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Implementing Controllers
	Eventually Stable Reconciliation (ESR)
	Anvil
	Controller Model
	TLA Embedding
	Modeling Controller Environment
	Modeling Environment Components
	Modeling Faults
	Specifying Liveness Assumptions

	Reusable Lemmas
	Temporal Reasoning Lemmas
	Environment Reasoning Lemmas

	Proving the ESR Theorem
	Proof Strategy for ESR
	Environment is Eventually Stable
	Liveness in a Stable Environment

	Temporal Reasoning with Anvil

	Case Studies
	ZooKeeper Controller
	RabbitMQ Controller
	FluentBit Controller

	Evaluation
	Verification Effort
	Controller Correctness
	Controller Performance

	Related Work
	Discussion and Future Work
	Concluding Remarks

