
Rex: Usable Operating System Kernel Extensions with Safe Rust
Jinghao Jia, Ruowen Qin, Michael V. Le, Hani Jamjoon, Hubertus Franke, Dan Williams, Tianyin Xu

Principle: Language-based safety + runtime protection
• Rust as the safe language (safe Rust only in Rex code)
• Runtime safety checks for other safety properties, e.g.,

• Proper program termination
• Safe Kernel stack usage

eBPF use static verification to ensure safety
• Symbolic-execution-based analysis on all code paths
• Checked at load time by an in-kernel verifier

Static verification creates the language verifier gap!
• Developers’ expectation of safety is based on the language
• Verifier is not part of the language contract

• Rejects safe programs and force user to take workarounds

The Language-Verifier Gap

Safe kernel extensions are taking over the OS

Research Statement

The Rex Extension Framework Evaluation
Usability
 • Eliminated existing eBPF verifier workarounds
 • No language-verifier gap anymore
 • Implemented the BPF Memcached Cache (BMC)
 • Much cleaner, simpler code
 • 326 lines of Rust code vs. 513 lines of C code

Performance
 • Rex stack check is 3x faster than eBPF tail-calls
 • Map access in Rex incurs small overhead (<7 ns)
 • Rex-BMC brings 5.4x speedup for Memcached

Broader Impacts

Anticipated Benefits to IBM

eBPF is the de facto safe kernel extension on Linux
Many advanced use cases beyond “packet filtering”
• Security, storage, scheduling, memory management, etc

bpftrace

Linux kernel

Source code
(e.g., C/Rust)

Compiler toolchain
(check p)

Verifier
(check q)

Language Contract

BPF
bytecode?

Verifier error

Building a safe and usable kernel extension framework
• build on language-based safety and runtime protection
• no language-verifier gap (with the same safety guarantee)
• clean, maintainable code for advanced extension programs

Rex provides the same safety guarantee as eBPF
• Memory safety

• Access memory with correct lifetime and size
• Extended type safety

• Allow safe extraction typed data from packet payload bytes
• Safe resource management

• Correctly release acquired kernel resources through RAII
• Safe exception handling

• Clean up resources and gracefully exit upon Rust panics
• Kernel stack safety

• Avoid overflowing of the limited, fix-sized kernel stack
• Safe termination

• Prevent long-executing programs from holding the CPU

User

Kernel

Trusted
Compiler

Kernel Crate
Safe
Rust

(Rex ext)

Kernel CrateRex Runtime

Stack Unwind

Termination

Load-time fixup

Hook
Point

Panic Handler

Kernel Interface

Helper
Functions

Safe
Rust

(Rex ext)

Safe
Rust

(Rex ext)

• IBM used eBPF and kernel extensions in many
products (including our collaboration).

• Our goal is to make Rex be the next-generation
kernel extension mechanism of emerging use
cases for real-world industry products.

• Rex as an open-source project
https://github.com/rex-rs/rex

• Presentation at Open Source Summit (OSS)
• Used in undergrad OS courses (CS 423)
• Used as a project to engage CDS undergrads

Calico Hubble

pwru

https://github.com/rex-rs/rex

	Slide 1

